
29 August 2010

1 av 4

TDTS06: Lab 4 – 

Fragmentation and 

MTU discovery

Juha Takkinen, Ph.D.

IDA, Dept. or Computer and Information 

Science

1.0 Overview

Your goal in lab 4 is to add fragmentation and discovery of the Maxi-

mum Transmission Unit (MTU) to the protocol.

You must also, finally, answer a number of follow-up questions con-

cerning the lab assignment.

2.0 What to do first

Copy the files from the lab3 directory to the lab4 directory.

Then, update the protocol stack so that it includes your protocol that 

you will develop in lab 4: edit the graph.comp file and replace each 

occurrence of lab3 with lab4. 

Make sure that your new copy of the protocol in the lab4 directory 

still works by recompiling x-kernel and running the server and the cli-

ent as in lab 3.



Lab requirements

2 av 4 TDTS06: Lab 4 – Fragmentation and MTU discovery

3.0 Lab requirements

3.1 Fragmentation (and reassembly)

The messages that the test program pushes to your RDT protocol 

must now be fragmented by the client before sending them to the 

server. That is, each message from the test program must be frag-

mented into smaller packets before transmission. Each fragment will 

have a header, just as the whole message had in previous labs.

The server must collect and reassemble the fragments into the original 

message before delivering them to the application layer on the server 

side.

For message fragmentation, use msgBreak to break the message into 

fragments. Then use msgPush and rdtHdrStore to append the header 

(see below) to the fragment. 

When you reassemble the fragments into the original message at the 

server side, msgPop is used to retrieve the fragment data and the 

header of the fragment as separate parameters. This is already done by 

x-kernel in rdtDemux, where the message is first received from the 

network. Use msgJoin to reassemble the fragments into a message in 

rdtPop, which is the receiving function after rdtDemux.

3.2 MTU discovery

The size of the fragments must be provided as a command-line argu-

ment to the test program when the client is invoked. The size must 

then be transferred to the rdt protocol from the test program and sub-

sequently detected by the rdt code.

This has been somewhat prepared for you already; search for 

packet_size in rdt.c and you will find the place in the code where the 

parameters are handled. The usage will be: xkernel -c128.1.2.3 

filename.txt -pkt 8, that is, the switch “-pkt” followed by the 

requested fragment size; in this example the fragment/packet size is 

set to 8. Note that the file name comes before these switches!

The information from the command line is sent to lower layer proto-

cols by calling xControlSessn; this call has been provided to you in 

the code. This also means that your RDT protocol in rdt.c already has 

alread been made aware of the packet value from the test program 

(see rdtControlSessn in rdt.c).



Testing the protocol

TDTS06: Lab 4 – Fragmentation and MTU discovery 3 av 4

4.0 Testing the protocol

Configure the protocol stack in graph.comp so that it includes all 

three virtual protocols VDISTORT, VDELAY and VDROP. However, 

test the no-packet loss case first, i.e., disconnect the virtual protocols 

when you are testing your code. Then, add one virtual protocol at a 

time to your test runs, to ensure that the correct mechanisms are in 

place, until you have all virtual protocols installed.

Start by implementing the fragmentation in rdt.c. Use a hard-coded 

value for the fragment size. Then, implement the MTU discovery 

function to the command line and replace the hard-coded value with a 

call to the correct function and variable.

5.0 Follow-up questions

When you have finished coding and testing the protocol, you must 

answer the following questions:

1. List some common values of the MTU on the Internet. Try to 

explain the sizes that you find.

2. Explain how the MTU is related to the MSS used in TCP. Does the 

MSS include the TCP header? Exemplify.

3. Explain what Path MTU Discovery is and why it is needed.

Explain all of your answers and list correct sources, such as RFCs, if 

any.

6.0 Demonstrating the solution

Before handing in a lab report you must first demonstrate the result-

ing protocol to your lab assistant. Remember to remove unnecessary 

trace printouts and only keep the most important ones. You are rec-

ommended to slow down the execution of your protocol, using 

delays, for an even clearer demonstration. 

Before you demonstrate your solution to the lab assistant, give him/

her a copy of the code on paper.

In the demonstration you must show that your protocol works accord-

ing to the requirements, that is, the protocol can handle a partly unre-

liable channel (vdistort installed), which is shown by clear trace 



Demonstrating the solution

4 av 4 TDTS06: Lab 4 – Fragmentation and MTU discovery

printouts of the packets that are corrupted and which ones are 

received correctly. Be prepared to answer questions on specifics in the 

code and your solution. 

When your lab assistant has seen your demo and approved of the 

functionality, you can hand in a lab report containing the source code 

of the changed files on paper (see “Coding guidelines” on the course 

web site) and also the answers to all of the follow-up questions. 

When you have been passed in lab 3 you can run the finishing script 

to hand in all of the code that you have developed in the lab series. 

See the course web site for more information about this finishing 

script.


