
Coordination and naming

TDTS04 – Computer Networks and Distributed Systems
Carl Magnus Bruhner, ADIT/IDA

Distributed Systems

Based on slides by M. van Steen and A. S. Tanenbaum,
Distributed Systems, 4th ed., distributed-systems.net

https://www.distributed-systems.net/

Coordination in distributed systems

Challenges of coordination

Computer on
which compiler
runs

Computer on
which editor
runs

Time according
to local clock

Time according
to local clock

output.o created

output.c created

2144 2145 2146 2147

2142 2143 2144 2145

Physical clocks

Problem
Sometimes we simply need the exact time, not just an ordering.

Solution: Universal Coordinated Time (UTC)
• Based on the number of transitions per second of the cesium 133 atom

(pretty accurate).
• At present, the real time is taken as the average of some 50 cesium

clocks around the world.
• Introduces a leap second from time to time to compensate that days are

getting longer.

Note
UTC is broadcast through short-wave radio and satellite. Satellites can give an
accuracy of about ±0.5 ms.

Clock synchronization

Precision
The goal is to keep the deviation between two clocks on any two machines
within a specified bound, known as the precision π:

∀t,∀p,q : |Cp(t) −Cq (t)|≤ π

with Cp(t) the computed clock time of machine p at UTC time t.

Accuracy
In the case of accuracy, we aim to keep the clock bound to a value α:

∀t,∀p : |Cp(t) −t| ≤ α

Synchronization

• Internal synchronization: keep clocks precise
• External synchronization: keep clocks accurate

Clock drift

Clock specifications

• A clock comes specified with its maximum clock drift rate ρ.
• F (t) denotes oscillator frequency of the hardware clock at time t
• F is the clock’s ideal (constant) frequency ⇒ living up to specifications:

F (t)
F

∀t : (1−ρ) ≤ ≤ (1 + ρ)

Observation
By using hardware interrupts we couple
a software clock to the hardware clock,
and thus also its clock drift rate:

Fast, perfect, slow clocks

Getting the current time from a timeserver

Detecting and adjusting incorrect times

The Happened-before relationship

Issue
What usually matters is not that all processes agree on exactly what time it is,
but that they agree on the order in which events occur. Requires a notion of
ordering.

The happened-before relation
• If a and b are two events in the same process, and a comes before b,

then a → b.
• If a is the sending of a message, and b is the receipt of that message,

then a → b
• If a → b and b → c, then a → c

Note
This introduces a partial ordering of events in a system with concurrently
operating processes.

Problem
How do we maintain a global view of the system’s behavior that is consistent
with the happened-before relation?

Attach a timestamp C(e) to each event e, satisfying the following
properties:

P1 If a and b are two events in the same process, and a → b, then we
demand that C(a) < C(b).

P2 If a corresponds to sending a message m, and b to the receipt of that
message, then also C(a) < C(b).

Problem
How to attach a timestamp to an event when there’s no global clock ⇒
maintain a consistent set of logical clocks, one per process.

Logical clocks & Lamport’s clock

Logical clocks: solution

Each process Pi maintains a local counter Ci and adjusts this counter

1. For each new event that takes place within Pi , Ci is incremented by 1.
2. Each time a message m is sent by process Pi , the message receives a

timestamp ts(m) = Ci .
3. Whenever a message m is received by a process Pj , Pj adjusts its local

counter Cj to max{Cj , ts(m)}; then executes step 1 before passing m to
the application.

Notes
• Property P1 is satisfied by (1); Property P2 by (2) and (3).
• It can still occur that two events happen at the same time. Avoid this by

breaking ties through process IDs.

Consider three processes with event counters operating at different
rates

Logical clocks: example (Lamport’s timestamps)

Concurrent updates on a replicated database are seen in the same
order everywhere

• P1 adds $100 to an account (initial value: $1000)
• P2 increments account by 1%
• There are two replicas

Result
In absence of proper synchronization:
replica #1 ← $1111, while replica #2 ← $1110.

Example: Totally ordered multicast

Example: Totally ordered multicast

Solution
• Process Pi sends timestamped message mi to all others. The message

itself is put in a local queue queuei .
• Any incoming message at Pj is queued in queuej , according to its

timestamp, and acknowledged to every other process.

Pj passes a messagemi to its application if:

(1) mi is at the head of queuej
(2) for each process Pk , there is a message mk in queuej with a larger

timestamp.

Note
We are assuming that communication is reliable and FIFO ordered.

Observation
Lamport’s clocks do not guarantee that if C(a) < C(b) that a causally
preceded b.

Concurrent message
transmission using logical
clocks

Observation
Event a: m1 is received at T = 16;
Event b: m2 is sent at T = 20.

Note
We cannot conclude that a causally
precedes b.

Vector clocks

Solution: each Pi maintains a vector VCi
• VCi [i] is the local logical clock at process Pi .

• If VCi [j] = k then Pi knows that k events have occurred at Pj .

Maintaining vector clocks

1. Before executing an event, Pi executes VCi [i] ← VCi [i] + 1.
2. When process Pi sends a message m to Pj , it sets m’s (vector)

timestamp ts(m) equal to VCi after having executed step 1.

3. Upon the receipt of a message m, process Pj sets
VCj [k] ← max{VCj [k], ts(m)[k]} for each k , after which it executes step 1
and then delivers the message to the application.

Capturing potential causality

Capturing potential causality when exchanging messages

(a) (b)

Analysis

Situation ts(m2) ts(m4)
ts(m2)<ts(m4)

ts(m2)>ts(m4) Conclusion

(a) (2, 1, 0) (4, 3, 0) Yes No m2 may causally precede m4
(b) (4, 1, 0) (2, 3, 0) No No m2 and m4 may conflict

Vector clocks: Example

Causally ordered multicasting

Observation
We can now ensure that a message is delivered only if all causally preceding
messages have already been delivered.

Adjustment
Pi increments VCi [i] only when sending a message, and Pj “adjusts” VCj
when receiving a message (i.e., effectively does not change VCj [j]).

Pj postpones delivery of m until:

1. ts(m)[i] = VCj [i] + 1
2. ts(m)[k] ≤ VCj [k] for all k ≠ i

Mutual exclusion

Problem
Several processes in a distributed system want exclusive access to some
resource.

Basic solutions
Permission-based: A process wanting to enter its critical region, or access a

resource, needs permission from other processes.

Token-based: A token is passed between processes. The one who has the
token may proceed in its critical region, or pass it on when not
interested.

Simply use a coordinator

(a) Process P1 asks the coordinator for permission to access a shared
resource. Permission is granted.

(b) Process P2 then asks permission to access the same resource. The
coordinator does not reply.

(c) When P1 releases the resource, it tells the coordinator, which then replies
to P2 .

Permission-based, centralized

(a) (b) (c)

Election algorithms

Principle
An algorithm requires that some process acts as a coordinator. The question is
how to select this special process dynamically.

Note
In many systems, the coordinator is chosen manually (e.g., file servers). This
leads to centralized solutions ⇒ single point of failure.

• All processes have unique id’s
• All processes know id’s of all processes in the system (but not if they are

up or down)

• Election means identifying the process with the highest id that is up

Basic assumptions

Election by bullying

Principle
Consider N processes {P0, . . . , PN−1} and let id (Pk) = k . When a process Pk
notices that the coordinator is no longer responding to requests, it initiates an
election:

1. Pk sends an ELECTION message to all processes with higher identifiers:
Pk+1 , Pk+2 , . . . ,PN−1.

2. If no one responds, Pk wins the election and becomes coordinator.

3. If one of the higher-ups answers, it takes over and Pk ’s job is done.

The bully election algorithm

Election by bullying

a b c

d e

Election in a ring

Principle
Process priority is obtained by organizing processes into a (logical) ring. The
process with the highest priority should be elected as coordinator.

• Any process can start an election by sending an election message to its
successor. If a successor is down, the message is passed on to the next
successor.

• If a message is passed on, the sender adds itself to the list. When it gets
back to the initiator, everyone had a chance to make its presence known.

• The initiator sends a coordinator message around the ring containing a
list of all living processes. The one with the highest priority is elected as
coordinator.

Election algorithm using a ring

• The solid line shows the election messages initiated by P6

• The dashed one, the messages by P3

Election in a ring

A sample network

Essence
Find the node with the highest capacity to select as the next leader.

A solution for wireless networks

A sample network

A solution for wireless networks

A sample network

Essence
A node reports back only the node that it found to have the highest capacity.

A solution for wireless networks

Naming in distributed systems

Naming

Essence
Names are used to denote entities in a distributed system. To operate on an
entity, we need to access it at an access point. Access points are entities that
are named by means of an address.

Note
A location-independent name for an entity E, is independent of the addresses
of the access points offered by E.

Identifiers

Pure name
A name that has no meaning at all; it is just a random string. Pure names can
be used for comparison only.

Identifier: A name having some specific properties

1. An identifier refers to at most one entity.
2. Each entity is referred to by at most one identifier.
3. An identifier always refers to the same entity (i.e., it is never reused).

Broadcast the ID, requesting the entity to return its current address

• Can never scale beyond local-area networks
• Requires all processes to listen to incoming location requests

Address Resolution Protocol (ARP)
To find out which MAC address is associated with an IP address, broadcast the
query “who has this IP address”?

Broadcasting

When an entity moves, it leaves behind a pointer to its next location
• Dereferencing can be made entirely transparent to clients by simply

following the chain of pointers

• Update a client’s reference when present location is found
• Geographical scalability problems (for which separate chain reduction

mechanisms are needed):

• Long chains are not fault tolerant
• Increased network latency at dereferencing

Forwarding pointers

Single-tiered scheme: Let a home keep track of where the entity is

• Entity’s home address registered at a naming service
• The home registers the foreign address of the entity
• Client contacts the home first, and then continues with foreign location

Home-based approaches

The principle of mobile IP

Problems with home-based approaches

• Home address has to be supported for entity’s lifetime
• Home address is fixed ⇒ unnecessary burden when the entity

permanently moves

• Poor geographical scalability (entity may be next to client)

Note
Permanent moves may be tackled with another level of naming (DNS)

Home-based approaches

Name space
Naming graph
A graph in which a leaf node represents a (named) entity. A directory node is
an entity that refers to other nodes.

A general naming graph with a single root node

Note
A directory node contains a table of (node identifier, edge label) pairs.

We can easily store all kinds of attributes in a node

• Type of the entity
• An identifier for that entity
• Address of the entity’s location
• Nicknames
• ...

Note
Directory nodes can also have attributes, besides just storing a directory table
with (identifier, label) pairs.

Name space

Name resolution

Problem
To resolve a name, we need a directory node. How do we actually find that
(initial) node?

Closure mechanism: The mechanism to select the implicit context from
which to start name resolution
• www.distributed-systems.net: start at a DNS name server
• /home/maarten/mbox: start at the local NFS file server (possible

recursive search)
• 0031 20 598 7784: dial a phone number
• 77.167.55.6: route message to a specific IP address

http://www.distributed-systems.net/

Name linking

Hard link
What we have described so far as a path name: a name that is resolved by
following a specific path in a naming graph from one node to another.

Soft link: Allow a node N to contain a name of another node
• First resolve N’s name (leading to N)
• Read the content of N, yielding name
• Name resolution continues with name

Observations
• The name resolution process determines that we read the content of a

node, in particular, the name in the other node that we need to go to.
• One way or the other, we know where and how to start name resolution

given name

The concept of a symbolic link explained in a naming graph

Observation
Node n5 has only one name

Name linking

Mounting

Issue
Name resolution can also be used to merge different name spaces
transparently through mounting: associating a node identifier of another name
space with a node in a current name space.

Terminology

• Foreign name space: the name space that needs to be accessed
• Mount point: the node in the current name space containing the node

identifier of the foreign name space
• Mounting point: the node in the foreign name space where to continue

name resolution

Mounting across a network

1. The name of an access protocol.
2. The name of the server.
3. The name of the mounting point in the foreign name space.

Mounting remote name spaces through a specific access protocol

Mounting in distributed systems

Name-space implementation

Basic issue
Distribute the name resolution process as well as name space management
across multiple machines, by distributing nodes of the naming graph.

Distinguish three levels
• Global level: Consists of the high-level directory nodes. Main aspect is

that these directory nodes have to be jointly managed by different
administrations

• Administrational level: Contains mid-level directory nodes that can be
grouped in such a way that each group can be assigned to a separate
administration.

• Managerial level: Consists of low-level directory nodes within a single
administration. Main issue is effectively mapping directory nodes to local
name servers.

Name-space implementation

An example partitioning of the DNS name space, including network files

A comparison between name servers for implementing nodes in a
name space

Item Global Administrational Managerial
Geographical scale Worldwide Organization Department
Nodes Few Many Vast numbers
Responsiveness Seconds Milliseconds Immediate
Update propagation Lazy Immediate Immediate
Replicas Many None or few None
Client-side caching? Yes Yes Sometimes

Name-space implementation

Iterative name resolution

Principle

1. resolve(dir, [name1,...,nameK]) sent to Server0 responsible for dir
2. Server0 resolves resolve(dir,name1) → dir1, returning the identification

(address) of Server1, which stores dir1.
3. Client sends resolve(dir1, [name2 , ...,nameK]) to Server1, etc.

Principle

1. resolve(dir, [name1,...,nameK]) sent to Server0 responsible for dir
2. Server0 resolves resolve(dir,name1) → dir1, and sends

resolve(dir1, [name2 , ...,nameK]) to Server1, which stores dir1.
3. Server0 waits for result from Server1, and returns it to client.

Recursive name resolution

➥ Next lecture: Consistency, replication, and fault tolerance

Questions?
Questions/feedback: carl.magnus.bruhner@liu.se

mailto:carl.magnus.bruhner@liu.se

