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Outline

 Today
 Organization
 Lab 1 (TDTS07 & TDDI08): 

 Modeling and Simulation with SystemC
 Lab 2 (TDDI08) / Lab 3 (TDTS07): 

 Design-space Exploration with MPARM
 Next time

 Lab 2 (TDTS07)
 Formal verification with UPPAAL



TDDI08 - Organization

 Lab groups
 Webreg groups A and B

 Web page
 https://www.ida.liu.se/~TDDI08
 Check for detailed information and links to tutorials

 Organization
 1 lesson (this one)
 7 two-hour lab sessions

 Lab assignments
1. Modeling and simulation with SystemC (4-5 sessions)
2. Design-space exploration with MPARM (2-3 sessions)



TDTS07 - Organization

 Lab groups
 Webreg groups A and B

 Web page
 https://www.ida.liu.se/~TDTS07
 Check for detailed information and links to tutorials

 Organization
 2 lessons (including this one)
 10 two-hour lab sessions

 Lab assignments
1. Modeling and simulation with SystemC (3-4 sessions)
2. Formal verification with UPPAAL (4-5 sessions)
3. Design-space exploration with MPARM (2 sessions)



Organization

 Choose a lab partner and sign up in Webreg
 https://www.ida.liu.se/webreg3/TDDI08-2026-1/LAB
 https://www.ida.liu.se/webreg3/TDTS07-2026-1/LAB
 Deadline for the registration: January 28 (both)
 Register as soon as possible

 Deadline for:
 Labs’ demonstration: March 5 (TDDI08) and March 6 (TDTS07)
 March 16 is the last day for handing in (emailing) lab reports
 After the deadline, your teaching assistant will correct the remaining lab 

reports at his convenience

 Lab rules
 https://www.ida.liu.se/labs/eslab/lab_rules
 https://www.ida.liu.se/~TDDI08/labs/index.en.shtml
 Read them!



Structure

1. Modeling and simulation with SystemC (TDDI08 & 
TDTS07)

2. Formal verification with UPPAAL (TDTS07)
3. Design-space exploration with MPARM (TDDI08 & 

TDTS07)

 Each lab has a tutorial. Read it and be prepared before 
you attend the lab session.

 https://www.ida.liu.se/~TDDI08/labs/index.en.shtml
 https://www.ida.liu.se/~TDTS07/labs/index.en.shtml



Introduction to Lab 1

Modeling and Simulation with SystemC



Lab 1



Simulation

 Based on an executable model of the system

 Generate inputs and observe outputs

 Permits a quick but shallow evaluation

 Good for detecting crude errors

 Not good for finding subtle bugs



SystemC

 Comparable to VHDL and Verilog
 Unified hardware-software design language
 Contains structures for modeling hardware components 

and their interaction
 Comes with a simulation kernel

 What do we need to model systems?
 time
 modules
 concurrent processes
 events
 channels
 ports



SystemC: Time

 Data type sc_time (a C++ class)
 Use like an ordinary basic data type (int, double)

 sc_time t1(9, SC_MS);
 sc_time t2 = sc_time(5, SC_SEC);
 if (t1<t2) cout << t1*3 << endl << t2+t2;
 Many of standard operators are defined for sc_time

 Based on 64-bits unsigned integer values
 The representable time is limited (discrete time)
 Depends on the time resolution

 Default: 1 picosecond
 Can be set by the user through the function 
sc_set_time_resolution



SystemC: Modules

 Basic building blocks in SystemC
 Contains ports, concurrent processes, internal data 

structures, channels, etc.
 Created with the macro SC_MODULE
 Concurrent processes (SC_THREAD or SC_METHOD)

 Use wait statements to advance time (or event 
notification)

 Sensitive to events (sc_event) or value changes in 
channels

 Input and output ports to communicate with the 
environment



Example: Adder

Adder
a

b
sum



Adder Module

#include <systemc.h>
#include <iostream>

using std::cout;
using std::endl;

SC_MODULE(Adder) {
sc_in<int> a_p;
sc_in<int> b_p;
sc_out<int> sum_p;
sc_event print_ev;

void add_method() {
sum_p = a_p + b_p;
print_ev.notify(SC_ZERO_TIME);

}
…

… 
void print_method() {

cout << sc_time_stamp()
<< ”:Sum=” <<sum_p
<< endl;

}

SC_CTOR(Adder) {
sum_p.initialize(0);
SC_METHOD(add_method);
sensitive << a_p << b_p;
SC_METHOD(print_method);
dont_initialize();
sensitive << print_ev;

}
};



Generator

Adder
a

b sumGenerator



Generator Module

SC_MODULE(Generator) {
sc_out<int> a_p;
sc_out<int> b_p;

void gen_thread() {
for (;;) {
wait(1, SC_SEC);
a_p = a_p + 1;
b_p->write(b_p->read() + 1);

}
}

SC_CTOR(Generator) {
a_p.initialize(0);
b_p.initialize(0);
SC_THREAD(gen_thread);

}
};



Test Bench

// Definition of an input generator
int sc_main(int argc, char *argv[]) {

sc_set_default_time_unit(1, SC_SEC);
sc_signal<int> a_sig, b_sig, sum_sig; // create channels
Adder adder_module(”Adder_1”); // create an instance
adder_module(a_sig, b_sig, sum_sig); // connect ports to

// channels
Generator gen(”Generator_1”);
gen(a_sig, b_sig);
sc_start(30, SC_SEC);
return 0;

}



Simulation Run

$ ./adder.x

SystemC 2.1.v1 --- Dec 22 2014 16:12:32
Copyright (c) 1996-2005 by all Contributors

ALL RIGHTS RESERVED
0 s: Sum=0
1 s: Sum=2
2 s: Sum=4
3 s: Sum=6
4 s: Sum=8
5 s: Sum=10
6 s: Sum=12
7 s: Sum=14
8 s: Sum=16
9 s: Sum=18
10 s: Sum=20
11 s: Sum=22
…



SystemC: Simulator Kernel

1. Initialize: each process is executed once; it’s possible to 
disable this phase for methods.



SystemC: Simulator Kernel

1. Initialize: each process is executed once; it’s possible to 
disable this phase for methods.

2. Evaluate: select a ready-to-run process and execute or 
resume it; immediate notification may happen (e.notify()).

3. Repeat Step 2 until there are no more processes to run.



SystemC: Simulator Kernel
1. Initialize: each process is executed once; it’s possible to 

disable this phase for methods.
2. Evaluate: select a ready-to-run process and execute or 

resume it; immediate notification may happen (e.notify()).
3. Repeat Step 2 until there are no more processes to run.
4. Update: values assigned to channels in the previous 

evaluation cycle are updated.



SystemC: Simulator Kernel

1. Initialize: each process is executed once; it’s possible to 
disable this phase for methods.

2. Evaluate: select a ready-to-run process and execute or 
resume it; immediate notification may happen (e.notify()).

3. Repeat Step 2 until there are no more processes to run.
4. Update: values assigned to channels in the previous 

evaluation cycle are updated.
5. Steps 2–4 are a delta-cycle; if Step 2 or 3 resulted in delta 

event notifications (e.notify(0) or wait(0)), go to Step 2 
without advancing the simulation time.



SystemC: Simulator Kernel

1. Initialize: each process is executed once; it’s possible to disable this phase 
for methods.

2. Evaluate: select a ready-to-run process and execute or resume it; immediate 
notification may happen (e.notify()).

3. Repeat Step 2 until there are no more processes to run.
4. Update: values assigned to channels in the previous evaluation cycle are 

updated.
5. Steps 2–4 are a delta-cycle; if Step 2 or 3 resulted in delta event notifications 

(e.notify(0) or wait(0)), go to Step 2 without advancing the simulation time.

6. Advance to the next time with pending events.
7. Determine processes ready to run and go to Step 2.



SystemC: Delta-cycle

// Inside a process
sc_signal<int> sig_int;
// Assume current value of sig_int is 0
sig_int.write(1);
int value = sig_int.read();
cout << value << endl;
wait(SC_ZERO_TIME);
value = sig_int.read();
cout << value << endl;

0

1



Run the Example

 Copy the example to your home directory
 /courses/TDTS07/tutorials/systemc/adder
 adder.cc (implements the system)
 Makefile (helps you compile and build the program)

 Type make in the command line
 Creates an executable adder.x

 Type ./adder.x to run the executable
 Study the source code together with the tutorial



Lab Assignment

 Study the lab material linked from the web pages

 There you will find the lab assignment
 Design and implement a traffic light controller

 For further details
 SystemC Language Reference Manual
 http://accellera.org



Introduction to Lab 2 / Lab 3

Design-space Exploration with MPARM



Lab 2



Outline

• System-design flow

• Hardware and software

• Design-space exploration



System-design Flow
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MPARM: Motivation

 Cycle-accurate simulation of the system at hand

 Provides various statistics such as the number of 
clock cycles, bus utilization, cache efficiency, and 
energy/power consumption of the components

 Helps to obtain a correct and efficient product



MPSoC Architecture

Bus

ARM ARM ARM
Interrupt
Device

Private
Memory

Private
Memory

Private
Memory

Semaphore
Device

Shared
Memory

CACHE CACHE CACHE



MPARM: Hardware

 ARM7 processors (up to eight)
 Variable frequency (dynamic and static)
 Instruction and data caches
 Scratchpad memory
 Private memory
 Shared memory
 Communication bus
 Read more in:

 /courses/TDTS07/sw/mparm/MPARM/doc
 simulator_statistics.txt



MPARM: Software

 Cross-compiler toolchain for building software

 No operating system

 Small set of functions (such as WAIT and SIGNAL)



MPARM: Usage

 mpsim.x -c2 — run on two processors, collecting 
default statistics

 mpsim.x -c2 -w — run on two processors, collecting 
power/energy statistics

 mpsim.x -c1 --is=9 --ds=10 — run on one processor 
with instruction cache of 512 bytes and data cache of 
1024 bytes

 mpsim.x -c2 -F0,2 -F1,1 -F3,3 — run on two 
processors operating at 100 MHz and 200 MHz and 
the bus operating at 66 MHz
 200 MHz is the ”default” frequency

 mpsim.x -h — show other options
 Simulation results are in the file stats.txt



Design-space Exploration

 Platform optimization
 Select the number of processors
 Select the speed of each processor
 Select the type, associativity, and size of the cache
 Select the bus type

 Application optimization
 Select the interprocessor communication style (shared 

memory or distributed message passing)
 Select the best mapping and schedule



Energy/Speed Tradeoff

RUN
RUN

RUN
RUN

IDLE SLEEP

RUN

0.75V, 60mW 
150MHz

1.3V, 450mW 
600MHz

1.6V, 900mW 
800MHz

90s

40mW 160W

10s

10s 140ms

1.5ms

160s

CPU model



Frequency Selection: ARM Core Energy
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Frequency Selection: Total Energy

8.5

9.0

9.5

10

10.5

11

1 1.5 2 2.5 3 3.5 4

E
ne

rg
y 

[m
J]

Freq. divider



Instruction Cache Size: Execution Time
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Instruction Cache Size: Total Energy

log2(CacheSize)
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 Given a GSM codec
 Running on one ARM7 processor
 Variables

 Cache parameters
 Processor frequency

 Using MPARM, find a hardware configuration that 
minimizes the energy of the system

Assignment 2



Interprocessor Data Communication

CPU1

CPU2

...
a=1
...

...
print a;
...

BUS

How?



Shared Memory

CPU1

CPU2

...
a=1
...

print a;

BUS

Shared Mem

a

a=2

a=? Synchronization



Synchronization

CPU1

CPU2

a=1
signal(sem_a)

print a;

Shared Mem

a
a=2

Semaphore

sem_a

wait(sem_a)

a=2

With semaphores

BUS



Synchronization Internals (1)

CPU1

CPU2

a=1
signal(sem_a)

print a;

Shared Mem

a
a=2

Semaphore

sem_a

while 
(sem_a==0)

wait(sem_a)

sem_a=1

BUS



Synchronization Internals (2)

 Disadvantages of polling
 Results in higher power consumption
 Larger execution time of the application
 Blocking important communication on the bus



Distributed Message Passing

 Direct CPU-CPU communication with distributed semaphores
 Each CPU has its own scratchpad

 Smaller and faster than a RAM
 Smaller energy consumption than a cache
 Put frequently used variables on the scratchpad
 Cache controlled by hardware
 Scratchpad controlled by software

 Semaphores allocated on scratchpads
 No polling



Distributed Message Passing (1) 

CPU1

a=1
signal(sem_a)

BUS

Shared Mem

a

CPU2

print a;
a=2
wait(sem_a)

sem_a



Distributed Message Passing (2)

CPU1(prod)

signal(sem_a)

BUS

CPU2 (cons)

print a;

wait(sem_a)

sem_a

a=1

a=1

a=1



Assignment 2

 Given two implementations of the GSM codec
 Shared memory
 Distributed message passing

 Simulate and compare these two approaches
 Energy
 Runtime



Thank you!
Questions?


