TDTS08: Advanced Computer Architecture

Lesson

2011

Outline

- Lab organization and goals
- SimpleScalar architecture and tools
- Assignment on multiprocessor systems
- Exercises

Organization

- Assistants
 - Group A1 & A2: Bogdan Tanasa
 - Group B1 & B2: Ke Jiang
- Web page
 - http://www.ida.liu.se/~TDTS08
 - Check the lab pages!

Organization

- Sign up in Webreg
- Deadline for the assignments:

Lab 1 and Lab 2	November 24th, 2011
Lab 3 and Lab 4	December 20th, 2011
Lab 5	January 9th, 2012

Rules: Read them! (linked from the lab pages)

Examination

- Written report for each lab
 - Hand in the report enclosed in a lab cover; it must be signed by both group members
 - Hand in at a lab session
 - Put in the box outside your assistant's office
 - Returned in the box outside your assistant's office

Labs

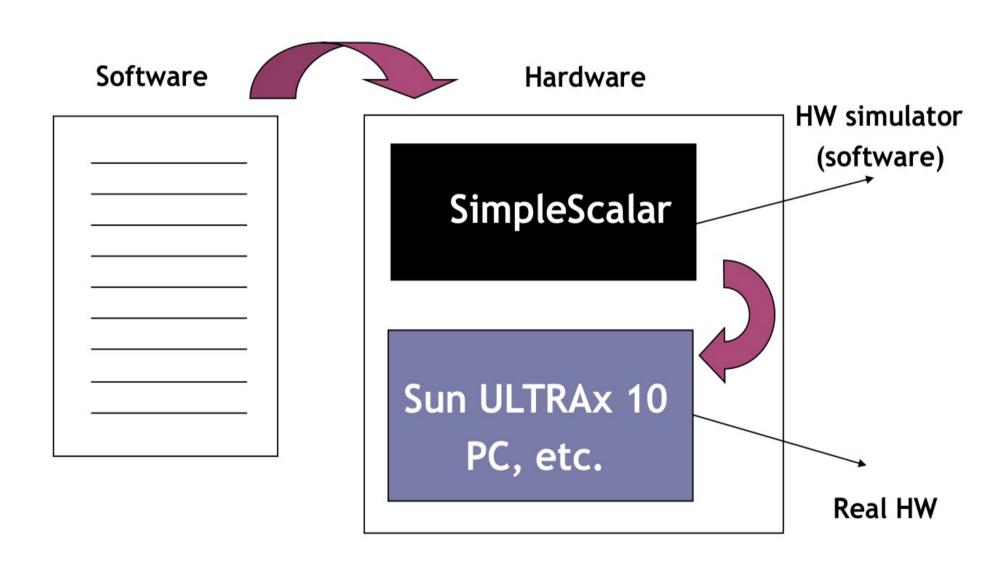
- 5 labs
 - 1. Cache memories
 - 2. Pipelining
 - 3. Superscalar architectures
 - 4. VLIW processors
 - 5. Multiprocessor systems
- Labs homepage
 - http://www.ida.liu.se/~TDTS08/labs

Goals

- Obtain knowledge about computer organization and architectures
- Insights in various trade-offs involved in the design of a processor
- Become familiar with a set of tools necessary for evaluation of computer architectures
 - Simulation tools!

Environment

- Unix
 - Simulations are started from the command line
 - ! If you are not familiar with the Unix environment:
 - Search the Internet
 - Tutorials
 - List of basic commands
 - Make sure that you learn the basic commands in order to be able to work in a command-line environment


Outline

- Lab organization and goals
- SimpleScalar architecture and tools
- Assignment on multiprocessor systems
- Exercises

Introduction

- Issues covered in our lab:
 - Cache memories
 - Instruction pipelining
 - Superscalarity
 - VLIW (Very Long Instruction Word) processors
 - Multiprocessor and Multi-computer systems

Architecture Simulation

SimpleScalar: Literature

- "The SimpleScalar Tool Set, Version 2.0" by Doug Burger and Todd M. Austin
 - Very important preparation for the labs
 - Used all the time during all labs!
- User's and Hacker's guide (slides by Austin)
 - Linked from the lab pages

SimpleScalar Architecture

- Virtual architecture derived from MIPS-IV
 - SimpleScalar ISA semantics are a superset of MIPS
 - Control (j, jr,..., beq, bne,...)
 - Load/Store (lb, lbu, ...)
 - Integer Arithmetic (add, addu, ...)
 - Floating Point Arithmetic (add.s, add.d, ...)
 - Miscellaneous (nop, syscall, break)

- Instruction encodings (64 bits)
 - Register format

16-annote	16-opcode	8-rs	8-rt	8-rd	8-ru/sha	m

Immediate format

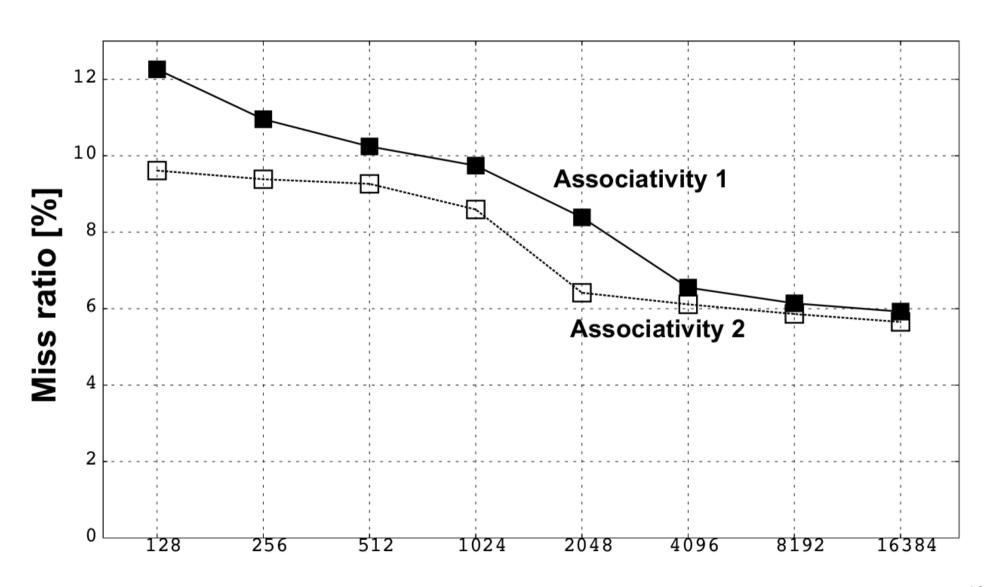
16-annote	16-opcode	8-rs	8-rt	16-imm

Jump format

16-annote 16-opcode 6-unused 26-target

Registers

- 32 integer registers + PC, HI, LO
- 32 floating-point registers + FCC
- Virtual memory:
 - 0x00000000 0x003fffff unused
 - 0x00400000 0x0ffffff text (code)
 - 0x10000000 data
 - 0x7fffc000 stack
 - 0x7fffc000 0x7fffffff Args and Env


- Several simulators
 - Sim-fast: Fast, only functional simulation (no timing)
 - Sim-safe: Sim-fast + memory checks
 - Sim-cache: Sim-safe + cache simulation and various timing properties (simulation time, measured time, ...)
 - Sim-cheetah: Simulation of multiple cache configurations
 - Sim-outorder: Superscalar simulator

- Tool set installed in ~TDTS08/bin
- Configurable through command-line arguments or files (recommended):
 - -dumpconfig <filename>
 - -config <file-name>
- gcc cross-compiler available for generating binaries to be executed on SimpleScalar
 - Binaries have been generated and are available in the course directory

Demonstration

- Set the environment
 - setenv PATH "\$PATH":/home/TDTS08/bin
- Lab1, assignment 3
 - Dump the default configuration of sim-cheetah
 - Modify the configuration and simulate
 - Plot the results (e.g. OpenOffice, Gnuplot, Matlab, Excel)

Demonstration

Outline

- Lab organization and goals
- SimpleScalar architecture and tools
- Assignment on multiprocessor systems
- Exercises

Lab 5: Multiprocessor Systems

Assignment:

- Select an article on a multi-core, multiprocessor, multi-computer system, or a graphics processor
 - List of papers is available on the course page
 - You may select other articles if your lab assistant agrees
- Review the selected article
- Write a review report on the article
- Self-learning based, no lab session allocated

Multiprocessor Systems (cont'd)

- Read and understand the paper
 - If the course literature does not help you, investigate the referenced papers.
 - Searching the Internet can help you find explanations of abbreviations and terms

Multiprocessor Systems (cont'd)

- Analyze the paper
 - Classify the architecture (MIMD, SIMD, NUMA)
 - Possible questions to ask:
 - Why has the actual method/approach been selected?
 - What are the advantages and disadvantages?
 - What is the application area?
 - What has been demonstrated?

— ...

Multiprocessor Systems (cont'd)

- Write a report
 - ~1000 words
 - Submit, in PDF format, to your lab assistant
 - bogta62.liu@analys.urkund.se (Bogdan Tanasa)
 - kejiang.liu@analys.urkund.se (Ke Jiang)

Outline

- Lab organization and goals
- SimpleScalar architecture and tools
- Assignment on multiprocessor systems
- Exercises

Exercises

- Review questions (page 146)
 - 4.4 and 4.8
- Problems (pages 147–149)
 - 4.8 (mandatory, Lab 1.1)
 - Include your solution in the report for Lab 1
 - Additional exercises in this order:
 - 4.15 (locality, preparation for Lab 1.2)
 - 4.22 (average memory-access time)
 - 4.17 (performance enhancement using cache)