TDDIO8: Embedded Systems Design

TDTS07: System Design and Methodology
Lesson I

Xiaopeng Teng
VT 2026

Institutionen for datavetenskap (IDA)
Linkopings universitet



Contacts

Multicore Systemet
B1
SU17/18
n B2
SU15/16

« Ahmed Rezine (lectures) -
«  Office hours: Thursdays kil 13.00-16.30 SU10 SU13
«  Office: Building B 329:220
- Email: ahmed.rezine@liu.se

« Xiaopeng Teng (lessons & labs)
«  Office: Building B 329:228
- Email: xiaopeng.teng@liu.se

Cykelluft




Outline

= Today
= Organization
= Lab 1 (TDTS07 & TDDIOS8):
= Modeling and Simulation with SystemC
= Lab 2 (TDDIO8) / Lab 3 (TDTS07):
= Design-space Exploration with MPARM
= Next time
= Lab 2 (TDTS07)
= Formal verification with UPPAAL



TDDIO8 - Organization

Lab groups
= Webreg groups A and B

Web page
= https://www.ida.liu.se/~TDDIOS8
= Check for detailed information and links to tutorials

Organization
= 1 lesson (this one)
= 7 two-hour lab sessions

Lab assignments
1. Modeling and simulation with SystemC (4-5 sessions)
2. Design-space exploration with MPARM (2-3 sessions)



TDTS07 - Organization

Lab groups
= Webreg groups A and B

Web page
= https://www.ida.liu.se/~TDTS07
= Check for detailed information and links to tutorials

Organization
= 2 lessons (including this one)
= 10 two-hour lab sessions

Lab assignments

1. Modeling and simulation with SystemC (3-4 sessions)
2. Formal verification with UPPAAL (4-5 sessions)

3. Design-space exploration with MPARM (2 sessions)



Organization

= Choose a lab partner and sign up in Webreg
https://www.ida.liu.se/webreg3/TDDI08-2026-1/LAB
https://www.ida.liu.se/webreg3/TDTS07-2026-1/LAB
Deadline for the registration: January 28 (both)
Register as soon as possible

= Deadline for:
= Labs’ demonstration: March 5 (TDDIO8) and March 6 (TDTS07)
= March 16 is the last day for handing in (emailing) lab reports
= After the deadline, your teaching assistant will correct the remaining lab
reports at his convenience

= Lab rules
= https://www.ida.liu.se/labs/eslab/lab_rules
= https://www.ida.liu.se/~TDDI08/labs/index.en.shtml
= Read them!



™

TDTS07)

Structure

. Modeling and simulation with SystemC (TDDI08 &

Formal verification with UPPAAL (TDTS07)
Design-space exploration with MPARM (TDDIO8 &

TDTS07)

Each lab has a tutorial. Read it and be prepared before

you attend the Ia
https://www.ida.
https://www.ida.

D Session.
iu.se/~TDDIO08/labs/index.en.shtml

iu.se/~TDTS07/labs/index.en.shtml



Introduction to Lab 1
Modeling and Simulation with SystemC



Lab 1

Modeling and simulation with System C

4—System Level —»

8

Constraints

nformal Specnflcatlon>‘

Arch. Selectior

Modeling

v ¥

\-..

<«——1 Functional

Simulation

<« System mode

I T Formal
« ||| Verification

System

archltectu re
| Estlmatlon 4

not OK Ma

Y

Mapping |

Y

Scheduling |<———

Y

~
~

/\

(Softw. model )—»

pped and

not OK

Kchedu[ed mode)\ Simulation

Simulation

Formal
Verification

<—<Hardw. modeD




Simulation

Based on an executable model of the system
Generate inputs and observe outputs
Permits a quick but shallow evaluation

Good for detecting crude errors

Not good for finding subtle bugs



SystemC

= Comparable to VHDL and Verilog
= Unified hardware-software design language
= Contains structures for modeling hardware components
and their interaction
= Comes with a simulation kernel
= What do we need to model systems?
= time
= modules
= concurrent processes
= events
= channels
= ports



SystemC: Time

= Data type sc_time (a C++ class)
= Use like an ordinary basic data type (int, double)
" sc_time tl1 (9, SC MS);
" sc _time tZ = sc_time (5, SC_SEC);
= if (tl<t2) cout << tl*3 << endl << t2+t2;
= Many of standard operators are defined for sc_time
= Based on 64-bits unsigned integer values
= The representable time is limited (discrete time)
= Depends on the time resolution
= Default: 1 picosecond

= Can be set by the user through the function
sc_set time resolution



SystemC: Modules

Basic building blocks in SystemC
= Contains ports, concurrent processes, internal data

structures, channels, etc.
Created with the macro SC MODULE

Concurrent processes (SC_THREAD Or SC_METHOD)
= Use wait statements to advance time (or event
notification)
= Sensitive to events (sc_event) or value changes in
channels
Input and output ports to communicate with the
environment



Example: Adder

» SUum




Adder Module

#include <systemc.h>

#include <iostream> void print method()

cout << sc time stamp ()
using std::cout; << 7:Sum=" <<sum p
using std::endl; << endl;

SC_MODULE (Adder) {

sc_in<int> a p; SC_CTOR (Adder) {
sc_in<int> b p; sum p.initialize(0);
sc_out<int> sum p; SC METHOD (add method) ;
sc_event print ev; sensitive << a p << b p;
SC METHOD (print method) ;
void add method () { dont initialize();
sum p = a p + b p; sensitive << print ev;

print ev.notify(SC ZERO TIME) ; }
J b7



Generator

Generator > sum




Generator Module

SC_MODULE (Generator)
sc_out<int> a p;
sc_out<int> b p;

void gen thread()
for (;;) |
wait (1, SC SEC);
ap=ap+1;
b p->write(b p->read() + 1);
}

SC_CTOR (Generator) {
a p.initialize(0);
b p.initialize(0);
SC_THREAD (gen thread);
}

s



Test Bench

// Definition of an input generator

int sc main(int argc, char *argv([]) {
sc_set default time unit(l, SC_SEC);
sc_signal<int> a sig, b sig, sum sig; // create channels
Adder adder module (”Adder 17); // create an instance
adder module(a sig, b sig, sum sig); // connect ports to

// channels

Generator gen (”Generator 17);
gen(a sig, b sig);
sc _start (30, SC SEC);
return 0O;



Simulation Run

S ./adder.x

SystemC 2.1.v1 —--- Dec 22 2014 16:12:32
Copyright (c) 1996-2005 by all Contributors
ALL RIGHTS RESERVED

0 s: Sum=0
1 s: Sum=2
2 s: Sum=4
3 s: Sum=6
4 s: Sum=8§8
5 s: Sum=10
6 s: Sum=12
7 s: Sum=14
8 s: Sum=16
9 s: Sum=18

10 s: Sum=20
11 s: Sum=22



SystemC: Simulator Kernel

1. Initialize: each process is executed once; it's possible to
disable this phase for methods.

#include <systemc.h>

Finclude <iestream> void print method() {
cout << sc time stamp ()

<< 7:Sum=" <<sum p

using std::cout;
<< endl;

using std::endl;

}

SC;MODULE(Adder) {
sc_in<int> a p; SC_CTOR (Adder) {

sum p.initialize (0);
SC METHOD (add method) ;
sensitive << a p << b p;
SC METHOD (print method) ;
void add method() { dont initialize();
sum p = a p + b p; sensibive <€ print evy
print ev.notify(SC ZERO TIME) ; }
} }i

sc_in<int> b p;
sc_out<int> sum p;
sc_event print ev;



SystemC: Simulator Kernel

1. Initialize: each process is executed once; it's possible to
disable this phase for methods.

2. Evaluate: select a ready-to-run process and execute or
resume it; immediate notification may happen (e.notify()).

3. Repeat Step 2 until there are no more processes to run.

#include <systemc.h>

finclude <iostream> void print method () { O g Sum:o
cout << sc time stamp ()

using std::cout; << ":Sum=" <<sum p

using std::endl; << endl;

}
SC_MODULE (Adder) {

sc_in<int> a p; SC_CTOR (Adder) {

sc_in<int> b p; sum p.initialize(0);
sc_out<int> sum p; SC _METHOD (add_method) ;
sc_event print ev; sensitive << a p << b p;
SC METHOD (print method) ;
void add method() { dont initialize();
sum p = a p + b p; sensitive << print ew;

print ev.notify(SC ZERO TIME) ; }
J I



SystemC: Simulator Kernel

. Initialize: each process is executed once; it's possible to
disable this phase for methods.

. Evaluate: select a ready-to-run process and execute or
resume it; immediate notification may happen (e.notify()).
. Repeat Step 2 until there are no more processes to run.
. Update: values assigned to channels in the previous
evaluation cycle are updated.



SystemC: Simulator Kernel

. Initialize: each process is executed once; it's possible to
disable this phase for methods.

. Evaluate: select a ready-to-run process and execute or
resume it; immediate notification may happen (e.notify()).
. Repeat Step 2 until there are no more processes to run.

. Update: values assigned to channels in the previous
evaluation cycle are updated.

. Steps 2—4 are a delta-cycle; if Step 2 or 3 resulted in delta
event notifications (e.notify(0) or wait(0)), go to Step 2
without advancing the simulation time.

void add method() {
sum p = a p + b p;
print ev.notify (SC ZERO TIME) ;

J



SystemC: Simulator Kernel

1. Initialize: each process is executed once; it's possible to disable this phase
for methods.

2. Evaluate: select a ready-to-run process and execute or resume it; immediate
notification may happen (e.notify()).

3. Repeat Step 2 until there are no more processes to run.

4. Update: values assigned to channels in the previous evaluation cycle are
updated.

5. Steps 2—4 are a gelta-cycle, if Step 2 or 3 resulted in delta event notifications
(e.notify(0) or wait(0)), go to Step 2 without advancing the simulation time.

6. Advance to the next time with pending events.
/. Determine processes ready to run and go to Step 2.
void gen thread() { = Concurrent processes (SC_THREAD Of SC_METHOD)
for (::) { = Use wait statements to advance time (or event
wait (1, SC SEC); notification)
d p=ap+ 1;

b p=>write (b p=>read() + l);
}



SystemC: Delta-cycle

// Inside a process

sc_signal<int> sig int;

// Assume current value of sig int is O
sig int.write(1l);

int value = sig int.read();

cout << value << endl;
wait (SC ZERO TIME) ;
value = sig int.read();
cout << value << endl; -—-=-—-—--=-=---- >



Run the Example

Copy the example to your home directory
= /courses/TDTS07/tutorials/systemc/adder
= adder.cc (implements the system)

= Makefile (helps you compile and build the program)
Type make in the command line

= Creates an executable adder.x
Type ./adder.x to run the executable

Study the source code together with the tutorial



Lab Assignment

= Study the lab material linked from the web pages

= There you will find the lab assignment
= Design and implement a traffic light controller

= For further details
= SystemC Language Reference Manual
= http://accellera.org



Introduction to Lab 2 / Lab 3
Design-space Exploration with MPARM



Lab 2

Design space exploration with an MPARM simulator.

4¢——System Level —»

Gn

formal Specificatio

Constraints

n,
S

‘-—.

Arch. Selection

Sy stem

archltectu re
Estlmatlonﬁ:

not OK - Ma

Modeling <—— Functional
—> Simulation
: X Formal
<—<Syster1 modeDA~ Verification
Mapping +€————
Scheduling |———
pped and not OK
Qcheduled model Simulation
OK Formal
Verification

(Soﬂw. model)—»

Simulation <—(Hardw. modeD




Outline

 System-design flow
- Hardware and software

-+ Design-space exploration



System-design Flow

formal specification,
constraints

—

y

Modeling

y

----------------.l

__= Architecture

selection

System
rchitecture

Estimation

cheduled model

Hardware and
Software

Implementation

v

Testing Prototype )
ok

| o
ot ok | Fabrication I

Functional
simulation




MPARM: Motivation

Cycle-accurate simulation of the system at hand

Provides various statistics such as the number of
clock cycles, bus utilization, cache efficiency, and
energy/power consumption of the components

Helps to obtain a correct and efficient product



MPSoC Architecture

Interrupt

ARM B ARM § ARM I .o

Memory § Memor Device Memor




MPARM: Hardware

ARMY7 processors (up to eight)

Variable frequency (dynamic and static)
Instruction and data caches

Scratchpad memory

Private memory

Shared memory

Communication bus

Read more in:

= [courses/TDTSO07/sw/mparm/MPARM/doc
= simulator_statistics.txt



MPARM: Software

= Cross-compiler toolchain for building software
= No operating system
= Small set of functions (such as WAIT and SIGNAL)



MPARM: Usage

mpsim.x -c2 — run on two processors, collecting
default statistics
mpsim.x -c2 -w — run on two processors, collecting
power/energy statistics
mpsim.x -c1 --is=9 --ds=10 — run on one processor
with instruction cache of 512 bytes and data cache of
1024 bytes
mpsim.x -c2 -F0,2 -F1,1 -F3,3 — run on two
processors operating at 100 MHz and 200 MHz and
the bus operating at 66 MHz

= 200 MHz is the "default” frequency
mpsim.Xx -h — show other options
Simulation results are in the file stats. txt



Design-space Exploration

= Platform optimization
= Select the number of processors
= Select the speed of each processor

= Select the type, associativity, and size of the cache
= Select the bus type

= Application optimization
= Select the interprocessor communication style (shared
memory or distributed message passing)
= Select the best mapping and schedule




Energy/Speed Tradeoff

CPU model
0.75V, 60mW
150MHz
P'm.... 1.3V, 450mW
P . 600MHz
- R - 1.6V, 900mW
S
H RUN S800MHz
10us 1.5ms
10us  140ms
IDLE 0us SLEEP

40mW 160uW



Frequency Selection: ARM Core Energy

2.8
2.6F
24}
22}
2.0}
1.8}
1.6}
14}
12}
1.0} |
0.8} ]

0.6 ' ' ’ | |
1 15 2 25 3 35 4

Energy [mJ]

Freq. divider



Energy [mJ]

Frequency Selection: Total Energy

11 F

10.5

ok
-
1

et
i

O
-
T T

=~
W

U
U
N
(\)
N
N
('S
(IS
N
AN

Freq. divider



Instruction Cache Size: Execution Time

1e+08 I l ' '
9.5¢+07T
9¢+07
8.5¢e+07
AN 8et07 T
7.5e+07 [
Te+07 T
6.5e+07
6e+07 T
5.5e+07 T

S5e+07
9

t [cycles]

10 11 12 13 14

log2(CacheSize)



Instruction Cache Size: Total Energy

12.5 . . . ;
12.0 |
1.5 |
11.0 |
10.5 |
10.0
9.50
9.00 |
8.50

Energy [mJ]

9 10 11 12 13 14

I L r

29=512 bytes log2(CacheSize) 214=16 kbytes



Assignment 2

Given a GSM codec
Running on one ARM7/ processor
Variables
= Cache parameters
= Processor frequency
Using MPARM, find a hardware configuration that
minimizes the energy of the system



Interprocessor Data Communication

A\

CPU,
a=1 D
How?
CPU,
burint a; - =




Shared Memory

CPU1
a=1
Shared Mem
CPU2
a= <>
print Q; °
A BUS

- Synchronization



Synchronization

With semaphores

a=2

CPU.

a=1
signal(sem_a)

CPU,

wait(sem_a)
a=2

print Q;

A\

<}:><::>

Semaphore

sem_a

Shared Mem

d

BUS




Synchronization Internals (1)

/\

CPU, Semaphore
a=1 —| <= _sem a
N . | /
[sem_a=1 félgnal(sem_a)/% /y
44
y/
CPU, / Shared Mem
S Y

[Nhlle . wait(sem_a) j<=>| |<—> a
(sem_a==0jK =2

print Q; BUS




Synchronization Internals (2)

= Disadvantages of polling
= Results in higher power consumption
= Larger execution time of the application
= Blocking important communication on the bus



Distributed Message Passing

Direct CPU-CPU communication with distributed semaphores
Each CPU has its own scratchpad
= Smaller and faster than a RAM
= Smaller energy consumption than a cache
= Put frequently used variables on the scratchpad
= Cache controlled by hardware
= Scratchpad controlled by software
Semaphores allocated on scratchpads
No polling



Distributed Message Passing (1)

/\

i—

CPU,

2=1 Shared Mem
signal(sem_a)

<> d

CPU,

wait(sem_a) |——
a=2

print a;

I

sem_a|s—>1|| BUS




Distributed Message Passing (2)

/\

a=1 PN

N

CPU,(prod)

a=1
signal(sem_a)

CPU, (cons)
wait(sem_a) |——

print a;

I

sem_al<—| BUS

a=1 v




Assignment 2

= Given two implementations of the GSM codec
= Shared memory
= Distributed message passing

= Simulate and compare these two approaches
= Energy
= Runtime



Thank you!
Questions?



