
1Copyright © 2017 MindRoad. All Rights Reserved.
www.mindroad.se

Embedded Linux
Kjell Enblom,
Mindroad.se

2024-02-28

2

Who am I ?
● Kjell Enblom

– Computer Science, Linköping university
– Computer consultant
– I have used Unix since 1985.
– I have been working with Linux since 1995.

● Workstations
● Servers
● Embedded Linux since 2007

3

Content
● Where can we find Embedded Linux?
● When to use Linux and not to use Linux.
● The four elements.
● Using standard Linux distribution versus build an

embedded Linux distribution.
● How to deploy.

– Manually
– Using Buildroot
– Using Yocto Project

4

Where can we find Embedded
Linux?

● Routers
● Firewalls
● Network encryption.
● Infotainment system
● TV, screens
● Robots
● NAS (network storage)
● Blast furnace
● Set-top-box (TV)
● Measuring equipment
● Washing machines.
● Coffee machines.
● Cameras.

5

When to use Linux
● We need network support.
● We need to be able to easily run multiple programs.
● We don’t need real time or only need soft real time support.
● The application require more than 1-3 megabytes of memory to run smoothly.
● With large and complex systems the boilerplate code required just to initialise

the device becomes very complex.
● We need network connectivity, touch screen, sound, video, embedded web server, encryption.
● Benefits of using embedded Linux

– its open source nature (free as in price and as in freedom),
– flexibility and scalability,
– support for a wide range of hardware architectures,
– robustness and stability,
– it has support for process management, support for different file systems, multi-user support, etc
– large community of developers and users.

6

When to not to use Linux
● We need hard real time support.

– RTOSes are designed to handle multiple processes at one time,
ensuring that these processes respond to events within a predictable
time limit.

● The hardware lacks MMU.
● Resources, like memory, storage and CPU etc. are severely limited.

7

The four elements
● Toolchain
● Bootloader
● Linux kernel
● Root-filesystem including application for system’s usage.

8

The four elements - Toolchain
● A collection of tools for creating binaries or libraries from code.

Contains usually:
– Compiler or cross compiler
– Assembler
– Linker
– System library, libc, e.g. glibc, uClibc-ng, Dietlibc, Bionic etc.

9

The four elements - Toolchain
● A toolchain based on gnu tools, consists of:

– GCC (Compiler)
– Binutils (assembler, linker, profiles, object file tool, etc)
– Glibc (GNU libc, standard library)

10

The four elements - Bootloader
● Hardware specific.
● Loads data from non-volatile memory to RAM
● Launches the loaded program, such as a linux kernel

11

The four elements - Bootloader
● On embedded systems it is common that the bootloader is loaded from a flash memory.
● Really small systems only have a bootstrap.
● Larger systems have a bootstrap and a bootloader.

CPU ROM

MLO

u-boot

linux

userspace

Bootstrap/ secondary
program loader

Bootloader/ tertiary
program loader

Linux kernel

12

The four elements - Bootloader
● Some of the most common bootloaders are:

– LILO (x86 and x86_64 based systems. Used to be standard bootloader)
– Grub (x86 and x86_64. The standard bootloader in most Linux distributions)
– U-Boot (System with ARM, AVR32, PPC, Blackfin, x86, Motorola m68k, MIPS, Super-

H and more) common in many embedded systems.
– RedBoot (ARM, x86, m68k, MIPS, PowerPC, Super-H and more)
– CFE (Broadcom Common Firmware Environment for MIPS, PowerPC and x86)
– BSSP (proprietary bootloader from STMicroelectronics)

13

The four elements - Linux Kernel
● An abstraction of hardware.
● A generic platform for applications.

– Handles hardware, filesystems, network, processes, security (firewall,
selinux, apparmor).

● Implementing a standard API against user space.
● In ARM and PowerPC systems we also need a device tree.

– A device tree is a data structure for describing hardware layout.
– Device trees are used by U-Boot and by the Linux kernel.
– With device trees there are no need for hard coded hardware specific

values in the device drivers.

14

The four elements - Root filesystem
● Set of files and application to start the system.
● Contains all necessary applications, libraries, device files, system

files for the complete system function.
● Contains everything that is necessary to add extra file systems if

needed.

15

Using a standard Linux distribution
● You don’t need to build the OS.
● Vast number of packages, ready to install.
● You can use the distros package manager to install packages.
● Little setup time.
● When rebuilding a package you need to do than on the board or

cross compile on your development station.

16

Using a standard Linux distribution
● Minuses:

– Requires hardware support
● Only works out-of-the-box on commodity hardware such as PC or Raspberry Pi.
● Standard distros don’t have support for most embedded hardware.

– Native development means compiling on the machine.
–Ok for PC, but not scalable for Raspberry Pi.

– Too big
● e.g. Ubuntu Core is 500 MB, but we might have only 256 MB storage.

– Software update via package manager is not robust.
● We need atomic update, e.g. the entire root filesystem image or root filesystem

tree.

17

Build and use an embedded Linux distribution
● With a BSP, Board Support Package, you can have support for your

hardware.
– There is plenty of support for many hardware boards.

● It is possible to build a small custom embedded distribution.
● There is good support for cross-compilation development for embedded

Linux distributions.
– You can do the development and cross compilation on your workstation.

● Atomic updates are supported.
– The system could be in orbit around Jupiter or in a cave deep under the

sea.
– You must not brick the system.

18

Deploy - manually
● To deploy you need the four elements; cross compiler toolchain, boot loader

source code, Linux kernel source code and root filesystem applications and
root filesystem files.

● Toolchains come in several different variants; proprietary, ready-made open
source, and the ones that you build yourself.

● The easiest way is to use one of the ready-made ones. Example:
– Linaro, https://www.linaro.org/downloads
– https://toolchains.bootlin.com/

● You get the most flexibility and customization with those you build yourself.
– You can for example use crosstool-ng to build your own toolchain.

https://www.linaro.org/downloads
https://toolchains.bootlin.com/

19

Deploy - manually
● Next step is to cross compile the bootloader.
● We need to decide which bootloader to use.
● Then we need the source code for the bootloader

and configure it for our target system and for
the functions we need and then cross compile it.

● A very common open source bootloader used in many embedded
systems is u-boot from DENX Software Engineering.

20

Deploy - manually
● Example for u-boot for Beaglebone black:

– Download the source code and extract it and go to the
source code directory.

● export ARCH=arm

● export CROSS_COMPILE=arm-cortex_a8-linux-gnueabi- # Prefix part of toolchain name

● make am335x_boneblack_defconfig # Select the beaglebone black configuration.

● make menuconfig # Do some more configuration

● make all # Compile U-Boot and U-Boot tools

● We will get the files MLO and u-boot.img. We need to install them on the target.

21

Deploy - manually
● Next step is to compile the Linux kernel.

– Download the Linux kernel and extract the source code.
● You can get it from https://www.kernel.org/

– Example for Beaglebone black:
● make ARCH=arm CROSS_COMPILE=arm-cortex_a8-linux-gnueabi- multi_v7_defconfig

 # Select Beaglebone black configuration
● make menuconfig # Do some more configuration

● Make # Compile the Linux Kernel

● We will get a kernel image and a device tree to install to the target.

22

Deploy - manually
● Then we need to create the root filesystem.
● For that we need to create som directories and some files

and cross compile the applicatoins we need.
● Use the toolchain to do that.
● For all the standard Linux commands we can use busybox.
● Download the source code and configure it and cross compile it.

– export ARCH=arm

– export CROSS_COMPILE=arm-cortex_a8-linux-gnueabi- # Prefix part of toolchain name

– make menuconfig # Do some configuration

– make && make install # Install busybox in a directory tree on your development machine.

23

Deploy - manually
● Finally, we need to deploy everything to the target system.
● How the system is installed on the target varies

between different systems.
– Install the entire system on an SD card.
– Copy the files to a bootable media and boot with this

on the target to install.
– Flash the files to a flash memory on the target.

24

Deploy - manually
● For the Beaglebone black, we can e.g. install the whole system on an

SD card and boot from this SD card.
● We create two partitions:

– A partition that contains the bootloader files,
the Linux kernel and a device tree file.

– One partition containing the root filesystem.

25

Deploy - Buildroot
● Putting everything together manually is quite

cumbersome and time-consuming.
● It's easier with a ready-made building system.
● Buildroot and Yocto Project are two such systems.
● They are both open source.
● We will first take a look at buildroot.

– https://buildroot.org/

https://buildroot.org/

26

Deploy - Buildroot
● Buildroot is built around make files and the program make.
● Buildroot can build the toolchain, it builds bootloader, Linux kernel and

root filesystem including the programs you develop.
– It is possible to use an external toolchain with buildroot.

● To build a distribution download the buildroot build system
and extract the archive file.

● Run make menuconfig and do all the necessary configuration.
● Then run make to build.

– Buildroot will download all source code and build it.

27

Deploy - Buildroot
● For own applictions we need to create a subdirectory

under package and populate it with a configuration file
and a makefile.
– Config.in
– mypackage.mk

● Then add a line in the file package/Config.in
● For this to work, you need basic knowledge of make

and make files.
● With buildroot you can build archive files, complete images

for different filesystems to deploy to the target.

28

Deploy - Buildroot
● Buildroot is relatively easy to learn.
● It is easier to learn Buildroot than to learn Yocto Project.
● If you only have one system, it works well to use buildroot.
● If you have several different systems, buildroot is not as good.
● There is more vendor support for Yocto Project than for Buildroot.
● There is more out-of-the-box BSP support for Yocto Project than for

Buildroot.
● With buildroot, however, it is relatively easy to create your own BSP.

29Copyright © 2017 MindRoad. All Rights Reserved.
www.mindroad.se

Deploy -

Yocto Project is a system to build an embedded Linux distribution.

https://www.yoctoproject.org/

https://www.yoctoproject.org/

30

Deploy – Yocto Project
● Yocto project was created in 2010 when several companies wanted a

unified system to build Linux distributions for embedded systems.
● The first version of Yocto was released in early 2011.
● The project is run by the Linux Foundation.
● Embedded linux world was sparse and difficult to get into.
● It needed something uniform, an industry standard.
● Huge support from both hardware and software companies and

organizations:
Texas Instruments, Intel, Enea, Huawei, OpenEmbedded, etc.

31

Poky

OpenEmbedded
Core

Bitbake

Yocto Project

Deploy – Yocto Project
● What is Yocto?

– Large collection of recipes and tools to easily
build Linux distributions for embedded systems.

– Configurable to meet your needs.
● Yocto is an umbrella for some projects

● Poky
● OpenEmbedded Core
● Bitbake

32

Deploy – Yocto Project
● Yocto is made of layers.
● Recipes are collected in the meta-layers.
● The recipes in a meta-layer

contains instructions for how to
build, e.g.:
– An application
– A BSP
– An image

33

Deploy – Yocto Project
● A meta-layer consists of a collection of recipes.

● To build the software for different boards we swith the BSP layer.

Configure and
build image

My-image recipe

My image meta layer

Fetch sourcecode
Configure

Build software
Install software

Foo software recipe

My software layer

Fetch sourcecode
Configure

Build software
Install software

gazonk software recipe

Configuration
for the BSP

My board BSP recipe

My board BSP meta layer

34

Deploy – Yocto Project

35

Deploy – Yocto Project
● Yocto downloads all source code for all open source parts and compiles

them when you build with Yocto.
● It will build toolchain, bootloader, Linux kernel and the root filesystem.
● To speed up later builds, it saves information from earlier builds in a

state cache.
● Developers can share a sstate cache to speed up builds.
● As a result you will get; packages (rpm, deb, ipk),

images for different filesystems, archive files (tar, zip).
– Which of these are created depends on your configuration.

36

Deploy – Yocto Project
● Yocto project is well supported and developed by many companies.
● Yocto project is an industry standard.
● Yocto project is flexible.
● Yocto has a learning curve to learn the basics.

– Learning Yocto is well worth it.
● For small projects it can be easier to use buildroot.
● More and more companies are using Yocto to build Linux for their

embedded systems.

37

Deploy – Yocto Project
● Example: a virtual machine

git clone -b Kirkstone git://git.yoctoproject.org/poky.git # check out poky (Yocto 4.0.x)

cd poky
source oe-init-build-env # set up the environment

edit the MACHINE variable in the file conf/local.conf to for example
MACHINE ?= "qemuarm"

bitbake core-image-minimal # build the image core-image-minimal
take a long coffe break

Test run the system in the qemu virtual machine
runqemu core-image-minimal

38

Deploy – Yocto Project
● Example: Beaglebone black

git clone -b Kirkstone git://git.yoctoproject.org/poky.git # check out poky (Yocto 4.0.x)

cd poky
source oe-init-build-env build-bbb # set up the environment

edit the MACHINE variable in the file conf/local.conf to for example
MACHINE ?= "beaglebone-yocto"

bitbake core-image-minimal # build the image core-image-minimal
take a long coffe break

Install the bootloader, kernel and root filesystem image to a SD card and boot the Beaglebone
black.

39

Links and books
● Links:

– https://www.yoctoproject.org/ Yocto Project
– https://buildroot.org/ Buildroot
– https://www.linuxfoundation.org/ Linux Foundation
– https://www.embeddedlinuxconference.com/ Previous Linux Foundation Embedded Linux Conferences
– https://kernel.org/ The Linux kernel
– https://github.com/u-boot/u-boot U-Boot
– https://www.lysator.liu.se/~kjell-e/tekla/linux My pages about Linux and

 embedded Linux.

● Books:
– Mastering embedded Linux programming Third Edition, 2021

By Chris Simmonds & Frank Vasquez
– Embedded Linux Development Using Yocto Project, 3rd ed.

By Otavio Salvador, Daiane Angolini

https://www.yoctoproject.org/
https://buildroot.org/
https://www.linuxfoundation.org/
https://www.embeddedlinuxconference.com/
https://kernel.org/
https://github.com/u-boot/u-boot
https://www.lysator.liu.se/~kjell-e/tekla/linux

40

Links and books
● Books:

– The Linux programming interface
● By: Michael Kerrisk

● If you are going to program in Linux,
this is a book you should consider buying.

41

Questions?

?

42Kjell Enblom

Thank you!
THHGTTG

43

Beaglebone black

FTDI cable 3.3v

5v Power supply

(USB)

picocom -b 115200 /dev/tty/USB0

Connect USB A
to host computer

Power 5V 1-2A

Black wire to
this end

FTDI cable 3.3v

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

