
Consistency, replication, and fault tolerance

TDTS04 – Computer Networks and Distributed Systems
Carl Magnus Bruhner, ADIT/IDA

Distributed Systems

Based on slides by M. van Steen and A. S. Tanenbaum,
Distributed Systems, 4th ed., distributed-systems.net

https://www.distributed-systems.net/

Consistency and replication in distributed systems

Why replicate
Assume a simple model in which we make a copy of a specific part of a system
(meaning code and data).

• Increase reliability: if one copy does not live up to specifications, switch
over to the other copy while repairing the failing one.

• Performance: simply spread requests between different replicated parts
to keep load balanced, or to ensure quick responses by taking proximity
into account.

The problem
Having multiple copies, means that when any copy changes, that change
should be made at all copies: replicas need to be kept the same, that is, be
kept consistent.

Replication

Main issue
To keep replicas consistent, we generally need to ensure that all conflicting
operations are done in the the same order everywhere

Conflicting operations: From the world of transactions
• Read–write conflict: a read operation and a write operation act

concurrently
• Write–write conflict: two concurrent write operations

Issue
Guaranteeing global ordering on conflicting operations may be a costly
operation, downgrading scalability.

Solution: weaken consistency requirements so that hopefully global
synchronization can be avoided

Performance and scalability

Data-centric consistency models

Consistency model
A contract between a (distributed) data store and processes, in which the data
store specifies precisely what the results of read and write operations are in
the presence of concurrency.

Essential
A data store is a distributed collection of storages:

Read and write operations

• Wi (x)a: Process Pi writes value a to x

• Ri (x)b: Process Pi reads value b from x

• All data items initially have value NIL

Possible behavior
We omit the index when possible and draw according to time (x-axis):

Some notations

Sequential consistency

Definition
The result of any execution is the same as if the operations of all processes
were executed in some sequential order, and the operations of each individual
process appear in this sequence in the order specified by its program.

A sequentially consistent data store A data store that is not sequentially consistent

Three concurrent processes (initial values: 0)

Process P1 Process P2 Process P3
x ← 1; y ← 1; z ← 1;
print(y,z); print(x,z); print(x,y);

Example execution sequences

Example

Seemingly okay

But not really (don’t forget that P1 and P2 act concurrently)

Possible ordering of operations Result
W1(x)a;W1(y)a; W2 (y)b; W2 (x)b R1(x)b R2 (y)b

W1(x)a;W2 (y)b;W1(y)a; W2 (x)b R1(x)b R2 (y)a

W1(x)a;W2 (y)b;W2 (x)b; W1(y)a R1(x)b R2 (y)a

W2 (y)b; W1(x)a; W1(y)a; W2 (x)b R1(x)b R2 (y)a

W2 (y)b; W1(x)a; W2 (x)b; W1(y)a R1(x)b R2 (y)a

W2 (y)b;W2 (x)b;W1(x)a; W1(y)a R1(x)a R2 (y)a

How tricky can it get?

How tricky can it get?

Linearizability
Each operation should appear to take effect instantaneously at some moment
between its start and completion.

Operations complete within a given time (shaded area)

With better results
Possible ordering of operations Result
W1(x)a;W2 (y)b;W1(y)a; W2 (x)b R1(x)b R2 (y)a

W1(x)a;W2 (y)b;W2 (x)b; W1(y)a R1(x)b R2 (y)a

W2 (y)b;W1(x)a; W1(y)a; W2 (x)b R1(x)b R2 (y)a

W2 (y)b;W1(x)a; W2 (x)b; W1(y)a R1(x)b R2 (y)a

Causal consistency

Definition
Writes that are potentially causally related must be seen by all processes in the
same order. Concurrent writes may be seen in a different order by different
processes.

A violation of a causally-consistent store

A correct sequence of events in a causally-consistent store

Eventual consistency

Definition
Consider a collection of data stores and (concurrent) write operations. The
strores are eventually consistent when in lack of updates from a certain
moment, all updates to that point are propagated in such a way that replicas
will have the same data stored (until updates are accepted again).

Strong eventual consistency
Basic idea: if there are conflicting updates, have a globally determined
resolution mechanism (e.g., in NTP, letting the “most recent” update win).

Program consistency
P is a monotonic problem if for any input sets S and T , P(S) ⊆ P(T).
Observation: A program solving a monotonic problem can start with
incomplete information, but is guaranteed not to have to roll back when
missing information becomes available. Example: filling a shopping cart.

Important observation
In all cases, we are avoiding global synchronization.

Consistency for mobile users

Example
Consider a distributed database to which you have access through your
notebook. Assume your notebook acts as a front end to the database.

• At location A you access the database doing reads and updates.
• At location B you continue your work, but unless you access the same

server as the one at location A, you may detect inconsistencies:

• your updates at A may not have yet been propagated to B
• you may be reading newer entries than the ones available at A
• your updates at B may eventually conflict with those at A

Note
The only thing you really want is that the entries you updated and/or read at A,
are in B the way you left them in A. In that case, the database will appear to be
consistent to you.

Basic architecture
The principle of a mobile user accessing different replicas of a
distributed database

Client-centric consistency

• Monotonic reads
• If a process reads the value of a data item ×, any successive read operation on × by that process

will always return that same value or a more recent value.

• Monotonic writes
• A write operation by a process on a data item × is completed before any successive write operation

on × by the same process.

• Read your writes
• The effect of a write operation by a process on data item ×will always be seen by a successive read

operation on × by the same process.

• Writes follow reads
• A write operation by a process on a data item × following a previous read operation on × by the

same process is guaranteed to take place on the same or a more recent value of × that was read.

Content replication

Distinguish different processes
A process is capable of hosting a replica of an object or data:

• Permanent replicas: Process/machine always having a replica
• Server-initiated replica: Process that can dynamically host a replica on

request of another server in the data store (CDN)

• Client-initiated replica: Process that can dynamically host a replica on
request of a client (client cache)

Content replication
The logical organization of different kinds of copies of a data store into
three concentric rings

Content distribution

Consider only a client-server combination

• Propagate only notification/invalidation of update (often used for caches)
• Transfer data from one copy to another (distributed databases): passive

replication

• Propagate the update operation to other copies: active replication

Note
No single approach is the best, but depends highly on available bandwidth and
read-to-write ratio at replicas.

Content distribution: client/server system
A comparison between push-based and pull-based protocols in the
case of multiple-client, single-server systems

• Pushing updates: server-initiated approach, in which update is
propagated regardless whether target asked for it.

• Pulling updates: client-initiated approach, in which client requests to be
updated.

Issue Push-based Pull-based
State at server List of client caches None
Messages to be exchanged Update (and possibly fetch update) Poll and update
Response time at the client Immediate (or fetch-update time) Fetch-update time

Primary-backup protocol

Example primary-backup protocol
Traditionally applied in distributed databases and file systems that require a
high degree of fault tolerance. Replicas are often placed on the same LAN.

Primary-based protocols

Primary-backup protocol with local writes

Example primary-backup protocol with local writes
Mobile computing in disconnected mode (ship all relevant files to user before
disconnecting, and update later on).

Primary-based protocols

Client-side caches
• In the browser

• At a client’s site, notably through a Web proxy

Caches at ISPs
Internet Service Providers also place caches to (1) reduce cross-ISP traffic
and (2) improve client-side performance. May get nasty when a request needs
to pass many ISPs.

Example: replication in the Web

Web-cache consistency

How to guarantee freshness?
To prevent that stale information is returned to a client:
• Option 1: let the cache contact the original server to see if content is still

up to date.

• Option 2: Assign an expiration time Texpire that depends on how long ago
the document was last modified when it is cached. If Tlast modified is the
last modification time of a document (as recorded by its owner), and
Tcached is the time it was cached, then

Texpire = α(Tcached −Tlast modified) + Tcached

with α = 0.2. Until Texpire, the document is considered valid.

• Content-blind cache: store a query, and its result. When the exact same
query is issued again, return the result from the cache.

• Content-aware cache: check if a (normal query) can be answered with
cached data. Requires that the server knows about which data is cached
at the edge.

• Database copy: the edge has the same as the origin server

Alternatives for caching and replication

Fault tolerance in distributed systems

Dependability

Basics
A component provides services to clients. To provide services, the component
may require the services from other components ⇒ a component may depend
on some other component.

Specifically
A component C depends on C∗ if the correctness of C’s behavior depends on
the correctness of C∗’s behavior. (Components are processes or channels.)

Requirements related to dependability

Requirement Description
Availability Readiness for usage
Reliability Continuity of service delivery
Safety Very low probability of catastrophes
Maintainability How easy can a failed system be repaired

Reliability versus availability

Reliability R(t) of component C
Conditional probability that C has been functioning correctly during [0, t) given
C was functioning correctly at time T = 0.

Traditional metrics
• Mean Time To Failure (MTTF): The average time until a component fails.
• Mean Time To Repair (MTTR): The average time needed to repair a

component.
• Mean Time Between Failures (MTBF): Simply MTTF + MTTR.

Reliability versus availability

Availability A(t) of component C
Average fraction of time that C has been up-and-running in interval [0, t).

• Long-term availability A: A(∞)
 Note: A = MTTF = MTTF

MTBF MTTF+MTTR

Observation
Reliability and availability make sense only if we have an accurate notion of
what a failure actually is.

Failure, error, fault

Term Description Example
Failure A component is not living up to

its specifications
Crashed program

Error Part of a component that can
lead to a failure

Programming bug

Fault Cause of an error Sloppy programmer

Terminology

Handling faults

Term Description Example
Fault
prevention

Prevent the occurrence of
a fault

Don’t hire sloppy
programmers

Fault tolerance Build a component such
that it can mask the
occurrence of a fault

Build each component
by two independent
programmers

Fault removal Reduce the presence,
number, or seriousness
of a fault

Get rid of sloppy
programmers

Fault
forecasting

Estimate current
presence, future
incidence, and
consequences of faults

Estimate how a recruiter
is doing when it comes
to hiring sloppy
programmers

Terminology

Types of failures

Type Description of server’s behavior
Crash failure Halts, but is working correctly until it halts
Omission failure

Receive omission
Send omission

Fails to respond to incoming requests
Fails to receive incoming messages
Fails to send messages

Timing failure Response lies outside a specified time interval
Response failure

Value failure
State-transition failure

Response is incorrect
The value of the response is wrong Deviates
from the correct flow of control

Arbitrary failure May produce arbitrary responses at arbitrary times

Failure models

Halting failures

Scenario
C no longer perceives any activity from C∗ — a halting failure? Distinguishing
between a crash or omission/timing failure may be impossible.

Asynchronous versus synchronous systems
• Asynchronous system: no assumptions about process execution speeds

or message delivery times → cannot reliably detect crash failures.

• Synchronous system: process execution speeds and message delivery
times are bounded → we can reliably detect omission and timing failures.

• In practice we have partially synchronous systems: most of the time, we
can assume the system to be synchronous, yet there is no bound on the
time that a system is asynchronous → can normally reliably detect crash
failures.

Redundancy for failure masking

Types of redundancy
• Information redundancy: Add extra bits to data units so that errors can

recovered when bits are garbled.

• Time redundancy: Design a system such that an action can be performed
again if anything went wrong. Typically used when faults are transient or
intermittent.

• Physical redundancy: add equipment or processes in order to allow one
or more components to fail. This type is extensively used in distributed
systems.

Consensus

Prerequisite
In a fault-tolerant process group, each nonfaulty process executes the same
commands, and in the same order, as every other nonfaulty process.

Reformulation
Nonfaulty group members need to reach consensus on which command to
execute next.

Examples: Flooding-based consensus, Raft, Paxos (details in book)

Issue
How can we reliably detect that a process has actually crashed?

General model
• Each process is equipped with a failure detection module

• A process P probes another process Q for a reaction

• If Q reacts: Q is considered to be alive (by P)

• If Q does not react with t time units: Q is suspected to have crashed

Observation for a synchronous system
a suspected crash ≡ a known crash

Failure detection

Implementation

• If P did not receive heartbeat from Q within time t: P suspects Q.

• If Q later sends a message (which is received by P):

• P stops suspecting Q
• P increases the timeout value t

• Note: if Q did crash, P will keep suspecting Q.

Practical failure detection

What can go wrong?

1. The client is unable to locate the server.

2. The request message from the client to the server is lost.

3. The server crashes after receiving a request.

4. The reply message from the server to the client is lost.

5. The client crashes after sending a request.

Two “easy” solutions
1: (cannot locate server): just report back to client

2: (request was lost): just resend message

Reliable remote procedure calls

(a) (b) (c)

Problem
Where (a) is the normal case, situations (b) and (c) require different solutions.
However, we don’t know what happened. Two approaches:

• At-least-once-semantics: The server guarantees it will carry out an
operation at least once, no matter what.

• At-most-once-semantics: The server guarantees it will carry out an
operation at most once (but possibly not at all).

Reliable RPC: server crash

Reliable RPC: lost reply messages

The real issue
What the client notices, is that it is not getting an answer. However, it cannot
decide whether this is caused by a lost request, a crashed server, or a lost
response.

Partial solution
Design the server such that its operations are idempotent: repeating the same
operation is the same as carrying it out exactly once:

• pure read operations
• strict overwrite operations

Many operations are inherently nonidempotent, such as many banking
transactions.

Reliable RPC: client crash

Problem
The server is doing work and holding resources for nothing (called doing an
orphan computation).

Solution
• Orphan is killed (or rolled back) by the client when it recovers
• Client broadcasts new epoch number when recovering ⇒ server kills

client’s orphans

• Require computations to complete in a T time units. Old ones are simply
removed.

Essence
When a failure occurs, we need to bring the system into an error-free state:
• Forward error recovery: Find a new state from which the system can

continue operation

• Backward error recovery: Bring the system back into a previous error-free
state

Practice
Use backward error recovery, requiring that we establish recovery points

Observation
Recovery in distributed systems is complicated by the fact that processes need
to cooperate in identifying a consistent state from where to recover

Recovery: Background

Requirement
Every message that has been received is also shown to have been sent in the
state of the sender.

Recovery line
Assuming processes regularly checkpoint their state, the most recent
consistent global checkpoint.

Consistent recovery state

Essence
Each process takes a checkpoint after a globally coordinated action.

Simple solution
Use a two-phase blocking protocol:

• A coordinator multicasts a checkpoint request message
• When a participant receives such a message, it takes a checkpoint, stops

sending (application) messages, and reports back that it has taken a
checkpoint

• When all checkpoints have been confirmed at the coordinator, the latter
broadcasts a checkpoint done message to allow all processes to continue

Observation
It is possible to consider only those processes that depend on the recovery of
the coordinator, and ignore the rest

Coordinated checkpointing

Observation
If checkpointing is done at the “wrong” instants, the recovery line may lie at
system startup time. We have a so-called cascaded rollback or domino
effect.

Independent checkpointing and cascaded rollback

Exam

Some guidance for the exam

• Questions are now published on the course webpage.
• To best answer the questions, make sure to read up on each in the book:

Distributed Systems (M. van Steen & A. S. Tanenbaum)
Available for free at: https://www.distributed-systems.net/index.php/books/ds4/

• Slides might only give a shallow idea of each concept (but enough to pass).
• Questions can be answered by using terminology and examples from the

slides/books and by connecting to your knowledge of computer networks.

https://www.distributed-systems.net/index.php/books/ds4/

It’s a wrap!

Questions?
Questions/feedback: carl.magnus.bruhner@liu.se

mailto:carl.magnus.bruhner@liu.se

Extras
(Not part of exam.)

MapReduce

• MapReduce is an example of a programming model used in parallel and
distributed algorithms, working with large datasets (big data).

• For more, courses on Big Data, Machine Learning, etc. are recommended.

Illustration: CC BY-SA 4.0 Magnai17/Wikimedia

https://commons.wikimedia.org/wiki/File:WordCountFlow.JPG

