
Slides based on https://gaia.cs.umass.edu/kurose_ross/ppt-8e/Chapter_4_v8.2.pptx
© 1996-2023 J.F Kurose and K.W. Ross, All Rights Reserved

https://gaia.cs.umass.edu/kurose_ross/ppt-8e/Chapter_4_v8.2.pptx

Network layer: our goals

▪understand principles
behind network layer
services, focusing on data
plane:
• network layer service models

• forwarding versus routing

• how a router works

• addressing

• generalized forwarding

• Internet architecture

▪ instantiation, implementation
in the Internet
• IP protocol

• NAT, middleboxes

Network Layer: 4-2

Network layer: “data plane” roadmap

▪ Network layer: overview
• data plane
• control plane

▪ Generalized Forwarding, SDN
• Match+action
• OpenFlow: match+action in action

▪ Middleboxes

Network Layer: 4-3

▪ What’s inside a router
• input ports, switching, output ports
• buffer management, scheduling

▪ IP: the Internet Protocol
• datagram format
• addressing
• network address translation
• IPv6

Network-layer services and protocols

▪ transport segment from sending
to receiving host
• sender: encapsulates segments into

datagrams, passes to link layer
• receiver: delivers segments to

transport layer protocol

▪ network layer protocols in every
Internet device: hosts, routers

▪ routers:
• examines header fields in all IP

datagrams passing through it

• moves datagrams from input ports to
output ports to transfer datagrams
along end-end path

mobile network

enterprise
 network

national or global ISP

datacenter
network

application
transport
network

link
physical

application
transport
network

link
physical

network
link

physical

network
link

physical

network
link

physical

network
link

physical network
link

physical

Network Layer: 4-4

Two key network-layer functions

network-layer functions:
▪ forwarding: move packets from

a router’s input link to
appropriate router output link

analogy: taking a trip
▪ forwarding: process of getting

through single interchange

forwarding

routing

▪ routing: process of planning trip
from source to destination▪ routing: determine route taken

by packets from source to
destination

• routing algorithms

Network Layer: 4-5

Network layer: data plane, control plane

Data plane:
▪ local, per-router function

▪ determines how datagram
arriving on router input port
is forwarded to router
output port

Control plane
▪ network-wide logic

▪ determines how datagram is
routed among routers along end-
end path from source host to
destination host

1

2
3

0111

values in arriving

packet header

▪ two control-plane approaches:
• traditional routing algorithms:

implemented in routers

• software-defined networking (SDN):
implemented in (remote) servers

Network Layer: 4-6

Per-router control plane
Individual routing algorithm components in each and every
router interact in the control plane

Routing
Algorithm

data
plane

control
plane

1

2

0111

values in arriving

packet header

3

Network Layer: 4-7

Software-Defined Networking (SDN) control plane
Remote controller computes, installs forwarding tables in routers

data
plane

control
plane

Remote Controller

CA

CA CA CA CA

1

2

0111

3

values in arriving

packet header

Network Layer: 4-8

Network layer: “data plane” roadmap

▪ Network layer: overview
• data plane
• control plane

▪ What’s inside a router
• input ports, switching, output ports
• buffer management, scheduling

▪ IP: the Internet Protocol
• datagram format
• addressing
• network address translation
• IPv6

▪ Generalized Forwarding, SDN
• Match+action
• OpenFlow: match+action in action

▪ Middleboxes

Network Layer: 4-13

Router architecture overview

high-level view of generic router architecture:

high-speed
switching

fabric

routing
processor

router input ports router output ports

forwarding data plane

(hardware) operates

in nanosecond

timeframe

routing, management

control plane (software)

operates in millisecond

time frame

Network Layer: 4-14

Router architecture overview

analogy view of generic router architecture:

roundabout

Station
manager

entry stations exit roads

forwarding data plane

(hardware) operates

in nanosecond

timeframe

routing, management

control plane (software)

operates in millisecond

time frame

Network Layer: 4-15

Input port functions

switch
fabric

line

termination

physical layer:
bit-level reception

link
layer

protocol
(receive)

link layer:
e.g., Ethernet

(chapter 6)

lookup,

forwarding

queueing

decentralized switching:
▪ using header field values, lookup output port using

forwarding table in input port memory (“match plus action”)

▪ goal: complete input port processing at ‘line speed’

▪ otherwise, throughput limited by switching fabric

▪ input port queuing: if datagrams arrive faster than forwarding
rate into switch fabric Network Layer: 4-16

Frame

Datagram

Input port functions

line

termination

lookup,

forwarding

queueing

decentralized switching:
▪ using header field values, lookup output port using

forwarding table in input port memory (“match plus action”)

▪ destination-based forwarding: forward based only on
destination IP address (traditional)

▪ generalized forwarding: forward based on any set of header
field values

physical layer:
bit-level reception

switch
fabric

link
layer

protocol
(receive)

link layer:
e.g., Ethernet

(chapter 6)

Network Layer: 4-17

▪ RFC 3439 rule of thumb: average buffering equal to “typical” RTT
(say 250 msec) times link capacity C
• e.g., C = 10 Gbps link: 2.5 Gbit buffer

How much buffering?

▪ but too much buffering can increase delays (particularly in home
routers)
• long RTTs: poor performance for real-time apps, sluggish TCP response

• recall delay-based congestion control: “keep bottleneck link just full
enough (busy) but no fuller”

RTT C.

N

▪more recent recommendation: with N flows, buffering equal to

Network Layer: 4-18

Buffer Management

buffer management:

▪ drop: which packet to add,
drop when buffers are full
• tail drop: drop arriving

packet
• priority: drop/remove on

priority basis

line
termination

link
layer

protocol
(send)

switch
fabric

datagram

buffer

queueing

scheduling

▪ marking: which packets to
mark to signal congestion
(ECN, RED)

R

queue

(waiting area)

packet

arrivals

packet

departures

link

 (server)

Abstraction: queue

R

Network Layer: 4-19

packet scheduling: deciding
which packet to send next on
link

• first come, first served
• priority
• round robin
• weighted fair queueing

Packet Scheduling: FCFS

FCFS: packets transmitted in
order of arrival to output
port
▪ also known as: First-in-first-

out (FIFO)

queue

(waiting area)

packet

arrivals

packet

departures

link

 (server)

Abstraction: queue

R

Network Layer: 4-20

Q: but what happens if ranges don’t divide up so nicely?

Destination-based forwarding

Network Layer: 4-21

Destination-based forwarding

3

Network Layer: 4-22

Let’s say that a
subset of addresses
in first range should

go to interface 3Could split the first
address range into

multiple pieces as shown
here, but there’s a
simpler solution…

Longest prefix matching

when looking for forwarding table entry for given
destination address, use longest address prefix that
matches destination address.

longest prefix match

Destination Address Range

11001000 00010111 00010

11001000 00010111 00011000

11001000 00010111 00011

otherwise

Link interface

0

1

2

3

11001000 00010111 00011000 10101010

examples:
which interface?

which interface?

11001000 00010111 00010110 10100001

Network Layer: 4-23

Longest prefix matching

when looking for forwarding table entry for given
destination address, use longest address prefix that
matches destination address.

longest prefix match

Destination Address Range

11001000 00010111 00010

11001000 00010111 00011000

11001000 00010111 00011

otherwise

Link interface

0

1

2

3

11001000 00010111 00011000 10101010

examples:
which interface?

which interface?

11001000 00010111 00010110 10100001

match!

Network Layer: 4-24

Longest prefix matching

when looking for forwarding table entry for given
destination address, use longest address prefix that
matches destination address.

longest prefix match

Destination Address Range

11001000 00010111 00010

11001000 00010111 00011000

11001000 00010111 00011

otherwise

Link interface

0

1

2

3

11001000 00010111 00011000 10101010

examples:
which interface?

which interface?

11001000 00010111 00010110 10100001
match!

Network Layer: 4-25

Longest prefix matching

when looking for forwarding table entry for given
destination address, use longest address prefix that
matches destination address.

longest prefix match

Destination Address Range

11001000 00010111 00010

11001000 00010111 00011000

11001000 00010111 00011

otherwise

Link interface

0

1

2

3

11001000 00010111 00011000 10101010

examples:
which interface?

which interface?

11001000 00010111 00010110 10100001

match!

Network Layer: 4-26

▪ we’ll see why longest prefix matching is used shortly, when
we study addressing

▪ longest prefix matching: often performed using ternary
content addressable memories (TCAMs)
• content addressable: present address to TCAM: retrieve address in

one clock cycle, regardless of table size

• Cisco Catalyst: ~1M routing table entries in TCAM

Longest prefix matching

Network Layer: 4-27

Network layer: “data plane” roadmap

▪ Network layer: overview
• data plane

• control plane

▪ What’s inside a router
• input ports, switching, output ports

• buffer management, scheduling

▪ IP: the Internet Protocol
• datagram format
• addressing
• network address translation
• IPv6

▪ Generalized Forwarding, SDN
• match+action
• OpenFlow: match+action in action

▪ Middleboxes

Network Layer: 4-43

Network Layer: Internet

host, router network layer functions:

IP protocol
• datagram format
• addressing
• packet handling conventions

ICMP protocol
• error reporting
• router “signaling”

transport layer: TCP, UDP

link layer

physical layer

network
layer

forwarding
table

Path-selection
algorithms:
implemented in
• routing protocols

(OSPF, BGP)
• SDN controller

Network Layer: 4-44

IP Datagram format

ver length

32 bits

payload data

(variable length,

typically a TCP

or UDP segment)

16-bit identifier

header

 checksum

time to

live

source IP address

head.

len

type of

service

flgs
fragment

 offset
upper

 layer

destination IP address

options (if any)

IP protocol version number

header length(bytes)

upper layer protocol (e.g., TCP or UDP)

total datagram

length (bytes)

“type” of service:
▪ diffserv (0:5)

▪ ECN (6:7)

fragmentation/

reassembly

TTL: remaining max hops
(decremented at each router)

▪ 20 bytes of TCP

▪ 20 bytes of IP

▪ = 40 bytes + app
layer overhead for
TCP+IP

overhead
e.g., timestamp, record

route taken

32-bit source IP address

32-bit destination IP address

header checksum

Maximum length: 64K bytes
Typically: 1500 bytes or less

Network Layer: 4-45

▪ IP address: 32-bit identifier
associated with each host or
router interface

▪ interface: connection between
host/router and physical link

• router’s typically have multiple
interfaces

• host typically has one or two
interfaces (e.g., wired Ethernet,
wireless 802.11)

IP addressing: introduction
223.1.1.1

223.1.1.2

223.1.1.3

223.1.1.4 223.1.2.9

223.1.2.2

223.1.2.1

223.1.3.2223.1.3.1

223.1.3.27

223.1.1.1 = 11011111 00000001 00000001 00000001

223 1 11

dotted-decimal IP address notation:

Network Layer: 4-46

▪ IP address: 32-bit identifier
associated with each host or
router interface

▪ interface: connection between
host/router and physical link

• router’s typically have multiple
interfaces

• host typically has one or two
interfaces (e.g., wired Ethernet,
wireless 802.11)

IP addressing: introduction
223.1.1.1

223.1.1.2

223.1.1.3

223.1.1.4 223.1.2.9

223.1.2.2

223.1.2.1

223.1.3.2223.1.3.1

223.1.3.27

223.1.1.1 = 11011111 00000001 00000001 00000001

223 1 11

dotted-decimal IP address notation:

Network Layer: 4-47

IP addressing: introduction
223.1.1.1

223.1.1.2

223.1.1.3

223.1.1.4 223.1.2.9

223.1.2.2

223.1.2.1

223.1.3.2223.1.3.1

223.1.3.27

Q: how are interfaces
actually connected?

A: wired

Ethernet interfaces

connected by

Ethernet switches

A: wireless WiFi interfaces

connected by WiFi base station

For now: don’t need to worry
about how one interface is
connected to another (with no
intervening router)

A: we’ll learn about
that in chapters 6, 7

Network Layer: 4-48

Subnets
223.1.1.1

223.1.1.2

223.1.1.3

223.1.1.4 223.1.2.9

223.1.2.2

223.1.2.1

223.1.3.2223.1.3.1

223.1.3.27

▪What’s a subnet ?
• device interfaces that can

physically reach each other
without passing through an
intervening router

network consisting of 3 subnets

▪ IP addresses have structure:
• subnet part: devices in same subnet

have common high order bits

• host part: remaining low order bits

Network Layer: 4-49

Subnets
223.1.1.1

223.1.1.2

223.1.1.3

223.1.1.4 223.1.2.9

223.1.2.2

223.1.2.1

223.1.3.2223.1.3.1

223.1.3.27

Recipe for defining subnets:

▪detach each interface from its
host or router, creating
“islands” of isolated networks

▪each isolated network is
called a subnet

subnet mask: /24
(high-order 24 bits: subnet part of IP address)

subnet

223.1.3.0/24

subnet 223.1.1.0/24

subnet 223.1.2.0/24

Network Layer: 4-50

223.1.1.1 = 11011111 00000001 00000001 00000001

223 1 11

Subnets

▪ where are the
subnets?

▪ what are the
/24 subnet
addresses?

223.1.1.1

223.1.1.3

223.1.1.4

223.1.2.2

223.1.2.6

223.1.3.2223.1.3.1

223.1.3.27

223.1.1.2

223.1.7.0

223.1.7.1

223.1.8.0223.1.8.1

223.1.9.1

223.1.9.2

223.1.2.1

subnet 223.1.1/24

subnet 223.1.7/24

subnet 223.1.3/24subnet 223.1.2/24

subnet 223.1.9/24

subnet 223.1.8/24

Network Layer: 4-51

IP addressing: CIDR

CIDR: Classless InterDomain Routing (pronounced “cider”)

• subnet portion of address of arbitrary length
• address format: a.b.c.d/x, where x is # bits in subnet portion

of address

11001000 00010111 00010000 00000000

subnet

part

host

part

200.23.16.0/23

Network Layer: 4-52

IP addresses: how to get one?

That’s actually two questions:

1. Q: How does a host get IP address within its network (host part of
address)?

2. Q: How does a network get IP address for itself (network part of
address)

How does host get IP address?
▪ hard-coded by sysadmin in config file (e.g., /etc/rc.config in UNIX)
▪ DHCP: Dynamic Host Configuration Protocol: dynamically get address

from as server
• “plug-and-play”

Network Layer: 4-53

DHCP: Dynamic Host Configuration Protocol

goal: host dynamically obtains IP address from network server when it
“joins” network

▪ can renew its lease on address in use

▪ allows reuse of addresses (only hold address while connected/on)

▪ support for mobile users who join/leave network

DHCP overview:
▪ Uses UDP on ports 67, 68
▪ host broadcasts DHCP discover msg [optional]
▪ DHCP server responds with DHCP offer msg [optional]
▪ host requests IP address: DHCP request msg
▪ DHCP server sends address: DHCP ack msg

Network Layer: 4-54

DHCP client-server scenario

223.1.1.1

223.1.1.2

223.1.1.3

223.1.1.4 223.1.2.9

223.1.2.2

223.1.2.1

223.1.3.2223.1.3.1

223.1.3.27

DHCP server

223.1.2.5

arriving DHCP client needs
address in this network

Typically, DHCP server will be co-
located in router, serving all subnets
to which router is attached

Network Layer: 4-55

DHCP client-server scenario
DHCP server: 223.1.2.5

Arriving clientDHCP discover

src : 0.0.0.0, 68

dest.: 255.255.255.255,67

yiaddr: 0.0.0.0

transaction ID: 654

DHCP offer

src: 223.1.2.5, 67

dest: 255.255.255.255, 68

yiaddr: 223.1.2.4

transaction ID: 654

lifetime: 3600 secs

DHCP request

src: 0.0.0.0, 68

dest:: 255.255.255.255, 67

yiaddr: 223.1.2.4

transaction ID: 655

lifetime: 3600 secs

DHCP ACK

src: 223.1.2.5, 67

dest: 255.255.255.255, 68

yiaddr: 223.1.2.4

transaction ID: 655

lifetime: 3600 secs

The two steps above can
be skipped “if a client
remembers and wishes to
reuse a previously
allocated network address”
[RFC 2131]

Network Layer: 4-56

DHCP: more than IP addresses

DHCP can return more than just allocated IP address on
subnet:
▪ address of first-hop router for client

▪ name and IP address of DNS sever

▪ network mask (indicating network versus host portion of address)

Network Layer: 4-57

DHCP: example

▪ Connecting laptop will use DHCP
to get IP address, address of first-
hop router, address of DNS server.

router with DHCP

server built into

router

▪ DHCP REQUEST message encapsulated
in UDP, encapsulated in IP, encapsulated
in Ethernet

▪ Ethernet frame broadcast (dest:
FFFFFFFFFFFF) on LAN, received at router
running DHCP server

▪ Ethernet de-mux’ed to IP de-mux’ed,
UDP de-mux’ed to DHCP

168.1.1.1

DHCP

UDP

IP

Eth

Phy

DHCP

DHCP

DHCP

DHCP

DHCP

DHCP

UDP

IP

Eth

Phy

DHCP

DHCP

DHCP

DHCPDHCP

Network Layer: 4-58

DHCP: example

▪ DCP server formulates DHCP ACK
containing client’s IP address, IP
address of first-hop router for client,
name & IP address of DNS server

▪ encapsulated DHCP server reply
forwarded to client, de-muxing up to
DHCP at client

router with DHCP

server built into

router

DHCP

DHCP

DHCP

DHCP

DHCP

UDP

IP

Eth

Phy

DHCP

DHCP

UDP

IP

Eth

Phy

DHCP

DHCP

DHCP

DHCP

▪ client now knows its IP address, name
and IP address of DNS server, IP
address of its first-hop router

Network Layer: 4-59

IP addresses: how to get one?

Q: how does network get subnet part of IP address?

A: gets allocated portion of its provider ISP’s address space

ISP's block 11001000 00010111 00010000 00000000 200.23.16.0/20

ISP can then allocate out its address space in 8 blocks:

Organization 0 11001000 00010111 00010000 00000000 200.23.16.0/23

Organization 1 11001000 00010111 00010010 00000000 200.23.18.0/23

Organization 2 11001000 00010111 00010100 00000000 200.23.20.0/23

 ... ….. …. ….

Organization 7 11001000 00010111 00011110 00000000 200.23.30.0/23

Network Layer: 4-60

Hierarchical addressing: route aggregation

“Send me anything

with addresses

beginning

200.23.16.0/20”

200.23.16.0/23

200.23.18.0/23

200.23.30.0/23

Fly-By-Night-ISP

Organization 0

Organization 7
Internet

Organization 1

ISPs-R-Us
“Send me anything

with addresses

beginning

199.31.0.0/16”

200.23.20.0/23

Organization 2

.

.

.

.

.

.

hierarchical addressing allows efficient advertisement of
routing information:

Network Layer: 4-61

Hierarchical addressing: more specific routes

“Send me anything

with addresses

beginning

200.23.16.0/20”

200.23.16.0/23

200.23.30.0/23

Fly-By-Night-ISP

Organization 0

Organization 7
Internet

200.23.18.0/23

Organization 1

ISPs-R-Us
“Send me anything

with addresses

beginning

199.31.0.0/16”

200.23.20.0/23

Organization 2

.

.

.

.

.

.

▪ Organization 1 moves from Fly-By-Night-ISP to ISPs-R-Us
▪ ISPs-R-Us now advertises a more specific route to Organization 1

200.23.18.0/23

Organization 1

“or 200.23.18.0/23”

Network Layer: 4-62

Hierarchical addressing: more specific routes

“Send me anything

with addresses

beginning

200.23.16.0/20”

200.23.16.0/23

200.23.30.0/23

Fly-By-Night-ISP

Organization 0

Organization 7
Internet

ISPs-R-Us
“Send me anything

with addresses

beginning

199.31.0.0/16”

200.23.20.0/23

Organization 2

.

.

.

.

.

.

▪ Organization 1 moves from Fly-By-Night-ISP to ISPs-R-Us
▪ ISPs-R-Us now advertises a more specific route to Organization 1

200.23.18.0/23

Organization 1

“or 200.23.18.0/23”

Network Layer: 4-63

IP addressing: last words ...
Q: how does an ISP get block of

addresses?

A: ICANN: Internet Corporation for
Assigned Names and Numbers
http://www.icann.org/

• allocates IP addresses, through 5
regional registries (RRs) (who may
then allocate to local registries)

• manages DNS root zone, including
delegation of individual TLD (.com,
.edu , …) management

Q: are there enough 32-bit IP
addresses?

▪ ICANN allocated last chunk of
IPv4 addresses to RRs in 2011

▪ NAT (next) helps IPv4 address
space exhaustion

▪ IPv6 has 128-bit address space

"Who the hell knew how much address
space we needed?" Vint Cerf (reflecting
on decision to make IPv4 address 32 bits
long)

Network Layer: 4-64

Network layer: “data plane” roadmap

▪ Network layer: overview
• data plane

• control plane

▪ What’s inside a router
• input ports, switching, output ports

• buffer management, scheduling

▪ IP: the Internet Protocol
• datagram format
• addressing
• network address translation
• IPv6

▪ Generalized Forwarding, SDN
• match+action
• OpenFlow: match+action in action

▪ Middleboxes

Network Layer: 4-65

10.0.0.1

10.0.0.2

10.0.0.3

10.0.0.4

local network (e.g., home
network) 10.0.0/24

138.76.29.7

rest of
Internet

NAT: network address translation

datagrams with source or destination in
this network have 10.0.0/24 address for
source, destination (as usual)

all datagrams leaving local network have
same source NAT IP address: 138.76.29.7,

but different source port numbers

NAT: all devices in local network share just one IPv4 address as
far as outside world is concerned

Network Layer: 4-66

▪ all devices in local network have 32-bit addresses in a “private” IP
address space (10/8, 172.16/12, 192.168/16 prefixes) that can only
be used in local network

▪ advantages:

▪ just one IP address needed from provider ISP for all devices

▪ can change addresses of host in local network without notifying
outside world

▪ can change ISP without changing addresses of devices in local
network

▪ security: devices inside local net not directly addressable, visible
by outside world

NAT: network address translation

Network Layer: 4-67

implementation: NAT router must (transparently):

▪ outgoing datagrams: replace (source IP address, port #) of every
outgoing datagram to (NAT IP address, new port #)

• remote clients/servers will respond using (NAT IP address, new port
#) as destination address

▪ remember (in NAT translation table) every (source IP address, port #)
to (NAT IP address, new port #) translation pair

▪ incoming datagrams: replace (NAT IP address, new port #) in
destination fields of every incoming datagram with corresponding
(source IP address, port #) stored in NAT table

NAT: network address translation

Network Layer: 4-68

NAT: network address translation

S: 10.0.0.1, 3345
D: 128.119.40.186, 80

1

10.0.0.4

138.76.29.7

1: host 10.0.0.1 sends
datagram to
128.119.40.186, 80

NAT translation table
WAN side addr LAN side addr

138.76.29.7, 5001 10.0.0.1, 3345
…… ……

S: 128.119.40.186, 80
D: 10.0.0.1, 3345

4

S: 138.76.29.7, 5001
D: 128.119.40.186, 802

2: NAT router changes
datagram source address
from 10.0.0.1, 3345 to
138.76.29.7, 5001,
updates table

S: 128.119.40.186, 80
D: 138.76.29.7, 5001 3

3: reply arrives, destination
address: 138.76.29.7, 5001

10.0.0.1

10.0.0.2

10.0.0.3

Network Layer: 4-69

▪ NAT has been controversial:

• routers “should” only process up to layer 3

• address “shortage” should be solved by IPv6

• violates end-to-end argument (port # manipulation by network-layer device)

• NAT traversal: what if client wants to connect to server behind NAT?

▪ but NAT is here to stay:

• extensively used in home and institutional nets, 4G/5G cellular nets

NAT: network address translation

Network Layer: 4-70

▪ initial motivation: 32-bit IPv4 address space would be
completely allocated

▪ additional motivation:
• speed processing/forwarding: 40-byte fixed length header

• enable different network-layer treatment of “flows”

IPv6: motivation

Network Layer: 4-71

IPv6 datagram format

payload (data)

destination address
(128 bits)

source address
(128 bits)

payload len next hdr hop limit

flow labelpriver

32 bits
priority: identify

priority among
datagrams in flow

flow label: identify
datagrams in same
"flow.” (concept of
“flow” not well defined).

128-bit
IPv6 addresses

What’s missing (compared with IPv4):
▪ no checksum (to speed processing at routers)
▪ no fragmentation/reassembly
▪ no options (available as upper-layer, next-header protocol at router)

Network Layer: 4-72

Network layer: “data plane” roadmap

▪ Network layer: overview
• data plane
• control plane

▪ Generalized Forwarding, SDN
• Match+action
• OpenFlow: match+action in action

▪ Middleboxes

Network Layer: 4-79

▪ What’s inside a router
• input ports, switching, output ports
• buffer management, scheduling

▪ IP: the Internet Protocol
• datagram format
• addressing
• network address translation
• IPv6

1

2

0111

3

values in arriving

packet header

Generalized forwarding: match plus action
Review: each router contains a forwarding table
▪ “match plus action” abstraction: match bits in arriving packet, take action

• generalized forwarding:
• many header fields can determine action
• many action possible: drop/copy/modify/log packet

forwarding table

(aka: flow table)

(aka: flow table)

• destination-based forwarding: forward based on dest. IP address

Network Layer: 4-80

▪ flow: defined by header field values (in link-, network-, transport-layer fields)

▪ generalized forwarding: simple packet-handling rules
• match: pattern values in packet header fields

• actions: for matched packet: drop, forward, modify, matched packet or send
matched packet to controller

• priority: disambiguate overlapping patterns

• counters: #bytes and #packets

Flow table abstraction

Router’s flow table define
router’s match+action rules

Flow table

match action

Network Layer: 4-81

▪ flow: defined by header fields

▪ generalized forwarding: simple packet-handling rules
• match: pattern values in packet header fields

• actions: for matched packet: drop, forward, modify, matched packet or send
matched packet to controller

• priority: disambiguate overlapping patterns

• counters: #bytes and #packets

Flow table

match action

1

2
3

4
* : wildcard

src=10.1.2.3, dest=*.*.*.* send to controller
src=1.2.*.*, dest=*.*.*.* drop
src = *.*.*.*, dest=3.4.*.* forward(2)

Flow table abstraction

Network Layer: 4-82

OpenFlow: flow table entries

Match Action Stats

1. Forward packet to port(s)
2. Drop packet
3. Modify fields in header(s)
4. Encapsulate and forward to controller

Packet + byte counters

Header fields to match:

Ingress
Port

Src
MAC

Dst
MAC

Eth
Type

VLAN
 ID

IP
ToS

IP
Proto

IP Src IP Dst
TCP/UDP
Src Port

VLAN
 Pri

TCP/UDP
Dst Port

Link layer Network layer Transport layer
Network Layer: 4-83

OpenFlow: examples

IP datagrams destined to IP address 51.6.0.8 should be forwarded to router output port 6

Block (do not forward) all datagrams destined to TCP port 22 (ssh port #)

Block (do not forward) all datagrams sent by host 128.119.1.1

Destination-based forwarding:

* * * * * * 51.6.0.8 * * * port6

Switch
Port

MAC
src

MAC
dst

Eth
type

VLAN
ID

IP
Src

IP
Dst

IP
Prot

TCP
s-port

TCP
d-port Action

VLAN
Pri

IP
ToS

**

* * * * * * * * * *

Firewall:

drop

Switch
Port

MAC
src

MAC
dst

Eth
type

VLAN
ID

IP
Src

IP
Dst

IP
Prot

TCP
s-port

TCP
d-port Action

VLAN
Pri

IP
ToS

22*

Switch
Port

MAC
src

MAC
dst

Eth
type

VLAN
ID

IP
Src

IP
Dst

IP
Prot

TCP
s-port

TCP
d-port Action

VLAN
Pri

IP
ToS

* * * * * * * * * * drop*128.119.1.1

Network Layer: 4-84

OpenFlow: examples

Layer 2 destination-based forwarding:

layer 2 frames with destination MAC address 22:A7:23:11:E1:02 should be forwarded to
output port 3

* * * * * * * * * port3
22:A7:23:
11:E1:02 * *

Switch
Port

MAC
src

MAC
dst

Eth
type

VLAN
ID

IP
Src

IP
Dst

IP
Prot

TCP
s-port

TCP
d-port Action

VLAN
Pri

IP
ToS

Network Layer: 4-85

▪match+action: abstraction unifies different kinds of devices

OpenFlow abstraction

Router
• match: longest

destination IP prefix
• action: forward out a

link
Switch

• match: destination MAC
address

• action: forward or flood

Firewall
• match: IP addresses and

TCP/UDP port numbers
• action: permit or deny

NAT
• match: IP address and port
• action: rewrite address and

port

Network Layer: 4-86

OpenFlow example

Host h1

10.1.0.1

Host h2

10.1.0.2

Host h4

10.2.0.4

Host h3

10.2.0.3

Host h5

10.3.0.5

s1 s2

s31

2

3
4

1

2

3

4

1

2

3

4

Host h6

10.3.0.6

controller

Orchestrated tables can create
network-wide behavior, e.g.,:
▪ datagrams from hosts h5 and

h6 should be sent to h3 or h4,
via s1 and from there to s2

Network Layer: 4-87

OpenFlow example

IP Src = 10.3.*.*

IP Dst = 10.2.*.*
forward(3)

match action

ingress port = 2

IP Dst = 10.2.0.3

ingress port = 2

IP Dst = 10.2.0.4

forward(3)

match action

forward(4)

ingress port = 1

IP Src = 10.3.*.*

IP Dst = 10.2.*.*

forward(4)

match action

Host h1

10.1.0.1

Host h2

10.1.0.2

Host h4

10.2.0.4

Host h3

10.2.0.3

Host h5

10.3.0.5

s1 s2

s31

2

3
4

1

2

3

4

1

2

3

4

Host h6

10.3.0.6

controller

Orchestrated tables can create
network-wide behavior, e.g.,:
▪ datagrams from hosts h5 and

h6 should be sent to h3 or h4,
via s1 and from there to s2

Network Layer: 4-88

Generalized forwarding: summary

▪ “match plus action” abstraction: match bits in arriving packet header(s) in
any layers, take action

• matching over many fields (link-, network-, transport-layer)
• local actions: drop, forward, modify, or send matched packet to

controller
• “program” network-wide behaviors

▪ simple form of “network programmability”
• programmable, per-packet “processing”
• historical roots: active networking
• today: more generalized programming:
 P4 (see p4.org).

Network Layer: 4-89

Network layer: “data plane” roadmap

Network Layer: 4-90

▪ Network layer: overview

▪ What’s inside a router

▪ IP: the Internet Protocol

▪ Generalized Forwarding

▪Middleboxes
• middlebox functions

• evolution, architectural principles of
the Internet

Middleboxes

“any intermediary box performing functions apart
from normal, standard functions of an IP router on
the data path between a source host and
destination host”

Middlebox (RFC 3234)

Middleboxes everywhere!

enterprise
 network

national or global ISP

datacenter
network

NAT: home,
cellular,

institutional

Firewalls, IDS: corporate,
institutional, service providers,

ISPs

Load balancers:
corporate, service

provider, data center,
mobile nets

Caches: service
provider, mobile, CDNs

Application-
specific: service

providers,
institutional,

CDN

Middleboxes

▪ initially: proprietary (closed) hardware solutions

▪ move towards “whitebox” hardware implementing open API

▪ move away from proprietary hardware solutions

▪ programmable local actions via match+action

▪ move towards innovation/differentiation in software

▪ SDN: (logically) centralized control and configuration management
often in private/public cloud

▪ network functions virtualization (NFV): programmable services over
white box networking, computation, storage

The IP hourglass

IP

TCP UDP

HTTP SMTP
QUIC DASH

RTP …

Ethernet
WiFi Bluetooth

PPP
PDCP

…

copper radio fiber

Internet’s “thin waist”:
▪ one network layer

protocol: IP
▪ must be implemented

by every (billions) of
Internet-connected
devices

many protocols
in physical, link,
transport, and
application
layers

The IP hourglass, at middle age

IP

TCP UDP

HTTP SMTP
QUIC DASH

RTP …

Ethernet
WiFi Bluetooth

PPP
PDCP

…

copper radio fiber

Internet’s middle age
“love handles”?
▪ middleboxes,

operating inside the
network

Firewalls

caching

Architectural Principles of the Internet

“Many members of the Internet community would argue that there is no architecture, but only a tradition,
which was not written down for the first 25 years (or at least not by the IAB). However, in very general terms,
the community believes that

RFC 1958

the goal is connectivity, the tool is the Internet
Protocol, and the intelligence is end to end rather than hidden in the
network.”

Three cornerstone beliefs:
▪ simple connectivity
▪ IP protocol: that narrow waist
▪ intelligence, complexity at network edge

The end-end argument
▪ some network functionality (e.g., reliable data transfer, congestion)

can be implemented in network, or at network edge

end-end implementation of reliable data transferapplication
transport
network
data link
physical

application
transport
network
data link
physical

application
transport
network
data link
physical

application
transport
network
data link
physical

network
link

physical

network
link

physical

network
link

physical

network
link

physical

network
link

physical

network
link

physical

hop-by-hop (in-network) implementation of reliable data transfer

The end-end argument

“The function in question can completely and correctly be implemented only
with the knowledge and help of the application standing at the end points of the
communication system. Therefore, providing that questioned function as a
feature of the communication system itself is not possible. (Sometimes an
incomplete version of the function provided by the communication system may
be useful as a performance enhancement.)

We call this line of reasoning against low-level function implementation the “end-
to-end argument.”

Saltzer, Reed, Clark 1981

▪ some network functionality (e.g., reliable data transfer, congestion)
can be implemented in network, or at network edge

Where’s the intelligence?

20th century phone net:
• intelligence/computing at

network switches

Internet (pre-2005)
• intelligence, computing at

edge

Internet (post-2005)
• programmable network devices
• intelligence, computing, massive

application-level infrastructure at edge

Question: how are forwarding tables (destination-based forwarding)
or flow tables (generalized forwarding) computed?

Answer: by the control plane (next chapter)

Chapter 4: done!

▪ Generalized Forwarding, SDN

▪ Middleboxes

▪ Network layer: overview

▪ What’s inside a router

▪ IP: the Internet Protocol

	Bild 1: Network Layer – Data Plane
	Bild 2: Network layer: our goals
	Bild 3: Network layer: “data plane” roadmap
	Bild 4: Network-layer services and protocols
	Bild 5: Two key network-layer functions
	Bild 6: Network layer: data plane, control plane
	Bild 7: Per-router control plane
	Bild 8: Software-Defined Networking (SDN) control plane
	Bild 13: Network layer: “data plane” roadmap
	Bild 14: Router architecture overview
	Bild 15: Router architecture overview
	Bild 16: Input port functions
	Bild 17: Input port functions
	Bild 18: How much buffering?
	Bild 19: Buffer Management
	Bild 20: Packet Scheduling: FCFS
	Bild 21: Destination-based forwarding
	Bild 22: Destination-based forwarding
	Bild 23: Longest prefix matching
	Bild 24: Longest prefix matching
	Bild 25: Longest prefix matching
	Bild 26: Longest prefix matching
	Bild 27: Longest prefix matching
	Bild 43: Network layer: “data plane” roadmap
	Bild 44: Network Layer: Internet
	Bild 45: IP Datagram format
	Bild 46: IP addressing: introduction
	Bild 47: IP addressing: introduction
	Bild 48: IP addressing: introduction
	Bild 49: Subnets
	Bild 50: Subnets
	Bild 51: Subnets
	Bild 52: IP addressing: CIDR
	Bild 53: IP addresses: how to get one?
	Bild 54: DHCP: Dynamic Host Configuration Protocol
	Bild 55: DHCP client-server scenario
	Bild 56: DHCP client-server scenario
	Bild 57: DHCP: more than IP addresses
	Bild 58: DHCP: example
	Bild 59: DHCP: example
	Bild 60: IP addresses: how to get one?
	Bild 61: Hierarchical addressing: route aggregation
	Bild 62: Hierarchical addressing: more specific routes
	Bild 63: Hierarchical addressing: more specific routes
	Bild 64: IP addressing: last words ...
	Bild 65: Network layer: “data plane” roadmap
	Bild 66: NAT: network address translation
	Bild 67: NAT: network address translation
	Bild 68: NAT: network address translation
	Bild 69: NAT: network address translation
	Bild 70: NAT: network address translation
	Bild 71: IPv6: motivation
	Bild 72: IPv6 datagram format
	Bild 79: Network layer: “data plane” roadmap
	Bild 80: Generalized forwarding: match plus action
	Bild 81: Flow table abstraction
	Bild 82: Flow table abstraction
	Bild 83: OpenFlow: flow table entries
	Bild 84: OpenFlow: examples
	Bild 85: OpenFlow: examples
	Bild 86: OpenFlow abstraction
	Bild 87: OpenFlow example
	Bild 88: OpenFlow example
	Bild 89: Generalized forwarding: summary
	Bild 90: Network layer: “data plane” roadmap
	Bild 91: Middleboxes
	Bild 92: Middleboxes everywhere!
	Bild 93: Middleboxes
	Bild 94: The IP hourglass
	Bild 95: The IP hourglass, at middle age
	Bild 96: Architectural Principles of the Internet
	Bild 97: The end-end argument
	Bild 98: The end-end argument
	Bild 99: Where’s the intelligence?
	Bild 100: Chapter 4: done!

