
TDDI08: Embedded Systems Design

TDTS07: System Design and Methodology

Lesson I

Xiaopeng Teng

VT 2026

Institutionen för datavetenskap (IDA)
Linköpings universitet



Contacts

• Ahmed Rezine (lectures)
• Office hours: Thursdays kl 13.00-16.30
• Office: Building B 329:220
• Email: ahmed.rezine@liu.se

• Xiaopeng Teng (lessons & labs)
• Office: Building B 329:228
• Email: xiaopeng.teng@liu.se



Outline

 Today
 Organization
 Lab 1 (TDTS07 & TDDI08): 

 Modeling and Simulation with SystemC
 Lab 2 (TDDI08) / Lab 3 (TDTS07): 

 Design-space Exploration with MPARM
 Next time

 Lab 2 (TDTS07)
 Formal verification with UPPAAL



TDDI08 - Organization

 Lab groups
 Webreg groups A and B

 Web page
 https://www.ida.liu.se/~TDDI08
 Check for detailed information and links to tutorials

 Organization
 1 lesson (this one)
 7 two-hour lab sessions

 Lab assignments
1. Modeling and simulation with SystemC (4-5 sessions)
2. Design-space exploration with MPARM (2-3 sessions)



TDTS07 - Organization

 Lab groups
 Webreg groups A and B

 Web page
 https://www.ida.liu.se/~TDTS07
 Check for detailed information and links to tutorials

 Organization
 2 lessons (including this one)
 10 two-hour lab sessions

 Lab assignments
1. Modeling and simulation with SystemC (3-4 sessions)
2. Formal verification with UPPAAL (4-5 sessions)
3. Design-space exploration with MPARM (2 sessions)



Organization

 Choose a lab partner and sign up in Webreg
 https://www.ida.liu.se/webreg3/TDDI08-2026-1/LAB
 https://www.ida.liu.se/webreg3/TDTS07-2026-1/LAB
 Deadline for the registration: January 28 (both)
 Register as soon as possible

 Deadline for:
 Labs’ demonstration: March 5 (TDDI08) and March 6 (TDTS07)
 March 16 is the last day for handing in (emailing) lab reports
 After the deadline, your teaching assistant will correct the remaining lab 

reports at his convenience

 Lab rules
 https://www.ida.liu.se/labs/eslab/lab_rules
 https://www.ida.liu.se/~TDDI08/labs/index.en.shtml
 Read them!



Structure

1. Modeling and simulation with SystemC (TDDI08 & 
TDTS07)

2. Formal verification with UPPAAL (TDTS07)
3. Design-space exploration with MPARM (TDDI08 & 

TDTS07)

 Each lab has a tutorial. Read it and be prepared before 
you attend the lab session.

 https://www.ida.liu.se/~TDDI08/labs/index.en.shtml
 https://www.ida.liu.se/~TDTS07/labs/index.en.shtml



Introduction to Lab 1

Modeling and Simulation with SystemC



Lab 1



Simulation

 Based on an executable model of the system

 Generate inputs and observe outputs

 Permits a quick but shallow evaluation

 Good for detecting crude errors

 Not good for finding subtle bugs



SystemC

 Comparable to VHDL and Verilog
 Unified hardware-software design language
 Contains structures for modeling hardware components 

and their interaction
 Comes with a simulation kernel

 What do we need to model systems?
 time
 modules
 concurrent processes
 events
 channels
 ports



SystemC: Time

 Data type sc_time (a C++ class)
 Use like an ordinary basic data type (int, double)

 sc_time t1(9, SC_MS);
 sc_time t2 = sc_time(5, SC_SEC);
 if (t1<t2) cout << t1*3 << endl << t2+t2;
 Many of standard operators are defined for sc_time

 Based on 64-bits unsigned integer values
 The representable time is limited (discrete time)
 Depends on the time resolution

 Default: 1 picosecond
 Can be set by the user through the function 
sc_set_time_resolution



SystemC: Modules

 Basic building blocks in SystemC
 Contains ports, concurrent processes, internal data 

structures, channels, etc.
 Created with the macro SC_MODULE
 Concurrent processes (SC_THREAD or SC_METHOD)

 Use wait statements to advance time (or event 
notification)

 Sensitive to events (sc_event) or value changes in 
channels

 Input and output ports to communicate with the 
environment



Example: Adder

Adder
a

b
sum



Adder Module

#include <systemc.h>
#include <iostream>

using std::cout;
using std::endl;

SC_MODULE(Adder) {
sc_in<int> a_p;
sc_in<int> b_p;
sc_out<int> sum_p;
sc_event print_ev;

void add_method() {
sum_p = a_p + b_p;
print_ev.notify(SC_ZERO_TIME);

}
…

… 
void print_method() {

cout << sc_time_stamp()
<< ”:Sum=” <<sum_p
<< endl;

}

SC_CTOR(Adder) {
sum_p.initialize(0);
SC_METHOD(add_method);
sensitive << a_p << b_p;
SC_METHOD(print_method);
dont_initialize();
sensitive << print_ev;

}
};



Generator

Adder
a

b sumGenerator



Generator Module

SC_MODULE(Generator) {
sc_out<int> a_p;
sc_out<int> b_p;

void gen_thread() {
for (;;) {
wait(1, SC_SEC);
a_p = a_p + 1;
b_p->write(b_p->read() + 1);

}
}

SC_CTOR(Generator) {
a_p.initialize(0);
b_p.initialize(0);
SC_THREAD(gen_thread);

}
};



Test Bench

// Definition of an input generator
int sc_main(int argc, char *argv[]) {

sc_set_default_time_unit(1, SC_SEC);
sc_signal<int> a_sig, b_sig, sum_sig; // create channels
Adder adder_module(”Adder_1”); // create an instance
adder_module(a_sig, b_sig, sum_sig); // connect ports to

// channels
Generator gen(”Generator_1”);
gen(a_sig, b_sig);
sc_start(30, SC_SEC);
return 0;

}



Simulation Run

$ ./adder.x

SystemC 2.1.v1 --- Dec 22 2014 16:12:32
Copyright (c) 1996-2005 by all Contributors

ALL RIGHTS RESERVED
0 s: Sum=0
1 s: Sum=2
2 s: Sum=4
3 s: Sum=6
4 s: Sum=8
5 s: Sum=10
6 s: Sum=12
7 s: Sum=14
8 s: Sum=16
9 s: Sum=18
10 s: Sum=20
11 s: Sum=22
…



SystemC: Simulator Kernel

1. Initialize: each process is executed once; it’s possible to 
disable this phase for methods.



SystemC: Simulator Kernel

1. Initialize: each process is executed once; it’s possible to 
disable this phase for methods.

2. Evaluate: select a ready-to-run process and execute or 
resume it; immediate notification may happen (e.notify()).

3. Repeat Step 2 until there are no more processes to run.



SystemC: Simulator Kernel
1. Initialize: each process is executed once; it’s possible to 

disable this phase for methods.
2. Evaluate: select a ready-to-run process and execute or 

resume it; immediate notification may happen (e.notify()).
3. Repeat Step 2 until there are no more processes to run.
4. Update: values assigned to channels in the previous 

evaluation cycle are updated.



SystemC: Simulator Kernel

1. Initialize: each process is executed once; it’s possible to 
disable this phase for methods.

2. Evaluate: select a ready-to-run process and execute or 
resume it; immediate notification may happen (e.notify()).

3. Repeat Step 2 until there are no more processes to run.
4. Update: values assigned to channels in the previous 

evaluation cycle are updated.
5. Steps 2–4 are a delta-cycle; if Step 2 or 3 resulted in delta 

event notifications (e.notify(0) or wait(0)), go to Step 2 
without advancing the simulation time.



SystemC: Simulator Kernel

1. Initialize: each process is executed once; it’s possible to disable this phase 
for methods.

2. Evaluate: select a ready-to-run process and execute or resume it; immediate 
notification may happen (e.notify()).

3. Repeat Step 2 until there are no more processes to run.
4. Update: values assigned to channels in the previous evaluation cycle are 

updated.
5. Steps 2–4 are a delta-cycle; if Step 2 or 3 resulted in delta event notifications 

(e.notify(0) or wait(0)), go to Step 2 without advancing the simulation time.

6. Advance to the next time with pending events.
7. Determine processes ready to run and go to Step 2.



SystemC: Delta-cycle

// Inside a process
sc_signal<int> sig_int;
// Assume current value of sig_int is 0
sig_int.write(1);
int value = sig_int.read();
cout << value << endl;
wait(SC_ZERO_TIME);
value = sig_int.read();
cout << value << endl;

0

1



Run the Example

 Copy the example to your home directory
 /courses/TDTS07/tutorials/systemc/adder
 adder.cc (implements the system)
 Makefile (helps you compile and build the program)

 Type make in the command line
 Creates an executable adder.x

 Type ./adder.x to run the executable
 Study the source code together with the tutorial



Lab Assignment

 Study the lab material linked from the web pages

 There you will find the lab assignment
 Design and implement a traffic light controller

 For further details
 SystemC Language Reference Manual
 http://accellera.org



Introduction to Lab 2 / Lab 3

Design-space Exploration with MPARM



Lab 2



Outline

• System-design flow

• Hardware and software

• Design-space exploration



System-design Flow
Informal specification,

constraints

Modeling

System model

Mapped and
scheduled model

Estimation

System
architecture

Architecture
selection

Hardware and
Software

Implementation

Prototype

Fabrication

ok

Testing

Functional
simulation

not oknot ok

Mapping

Scheduling

not ok



MPARM: Motivation

 Cycle-accurate simulation of the system at hand

 Provides various statistics such as the number of 
clock cycles, bus utilization, cache efficiency, and 
energy/power consumption of the components

 Helps to obtain a correct and efficient product



MPSoC Architecture

Bus

ARM ARM ARM
Interrupt
Device

Private
Memory

Private
Memory

Private
Memory

Semaphore
Device

Shared
Memory

CACHE CACHE CACHE



MPARM: Hardware

 ARM7 processors (up to eight)
 Variable frequency (dynamic and static)
 Instruction and data caches
 Scratchpad memory
 Private memory
 Shared memory
 Communication bus
 Read more in:

 /courses/TDTS07/sw/mparm/MPARM/doc
 simulator_statistics.txt



MPARM: Software

 Cross-compiler toolchain for building software

 No operating system

 Small set of functions (such as WAIT and SIGNAL)



MPARM: Usage

 mpsim.x -c2 — run on two processors, collecting 
default statistics

 mpsim.x -c2 -w — run on two processors, collecting 
power/energy statistics

 mpsim.x -c1 --is=9 --ds=10 — run on one processor 
with instruction cache of 512 bytes and data cache of 
1024 bytes

 mpsim.x -c2 -F0,2 -F1,1 -F3,3 — run on two 
processors operating at 100 MHz and 200 MHz and 
the bus operating at 66 MHz
 200 MHz is the ”default” frequency

 mpsim.x -h — show other options
 Simulation results are in the file stats.txt



Design-space Exploration

 Platform optimization
 Select the number of processors
 Select the speed of each processor
 Select the type, associativity, and size of the cache
 Select the bus type

 Application optimization
 Select the interprocessor communication style (shared 

memory or distributed message passing)
 Select the best mapping and schedule



Energy/Speed Tradeoff

RUN
RUN

RUN
RUN

IDLE SLEEP

RUN

0.75V, 60mW 
150MHz

1.3V, 450mW 
600MHz

1.6V, 900mW 
800MHz

90s

40mW 160W

10s

10s 140ms

1.5ms

160s

CPU model



Frequency Selection: ARM Core Energy

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

1 1.5 2 2.5 3 3.5 4

E
ne

rg
y 

[m
J]

Freq. divider



Frequency Selection: Total Energy

8.5

9.0

9.5

10

10.5

11

1 1.5 2 2.5 3 3.5 4

E
ne

rg
y 

[m
J]

Freq. divider



Instruction Cache Size: Execution Time

t [
cy

cl
es

]

5e+07

5.5e+07

6e+07

6.5e+07

7e+07

7.5e+07

8e+07

8.5e+07

9e+07

9.5e+07

1e+08

9 10 11 12 13 14

log2(CacheSize)



Instruction Cache Size: Total Energy

log2(CacheSize)

8.50

9.00

9.50

10.0

10.5

11.0

11.5

12.0

12.5

9 10 11 12 13 14

E
ne

rg
y 

[m
J]

29=512 bytes 214=16 kbytes



 Given a GSM codec
 Running on one ARM7 processor
 Variables

 Cache parameters
 Processor frequency

 Using MPARM, find a hardware configuration that 
minimizes the energy of the system

Assignment 2



Interprocessor Data Communication

CPU1

CPU2

...
a=1
...

...
print a;
...

BUS

How?



Shared Memory

CPU1

CPU2

...
a=1
...

print a;

BUS

Shared Mem

a

a=2

a=? Synchronization



Synchronization

CPU1

CPU2

a=1
signal(sem_a)

print a;

Shared Mem

a
a=2

Semaphore

sem_a

wait(sem_a)

a=2

With semaphores

BUS



Synchronization Internals (1)

CPU1

CPU2

a=1
signal(sem_a)

print a;

Shared Mem

a
a=2

Semaphore

sem_a

while 
(sem_a==0)

wait(sem_a)

sem_a=1

BUS



Synchronization Internals (2)

 Disadvantages of polling
 Results in higher power consumption
 Larger execution time of the application
 Blocking important communication on the bus



Distributed Message Passing

 Direct CPU-CPU communication with distributed semaphores
 Each CPU has its own scratchpad

 Smaller and faster than a RAM
 Smaller energy consumption than a cache
 Put frequently used variables on the scratchpad
 Cache controlled by hardware
 Scratchpad controlled by software

 Semaphores allocated on scratchpads
 No polling



Distributed Message Passing (1) 

CPU1

a=1
signal(sem_a)

BUS

Shared Mem

a

CPU2

print a;
a=2
wait(sem_a)

sem_a



Distributed Message Passing (2)

CPU1(prod)

signal(sem_a)

BUS

CPU2 (cons)

print a;

wait(sem_a)

sem_a

a=1

a=1

a=1



Assignment 2

 Given two implementations of the GSM codec
 Shared memory
 Distributed message passing

 Simulate and compare these two approaches
 Energy
 Runtime



Thank you!
Questions?


