
30 August 2010

1 av 7

TDTS06: Lab 1 – Flow

control and handling

corrupt packets

Juha Takkinen, Ph.D.

IDA, Dept. or Computer and Information

Science

1.0 Overview

The purpose of the whole lab series in TDTS06 is to learn how a reli-

able data transfer protocol is designed and implemented in an Inter-

net-like environment, showing the important algorithms and

mechanisms needed for such a protocol. You learn it by doing it.

Before you start doing the labs, however, you must set up the lab

environment; see “Getting started” on the course web site.

When you have set up the lab environment, you must read up on the

lab framework x-kernel, C programming (pointers and memory man-

agement) and chapter 3 in the textbook (the rdt protocol).

The x-kernel Tutorial, pp. 17–27, has a detailed walk-through of the

example protocol ASP in x-kernel. Also, you might want to read Dan

Everett's walk-through of the ASP protocol. You should specifically

learn how messages are manipulated in x-kernel (see the Message

Library in the x-kernel Programmer’s Manual as a reference). Also,

look att how the test program takes an input file and sends it

(“pushes” messages, in x-kernel terminology) to a lower layer proto-

col (the RDT protocol in this case). See the section on x-kernel docu-

mentation on the course web site, under “Lab assignments” on the

menu. There is also a tutorial session for the lab series and x-kernel

scheduled in the course.

Your goal in lab 1 is to develop the protocol rdt2.0 as described in the

textbook (see Figure 3.10 in Chapter 3). You need to implement the

What to do first

2 av 7 TDTS06: Lab 1 – Flow control and handling corrupt packets

mechanisms in the protocol that send a packet and also detect corrupt

packets. The network will be configured as partly unreliable, which

means that it will deliver all packets but some of them will be corrupt

when they arrive at the receiving side.

You must also answer a number of follow-up questions concerning

the lab assignment.

2.0 What to do first

First, you must create a file where to put the RDT protocol and the

mechanisms that you will develop in the lab.

Copy the asp.c file from the asp directory to the rdt directory. Rename

it to rdt.c. Then, edit the rdt.c file and replace each occurrence of asp

with rdt and each occurrence of ASP with RDT (case is important).

This is the normal work routine when starting to develop protocols in

x-kernel.

Then, update the protocol stack so that it includes your protocol: edit

the graph.comp file, which resides in the build directory (TDTS06) of

your home directory, and replace each occurrence of asp with rdt,

except the directory name before the slashes which should be “lab1”.

Now, you must recompile x-kernel. Issue the command:

make again

(or use make first, if this is the first time at this lab occasion; see

“Getting started” on the course web site)

You also have a separate test program called rdttest, which you will

be suing to test the RDT protocol. This program takes a filename as

input, chops it into messages of finite length and sends them to your

RDT protocol; see rdttest.c for the details. The test program is acti-

vated when you start the server and the client, respectively. First, start

the server by changing to the server directory and issuing the follow-

ing command:

xkernel -s

The shell window will immediately display:

Protocol: RDT

Time: Mon Aug 25 13:55:44 2008

Lab requirements

TDTS06: Lab 1 – Flow control and handling corrupt packets 3 av 7

Host: mina11.ida.liu.se

Participant: server

Then, start the client in another terminal window and from the client

directory by typing:

xkernel -c128.1.2.3 testfile.txt

... and you will immediately see:

Protocol: RDT

Time: Mon Aug 25 13:56:10 2008

Host: mina11.ida.liu.se

Participant: client

Send file: testfile.txt

The whole file has been sent!

This means that the client has now sent the file testfile.txt to the

server. In the server window you see the following text:

Open file 'foo' for writing

The whole file has been received!

Compare the file '$HOME/TDTS06/server/foo'

with the file you transmitted with diff.

The whole file has been sent!

You can check that the received file is the same as the sent file by

issuing the following command in the client’s shell window:

diff testfile.txt ../server/foo

Whenever the output from this command is empty then the received

file is identical to the sent file.

This is how you run your RDT protocol, when you want to test it. You

are now ready for the next step in the lab.

3.0 Lab requirements

The messages that the test program sends (pushes) to your RDT pro-

tocol correspond to the messages that a real Internet application layer

protocol (for example FTP) pushes to the transport layer. The trans-

port layer then creates its own packets from the messages.

Lab requirements

4 av 7 TDTS06: Lab 1 – Flow control and handling corrupt packets

3.1 Packet type

In order to implement flow control, you must be able to distinguish

between different types of packets in your protocol. At least DATA,

NAK and ACK packets will be needed in your protocol in lab 1. You

may add other types when you discover that they are needed, but you

are not allowed to change the semantics of DATA, NAK and ACK.

The protocl header is defined in rdt_header.h.

Please note the simplification that we make in the lab series: DATA

packets can only flow from the client to the server and never back,

and only the server that can send NAKs and ACKs.

When the client has sent a DATA packet it must wait for an ACK. In

x-kernel this menas that you will have to use a semaphore, in order to

control the session thread. You need the following functions:

• semInit to initialize the semaphore. You do this once and when the

session is opened.

• semWait to set the semaphore. You do this after you have sent a

DATA packet, most likely in the rdtPush function.

• semSignal to release the semaphore. You do this when you have

received an ACK packet, most likely in the rdtPop function.

Because both the client and the server can be using rdtPop and rdt-

Push, you need to be able to detect who is currently using the code in

these places in rdt.c, so that the server will not try to send DATA, for

example. This can be solved in several ways. You can use the knowl-

edge that only the server will be transmitting ACKs and only the cli-

ent sends DATA, and also the fact that the communication channel is

simplex. There are also functions that are only called by the client or

the server but not both.

3.2 Checksum

Because the packets can become distorted (but not dropped) by the

network, you must implement a protocol mechanism to handle cor-

rupted packets.

Use the inCkSum function available in x-kernel to compute the

checksum for the whole packet. Make sure to save the checksum in

the header. Only DATA packets will carry a checksum value. Please

note that a packet can be either in network byte order or host byte

order; you will get different results from the inCkSum for the same

packet if your byte order differs.

Testing the protocol

TDTS06: Lab 1 – Flow control and handling corrupt packets 5 av 7

On the receiving side you must check that the checksum in the DATA

packet is correct. This must be done when the packet arrives in rdtDe-

mux and before rdtPop is called.

4.0 Testing the protocol

You can test the protocol by first starting the server and then running

the client, as shown in Section 2.0 above.

Use printout statements and the x-kernel tracing library to debug your

protocol.

4.1 Configure an unreliable network

In order to simulate an unreliable network, you must use virtual proto-

cols in the x-kernel protocol stack. The virtual protocols of interest to

us in the course are:

• VDROP, which will drop a random packet

• VDELAY, which will delay a packet 100 ms

• VDISTORT, which will distort (corrupt) a random packet.

The unreliable network is already configured in a separate file called

graph.comp-unreliable_network in the build directory. You will have

to edit this file and then save it as graph.comp (make a backup of the

old graph.comp file first). For lab 1 you must only use the VDIS-

TORT protocol, so change the protocol stack accordingly.

4.2 Use make commands

The following make commands can be used:

• make first - issue this command the first thing you do when

you start work at a lab occasion; this will configure the x-kernel

with the current ip address of your computer and also install the

protocols listed in your protocol graph (graph.comp) and then com-

pile and link x-kernel in order to create an executable file.

• make again - use this command subsequently, after having run

make first once and the next time you want compile a new

executable of xkernel. It is an alias for all of the three commands

below, run in series:

- make compose - this reads the graph.comp file and updates the

internal protocol graph

Follow-up questions

6 av 7 TDTS06: Lab 1 – Flow control and handling corrupt packets

- make depend - this creates dependencies between files

- make - this creates the binary version of x-kernel (file named

xkernel) in your build directory.

Indeed, you can use only make if all you have done is changed the

source code in rdt.c only. However, if you make changes in the

graph.comp file then you must issue make again, i.e., all three

commands above all over again.

4.3 Select a testfile

If you want to test with a larger testfile, see the English translation of

The Kalevala, or why not try text from Projekt Runeberg.

5.0 Follow-up questions

When you have finished coding and testing the protocol in lab 1, you

must answer the following questions:

1. Change the size of the messages created by the test program (see

the code in rdttest.c) and test your protocol. Also try with a larger

testfile. How do these expereiments affect the result (the correct-

ness of the received file)? Discuss the results briefly. (Tip: see p.

248 in the textbook.)

2. Discuss where errors can arise in a network and what types of

errors there are. (Tip: see the textbook and a relevant RFC.)

3. Is the checksum in the TCP header obligatory or not? What about

the checksum in the UDP header? Explain.

4. What is the purpose of the pseudoheader in UDP and how is it

related to the checksum calculation?

5. Suppose that a UDP receiver computes the Internet checksum for

the received UDP segment and find that it matches the value car-

ried in the checksum fiels. Can the receiver be absoluetly certain

that no bit errors have occurred? Explain.

Explain all of your answers and list correct sources, such as RFCs

6.0 Demonstrating the solution

Before handing in a lab report you must first demonstrate the result-

ing protocol to your lab assistant. Remember to remove unnecessary

trace printouts and only keep the most important ones. You are rec-

Demonstrating the solution

TDTS06: Lab 1 – Flow control and handling corrupt packets 7 av 7

ommended to slow down the execution of your protocol, using

delays, for an even clearer demonstration.

Before you demonstrate your solution to the lab assistant, give him/

her a copy of the code on paper.

In the demonstration you must show that your protocol works accord-

ing to the requirements, that is, the protocol can handle a partly unre-

liable channel (vdistort installed), which is shown by clear trace

printouts of the packets that are corrupted and which ones are

received correctly. Be prepared to answer questions on specifics in the

code and your solution.

When your lab assistant has seen your demo and approved of the

functionality, you can hand in a lab report containing the source code

of the changed files on paper (see “Coding guidelines” on the course

web site) and also the answers to all of the follow-up questions.

You must finish lab 1 before continuing with lab 2. When you have

demonstrated lab 1 for your lab assistant, you can immediately con-

tinue with lab 2, while waiting for lab 1 to be passed by your lab

assistant.

