

Outline

- → Lab organization and goals
- SimpleScalar architecture and tools
- Assignment on multiprocessor systems
- Break
- Exercises

Organization

- Assistants
 - Group A: Soheil Samii
 - Group B: Ke Jiang
 - Group C: Jakob Rosén
- Web page
 - http://www.ida.liu.se/~TDTS08
 - Check the lab pages

3

Organization

- Sign up in Webreg (you have already done that!)
- Deadline for all lab assignments: January 9, 2011
- Rules: Read them! (linked from the lab pages)

Examination

- Written report for each lab
 - Hand in the report enclosed in a lab cover; it must be signed by all group members
 - Hand in at a lab session
 - Put in the box outside your assistant's office
 - Returned in the box outside your assistant's office

5

Labs

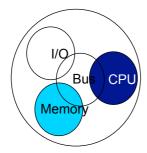
- 5 lab assignments
 - 1. Cache memories
 - 2. Pipelining
 - 3. Superscalar architectures
 - 4. VLIW processors
 - 5. Multiprocessor systems
- Labs homepage
 - http://www.ida.liu.se/~TDTS08/labs

Goals

- Obtain knowledge about computer organization and architectures
- Insights in various trade-offs involved in the design of a processor
- Become familiar with a set of tools necessary for evaluation of computer architectures
 - Simulation tools!

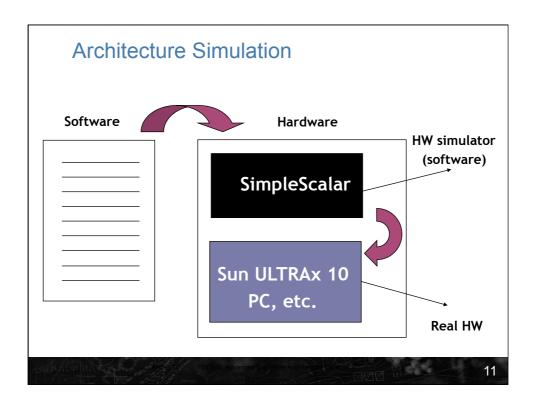
7

Environment


- Unix
- Simulations are started from the command line
- If you are not familiar with the Unix environment:
 - Search the Internet
 - Tutorials
 - List of basic commands
 - Make sure that you learn the basic commands in order to be able to work in a command-line environment

Outline

- Lab organization and goals
- → SimpleScalar architecture and tools
- Assignment on multiprocessor systems
- Break
- Exercises


9

Introduction

Issues covered in our lab:

- Cache memories
- Instruction pipelining
 - Superscalarity
- VLIW (Very Long Instruction Word) processors
 - Multiprocessor and Multicomputer systems

SimpleScalar: Literature

- "The SimpleScalar Tool Set, Version 2.0" by Doug Burger and Todd M. Austin
 - Very important!! Read it as a preparation for the labs
 - Used all the time during all labs!
- User's and Hacker's guide (slides by Austin)
- Linked from the lab pages

SimpleScalar Architecture

- Virtual architecture derived from MIPS-IV
- SimpleScalar ISA semantics are a superset of MIPS
 - Control (j, jr,..., beq, bne,...)
 - Load/Store (lb, lbu, ...)
 - Integer Arithmetic (add, addu, ...)
 - Floating Point Arithmetic (add.s, add.d, ...)
 - Miscellaneous (nop, syscall, break)
- little/big-endian instruction set definition

13

SimpleScalar Architecture (cont'd)							
Instruction encodings (64 bits)							
Register format	16-annote	16-opcode	8-rs	8-rt	8-rd	8-ru/sham	nt
Immediate format		16-opcode	8-rs	8-rt	16	-imm	
Jump format	16-annote	: 16-opcode	6-unu	sed	26-ta	irget	

Linköpings universitet

SimpleScalar Architecture (cont'd)

- Registers
 - 32 integer registers + PC, HI, LO
 - 32 floating-point registers + FCC
- Virtual memory:

```
0x00000000 - 0x003fffff unused
```

• 0x00400000 - 0x0fffffff text (code)

• 0x10000000 - data

.... - 0x7fffc000 stack

0x7fffc000 - 0x7fffffff Args and Env

15

SimpleScalar: tools

- Several simulators
 - <u>Sim-fast:</u> Fast, only functional simulation (no timing)
 - Sim-safe: Sim-fast + memory checks
 - <u>Sim-cache:</u> Sim-safe + cache simulation and various timing properties (simulation time, measured time, ...)
 - <u>Sim-cheetah:</u> Simulation of multiple cache configurations
 - Sim-outorder: Superscalar simulator

SimpleScalar Tools (cont'd)

- Tool set installed in ~TDTS08/bin
- Configurable through command-line arguments or files (recommended):
 - -dumpconfig <filename>
 - -config <file-name>
- gcc cross-compiler available for generating binaries to be executed on SimpleScalar
 - Binaries have been generated and are available in the course directory

Demonstration

1. Autoset the path

```
gedrix <348> echo setenv PATH \"\$PATH\":/home/TDTS08/bin >> .login
    2. Assignment 2
```

```
a) Copy the files from the course folder
```

```
gedrix <319> mkdir lab1
gedrix <320> cd lab1/
gedrix <321> cp ~TDTS08/www-pub/labs/cache_memories/2/* ./
gedrix <322> ls
cachel.cfg Makefile
                      test1.ss
                                  test2.ss
cache2.cfg test1.c
                       test2.c
gedrix <323>
```

(use "cp -r" to copy the whole contents of a directory, including all subdirectories)

Demonstration

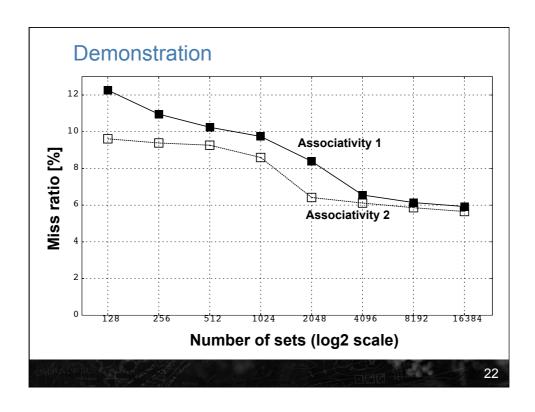
b) Run simulation of test1.ss with configuration cache1.cfg

```
gedrix <354> sim-cache -config cachel.cfg test1.ss
```

c) You will get the following output

```
sim: ** simulation statistics **
                         505292260 # total number of instructions executed
sim_num_insn
                          87822850 # total number of loads and stores executed
sim num refs
                                89 # total simulation time in seconds
sim elapsed time
sim_inst_rate
                      5677441.1236 # simulation speed (in insts/sec)
dl1.accesses
                      87823201.0000 # total number of accesses
dl1.hits
                       87022637 # total number of hits
                            800564 # total number of misses
dl1.misses
                            799540 # total number of replacements
dl1.replacements
dl1.writebacks
                           274082 # total number of writebacks
dll.invalidations
                                0 # total number of invalidations
                            0.0091 # miss rate (i.e., misses/ref)
dl1.miss rate
dl1.repl_rate
                            0.0091 # replacement rate (i.e., repls/ref)
dl1.wb rate
                            0.0031 # writeback rate (i.e., wrbks/ref)
dl1.inv rate
                            0.0000 # invalidation rate (i.e., invs/ref)
```

19


Demonstration

- 3. Assignment 3
 - a) Dump the default configuration of sim-cheetah to config -file and look into the default configuration

gedrix <355> sim-cheetah -q -dumpconfig config-file

```
Part of the configuration file:
```

Demonstration b) Modify the configuration file according to the instructions using any text editor you prefer c) Run sim-cheetah with modified config-file gedrix <358> sim-cheetah -config config-file ~TDTS08/spec95-big/go.ss 3 7 d) Sample results: libcheetah: ** end of simulation ** Addresses processed: 394081 Line size: 16 bytes Plot the results **OpenOffice** Miss Ratios **Gnuplot** Associativity Matlab No. of sets 128 0.122619 0.096127 **Excel** 256 0.109566 0.093854 512 0.102443 0.092651 Your favorite plotting tool 1024 0.097429 0.085947 2048 0.083881 0.064152 4096 0.065504 0.061119 8192 0.061401 0.058600 0.056511 16384 0.059216 21

Outline

- Lab organization and goals
- SimpleScalar architecture and tools
- → Assignment on multiprocessor systems
- Break
- Exercises

23

Lab 5: Multiprocessor Systems

- Assignment:
 - Select an article on a multi-core, multiprocessor, multi-computer system, or a graphics processor
 - Review the selected article
 - Write a review report on the article
- List of papers is available on the course page
 - You may select other articles if your lab assistant agrees

Multiprocessor Systems (cont'd)

- Read and understand the paper
 - If the course literature does not help you, investigate the referenced papers.
 - Searching the Internet can help you find explanations of abbreviations and terms

25

Multiprocessor Systems (cont'd)

- Analyze the paper
 - Classify the architecture (MIMD, SIMD, NUMA)
 - Possible questions to ask:
 - Why has the actual method/approach been selected?
 - What are the advantages and disadvantages?
 - What is the application area?
 - What has been demonstrated?
 -

Multiprocessor Systems (cont'd)

- Write a summary
 - ~1000 words
- Submit, in PDF format, to your lab assistant
 - sohsa65.liu@analys.urkund.se (Soheil Samii)
 - kejiang.liu@analys.urkund.se (Ke Jiang)
 - jakro62.liu@analys.urkund.se (Jakob Rosén)

27

Outline

- Lab organization and goals
- SimpleScalar architecture and tools
- Assignment on multiprocessor systems
- → Break
- Exercises

Exercises

- We have selected some assignments from the 8th edition of the course book (Stallings)
 - Review questions (page 146)
 - 4.4 and 4.8
 - Problems (pages 147–149)
 - 4.8 (preparation for lab 1, mandatory)
 - Include your solution for this assignment in the report for lab 1
 - Additional exercises in this order:
 - 4.15 (locality)
 - 4.22 (average memory-access time)
 - 4.17 (replacement policy)