
30 August 2010

1 av 3

TDTS06: Lab 3 – 

Retransmission and 

handling lost packets

Juha Takkinen, Ph.D.

IDA, Dept. or Computer and Information 

Science

1.0 Overview

Your goal in lab 3 is to improve on the protocol from lab 2 so that it 

can handle lost packets as well (and not only corrupted packets). The 

protocol in lab 3 corresponds to the protocol rdt3.0 as described in the 

textbook (read the textbook and see Figure 3.15 in Chapter 3).

Your protocol will handle lost packets by using a retransmission 

timer. When timer times out, the sender will retransmit the lost 

packet.

The network will by fully unreliable, which means that it will both 

loose, delay and corrupt packets.

You must also, again, answer a number of follow-up questions con-

cerning the lab assignment.

2.0 What to do first

Copy the files from the lab2 directory to the lab3 directory.

Then, update the protocol stack so that it includes your protocol that 

you will develop in lab 3: edit the graph.comp file and replace each 

occurrence of lab2 with lab3. 



Lab requirements

2 av 3 TDTS06: Lab 3 – Retransmission and handling lost packets

Make sure that your new copy of the protocol in the lab3 directory 

still works by recompiling x-kernel and running the server and the cli-

ent as in lab 2.

3.0 Lab requirements

3.1 Retransmission timer

Because packets can be lost or delayed for a very long time, you must 

also implement a retransmission function. This function will retrans-

mit the old packet when a timer expires. Specifically this means tem-

porarily storing a copy of each sent packet, starting a timer each time 

a packet is sent, and then stopping the timer when it is known that the 

packet has been received correctly by the server. 

Retransmissions are scheduled as events in x-kernel: use evSchedule 

to schedule the retransmission event. One of the parameters to 

evSchedule is the length of the timer in milliseconds. Another one of 

the parameters to evSchedule is the name of the function that is to be 

called when the timer expires, typically named “retransmit” or some-

thing similar. As said above, you must implement this function so that 

it is called and a previously saved packet can be retransmitted when 

the timer expires because you have not received the ACK that you 

were waiting for. In order to cancel the scheduled event, for example 

when an ACK was received and everything went well, use evCancel. 

The sender has to save the last sent packet for possible retransmis-

sions. Be aware that after pushing a message (using the xPush(&msg) 

function) the handle to that message is no more valid ... Therefore you 

need to make a copy (for retransmission) of the data you send before 

calling xPush. Note: ACKs are not retransmitted!

You may optionally implement a flexible timer that is set to a variable 

timeout value depending on the number of retransmissions. See exam-

ples from TCP’s retransmission timer in the textbook.

4.0 Testing the protocol

Configure the protocol stack in graph.comp so that it includes all 

three virtual protocols VDISTORT, VDELAY and VDROP. However, 

it is recommended that you test with only one virtual protocol at a 

time, to ensure that the correct mechanisms are in place. Add one vir-

tual protocol at a time.



Follow-up questions

TDTS06: Lab 3 – Retransmission and handling lost packets 3 av 3

5.0 Follow-up questions

When you have finished coding and testing the protocol, you must 

answer the following questions:

1. Draw the FSM for the receiver side of the protocol.

2. Consider the retransmission timer as used in TCP and the estima-

tion of RTT in the calculation. How often does TCP measure the 

sample RTT?

Explain all of your answers and list correct sources, such as RFCs, if 

any.

6.0 Demonstrating the solution

Before handing in a lab report you must first demonstrate the result-

ing protocol to your lab assistant. Remember to remove unnecessary 

trace printouts and only keep the most important ones. You are rec-

ommended to slow down the execution of your protocol, using 

delays, for an even clearer demonstration. 

Before you demonstrate your solution to the lab assistant, give him/

her a copy of the code on paper.

In the demonstration you must show that your protocol works accord-

ing to the requirements, that is, the protocol can handle a partly unre-

liable channel (vdistort installed), which is shown by clear trace 

printouts of the packets that are corrupted and which ones are 

received correctly. Be prepared to answer questions on specifics in the 

code and your solution. 

When your lab assistant has seen your demo and approved of the 

functionality, you can hand in a lab report containing the source code 

of the changed files on paper (see “Coding guidelines” on the course 

web site) and also the answers to all of the follow-up questions. 

You must finish lab 3 before continuing with lab 4. When you have 

demonstrated lab 3 for your lab assistant, you can immediately con-

tinue with lab 4, while waiting for lab 3 to be passed by your lab 

assistant.


