
Introduction to assignment 2
and socket programming

TDTS04: Computer networks and distributed systems

January 2025

Lecture outline

• General lab assignment information

• Assignment 2

• HTTP & Proxy

• Socket programming

• Questions

2TDTS04 Introduction to lab 2 & socket programming

TDTS04 Introduction to lab 2 & socket programming

General lab assignment information

• Assignment 1 should be finished by 31st Jan. 2025

• Assignment 2 takes time, and have a soft deadline due: 20th of Feb. 2025

• Third assignment is more in the style of the first and shouldn’t take too much
time

• The last assignment (4) needs a little more time so don’t put it off

• deadlines and last time to demonstrate are stated in course webpage

• Check with the TA if you plan to use languages other than those prescribed

3

Assignment 2 – what will we do?

• Learn about WWW and HTTP

• Learn TCP/IP socket programming to
understand HTTP and WWW better

• Build a simple proxy

4

5

What is WWW?

• It is a world-wide system of interconnected servers which distribute a special
type of document

• Documents are marked-up to indicate formatting (Hypertexts)

• This idea has been extended to embed multimedia and other content within the
marked-up page

6

What is HTTP?

• HTTP is WWW's application layer protocol

• HyperText Transfer Protocol (HTTP) to transfer HyperText Markup Language
(HTML) pages and embedded objects

• Works on a client-server paradigm

• Needs reliable transport mechanism (TCP)

7

HTTP

8

Client

Server

Router

HTTP

9

Client

Server

Router

Note: HTTP server often runs on port 80

HTTP

10

Client

Server

Router

Note: HTTP server often runs on port 80

Note: Client can use any unrestricted port
Generally >1024

Proxy
• Acts as intermediary between client and server.

11

Benefits of a proxy
• Hide your internal network information (such as host names and IP addresses)

• You can set the proxy to require user authentication

• The proxy provides advanced logging capabilities

• Proxy helps you control which services users can access

• Proxy-caches can be used to save bandwidth

• Get access to blocked resources

Risks of using a Proxy
Free proxy server risks

Browsing history log

No encryption

12

A video to understand the concept
https://www.youtube.com/watch?v=5cPIukqXe5w

https://www.youtube.com/watch?v=5cPIukqXe5w

HTTP with proxy

13

Client

Server

Router

Note: HTTP server often runs on port 80

Note: Client can use any unrestricted port
Generally >1024

Proxy

Proxy listens on a port (>1024) and talks to server on
another (>1024)

What is a port?

• A port is an application-specific or process-specific software construct serving as
a communications endpoint

• The purpose of ports is to uniquely identify different applications or processes
running on a single computer and thereby enable them to share a single physical
connection to a packet-switched network like the Internet

14

Ports continued

• Port only identifies processes/applications

• With regard to the Internet, ports are always used together with IP

• Notation 192.168.1.1:80

15

IP address Transport protocol port

UDP/TCP

Socket programming

• These are software constructs used to create ports and perform operations on
them

• We will talk about these types of sockets:

• Datagram socket

• Stream socket

• SSL sockets

16

Datagram sockets

• Datagram sockets use UDP

• They are connectionless

• Do not guarantee in order delivery

• No form of loss recovery

• No congestion control

• No flow control

17

Stream sockets

• Stream sockets use TCP protocol

• Connection oriented sockets

• In order and guaranteed delivery

• Error identification and recovery

• Congestion control

• Flow control

• SSL sockets are similar to stream sockets, but include functions to handle
encryption

18

Important socket calls

• socket

• bind

• listen

• accept

• connect

• send

• recv

19

Socket programming calls

• socket()

• Takes as input

• Address family (=AF_INET)

• Socket type (=SOCK_STREAM)

• Returns

• A socket object

20

Socket programming calls

• bind()

• Takes as input

• address/port tuple (for AF_INET)

• What does this do?

• Associate the socket with an
address/port tuple

21

Socket programming calls

• listen()

• Takes as input

• Backlog (max queue of incoming
connection)

• This must run at the server side to listen to
incoming connection

22

Socket programming calls

• connect()

• Takes as input

• Address/port tuple

• What does this do?

• Attempts to setup a connection with the
other end

23

Socket programming calls

• accept()

• Νο input

• Returns

• conn - a new socket object

• address - address/port tuple

• Reads through the backlog and picks one from
the list to connect to it.

• Runs at the server side

24

Socket programming calls

• send()

• Takes as input

• Message

• Returns

• Number of bytes sent

• Send is always best effort. If it cannot send the
whole message, the returned value is smaller.

25

Socket programming calls

• recv()

• Takes as input

• Max buffer length

• Returns

• bytes object representing the data
received

26

Socket programming calls

• close()

• No input

• Marks the socket as closed

27

Socket programming resource

• Helpful guide linked from the assignment text:
Beej’s Guide to Network Programming

• Based on C, but can be used as a foundation for
other languages

28

Assignment 2: Simple Web (HTTP) proxy

• Build a properly functioning Web proxy for simple Web pages, and then use your
proxy to change some of the content before it is delivered to the browse

• Change all occurrences of "Smiley" on a Web page into "Trolly", and all
occurrences of "Stockholm" into "Linköping". And if you find any JPG images of
Smiley (linked or embedded), then you should replace them with your
favorite troll image file (JPG, GIF, or PNG) from the Internet.

• For the sake of simplicity, we will restrict ourselves only to HTTP (not HTTPS),
and consider only basic text and HTML pages with a few images.

29

http://zebroid.ida.liu.se/fakenews/trolly.jpg

General overlay 30

Assignment 2: Description

• Socket programming is the key

• Build a proxy to which a user can connect to

• The proxy connects to the web server on user's behalf (recollect how proxy
works)

• Proxy receives the response from the web server

• Proxy forwards the HTTP response (from the web server) to the user with all
occurrences of "Smiley" replaced by "Trolly", and all occurrences of "Stockholm"
replaced by "Linköping"

31

Assignment 2: requirements

1. The proxy should support both HTTP/1.0 and HTTP/1.1.

2. Handles simple HTTP GET interactions between client and server

3. Consider how your proxy handles commonly occurring HTTP response codes,
such as 200 (OK), 304 (Not Modified), and 404 (Not Found)

4. Imposes no limit on the size of the transferred HTTP data

5. Use only the basic libraries available for socket programming

32

Assignment 2: requirements

6. Is compatible with all major browsers (e.g. Internet Explorer, Mozilla Firefox,
Google Chrome, etc.) without the requirement to tweak any advanced feature

7. Allows the user to select the proxy port (i.e. the port number should not be hard
coded)

8. Is smart in selection of what HTTP content should be searched for the forbidden
keywords. For example, you probably agree that it is not wise to search inside
compressed or other non-text-based HTTP content such as graphic files, etc.

9. You do not have to relay HTTPS requests through the proxy

33

Browser configuration

• Proxy listens on a particular port

34

127.0.0.1

Proxy's port number

Make sure it is blank

HTTP basics

• Recollect lab 1. It contains things what you need in lab 2.

• HTTP request

• Get

• Syn, SynAck, Ack

35

HTTP basics

• HTTP response

• OK

36

HTTP basics

• HTTP 1.0 vs HTTP 1.1

• Many differences read http://www8.org/w8-papers/5c-protocols/key/key.html

• For this assignment

• Connection: close

• Handshake-Get-response-OK-Teardown

• Connection: keep-alive

• Handshake-Get-response-OK-wait-Get-response

• What should you use for the proxy?

37

http://www8.org/w8-papers/5c-protocols/key/key.html

How to handle connections

• With connection: keep-alive, the connection is kept open. You are responsible to
figure out when the response is completed.

• With connection: close, the server closes the connection after the response is
sent.

• How can you enforce connection: close on HTTP 1.1?

38

39

Proxy (Server Side)

• Allocate IP address and Port No. (Tuple)

• Binding the socket

• Listen for incoming connections

• Add proxy settings in the web browser

• Receive Request(s) from the user (browser)

• Decode and parse through received GET

• Modify URL (depends)

• Encode (Opt) and send the request to Proxy (Client
Side)

• Receive response from Proxy (Client Side) and
decode information (if not done earlier)

• Modify text (not image file name) (if large, store all
of them in a temporary buffer)

• Encode and send to browser

• Close the connection

Proxy (Client Side)

• Create another socket for proxy-actual server
communication

• Prepare GET, encode, and send to actual server

• Receive response from Actual Server, decode
(optional), and send to Proxy (Server Side)

• Close the connection.

Various Steps involved:

Some Common errors.

• Content length modification (Linkoping and Stockholm)

• Be careful while modifying information (issues with images)

• To use proxy for one port multiple times, use reuseaddress command

• While loop can be a good choice to collect large data

• Do not encode and decode the images

• Issue with the firefox, then try with other browser like chrome

• Clear the cache to see the updated outcomes

General overlay

42

Client

Server

Proxy

Server
side

Client
side

Server side: listens on a port, accepts, receives, forwards to client side

General overlay

43

Client

Server

Proxy

Server
side

Client
side

Client side: connects to the server, send request, receive response,
 Forwards to server side

Content filtering

• Need to be able to filter both based on URL and content

• In which of the two halves of the proxy will you implement filtering based on
URL?

• In which of the two halves of the proxy will you implement content filtering?

• How to actually do content filtering?

44

Content filtering

• Response from the server comes in segments

• Remember TCP segmentation?

• Reconstruct the message in a temporary buffer

• No dynamic sizing of buffer, chose a value and stick with it

• Do not type-cast non-text data!

• Then run filtering only on the text message

45

Text vs binary data

• Content-type header

• Differentiate content type

• Run/don't run filtering

47

Debugging advice

• Stick to simple web pages initially

• Debug incrementally

• Check and double check request string for formatting and completeness

• Source of many errors like 'server closed connection unexpectedly'

• If developing on own computers, use Wireshark to debug. Can save a lot of time!

49

Debugging advice

• HTTP vs HTTPS

• Requirements do not ask for a proxy which works with HTTPS

• Avoid testing on any site to which you are signed in

• Restrict yourselves to simple sites and basic test cases

50

Debugging advice

• Header manipulation

• First thing to check at a proxy is the URL that it sends out to the server

• It might require different manipulations based on the site. Be sure that you
test for all sites mentioned in the test scenario

• If you change some fields in the header, the packet length has to be changed
or brought back to the original length

51

Basic Example Socket Programming Server Side

import socket

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

s.bind(('127.0.0.1', 12349))

s.listen(5)

while True:

now our endpoint knows about the OTHER endpoint.

clientsocket, address = s.accept()

print(f"Connection from {address} has been established.")

clientsocket.send(bytes("Hello", "utf-8"))

Basic Example Socket Programming Client Side

import socket

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

s.connect(('127.0.0.1', 12349))

msg = s.recv(1024)

print(msg.decode("utf-8"))

www.liu.se

Questions?

e-mail your TA (subject “TDTS04 …”)

	Bild 1: Introduction to assignment 2 and socket programming
	Bild 2: Lecture outline
	Bild 3: General lab assignment information
	Bild 4: Assignment 2 – what will we do?
	Bild 5
	Bild 6: What is WWW?
	Bild 7: What is HTTP?
	Bild 8: HTTP
	Bild 9: HTTP
	Bild 10: HTTP
	Bild 11: Proxy
	Bild 12: Benefits of a proxy
	Bild 13: HTTP with proxy
	Bild 14: What is a port?
	Bild 15: Ports continued
	Bild 16: Socket programming
	Bild 17: Datagram sockets
	Bild 18: Stream sockets
	Bild 19: Important socket calls
	Bild 20: Socket programming calls
	Bild 21: Socket programming calls
	Bild 22: Socket programming calls
	Bild 23: Socket programming calls
	Bild 24: Socket programming calls
	Bild 25: Socket programming calls
	Bild 26: Socket programming calls
	Bild 27: Socket programming calls
	Bild 28: Socket programming resource
	Bild 29: Assignment 2: Simple Web (HTTP) proxy
	Bild 30: General overlay
	Bild 31: Assignment 2: Description
	Bild 32: Assignment 2: requirements
	Bild 33: Assignment 2: requirements
	Bild 34: Browser configuration
	Bild 35: HTTP basics
	Bild 36: HTTP basics
	Bild 37: HTTP basics
	Bild 38: How to handle connections
	Bild 39
	Bild 40: Various Steps involved:
	Bild 41: Some Common errors.
	Bild 42: General overlay
	Bild 43: General overlay
	Bild 44: Content filtering
	Bild 45: Content filtering
	Bild 47: Text vs binary data
	Bild 49: Debugging advice
	Bild 50: Debugging advice
	Bild 51: Debugging advice
	Bild 52: Basic Example Socket Programming Server Side
	Bild 53: Basic Example Socket Programming Client Side
	Bild 54

