
Architecture, processes, and communication

TDTS04 – Computer Networks and Distributed Systems
Carl Magnus Bruhner, ADIT/IDA

Distributed Systems

Based on slides by M. van Steen and A. S. Tanenbaum,
Distributed Systems, 4th ed., distributed-systems.net

https://www.distributed-systems.net/

Architecture of distributed systems

Basic idea
A style is formulated in terms of

• (replaceable) components with well-defined interfaces
• the way that components are connected to each other
• the data exchanged between components
• how these components and connectors are jointly configured into a

system.

Connector
A mechanism that mediates communication, coordination, or cooperation
among components. Example: facilities for (remote) procedure call,
messaging, or streaming.

Architectural styles

Protocol, service, interface

Example: communication protocols

Object-based style

Essence
Components are objects, connected to each other through procedure calls.
Objects may be placed on different machines; calls can thus execute across a
network.

Encapsulation
Objects are said to encapsulate data and offer methods on that data without
revealing the internal implementation.

Object-based styles

• Common Object Request Broker Architecture (CORBA)
• Java Remote Method Invocation (Java RMI)—the object-oriented

equivalent of remote procedure calls (RPC)
• …not used much today, so you don’t need to dive into this even though it is

mentioned in the course syllabus.

RESTful architectures

Essence
View a distributed system as a collection of resources, individually managed by
components. Resources may be added, removed, retrieved, and modified by
(remote) applications.

1. Resources are identified through a single naming scheme
2. All services offer the same interface
3. Messages sent to or from a service are fully self-described
4. After executing an operation at a service, that component forgets

everything about the caller

Basic operations
Operation Description
PUT Create a new resource
GET Retrieve the state of a resource in some representation
DELETE Delete a resource
POST Modify a resource by transferring a new state

Representational State Transfer

Available as of HTTP methods
GET /index.html HTTP/1.1
Host: liu.se
...

Example: Amazon’s Simple Storage Service

Essence
Objects (i.e., files) are placed into buckets (i.e., directories). Buckets cannot be
placed into buckets. Operations on ObjectName in bucket BucketName
require the following identifier:

http://BucketName.s3.amazonaws.com/ObjectName

Typical operations
All operations are carried out by sending HTTP requests:

• Create a bucket/object: PUT, along with the URI
• Listing objects: GET on a bucket name
• Reading an object: GET on a full URI

Basic Client–Server Model
Characteristics:

• There are processes offering services (servers)
• There are processes that use services (clients)
• Clients and servers can be on different machines
• Clients follow request/reply model regarding using services

Centralized system architectures

Some traditional organizations

• Single-tiered: dumb terminal/mainframe configuration
• Two-tiered: client/single server configuration
• Three-tiered: each layer on separate machine

Traditional two-tiered configurations

(a) (b) (c) (d) (e)

Multi-tiered centralized system architectures

Three-tiered architecture

Being client and server at the same time

Example: The Network File System

Foundations
Each NFS server provides a standardized view of its local file system: each
server supports the same model, regardless the implementation of the file
system.

The NFS remote access model

Remote access Upload/download
Note
FTP is a typical upload/download model. The same can be said for systems like Dropbox.

NFS architecture

Back in the old days...

...life was simple:

• A website consisted as a collection of HTML files
• HTML files could be referred to each other by a hyperlink
• A Web server essentially needed only a hyperlink to fetch a file
• A browser took care of properly rendering the content of a file

Example: Simple Web servers

Still back in the old days...

...life became a bit more complicated:

• A website was built around a database with content
• A Webpage could still be referred to by a hyperlink
• A Web server essentially needed only a hyperlink to fetch a file
• A separate program (Common Gateway Interface) composed a page
• A browser took care of properly rendering the content of a file

Example (cnt’d): Less simple Web servers

Structured P2P

Essence
Make use of a semantic-free index: each data item is uniquely associated with
a key, in turn used as an index. Common practice: use a hash function

key(data item) = hash(data item’s value).
P2P system now responsible for storing (key,value) pairs.

Simple example: hypercube

Looking up d with key k ∈ {0,1,2,..., 24 − 1} means routing request to node
with identifier k.

Unstructured P2P

Essence
Each node maintains an ad hoc list of neighbors. The resulting overlay
resembles a random graph: an edge ⟨u,v⟩ exists only with a certain probability
P[⟨u,v⟩].

Searching
• Flooding: issuing node u passes request for d to all neighbors. Request

is ignored when receiving node had seen it before. Otherwise, v
searches locally for d (recursively). May be limited by a Time-To-Live: a
maximum number of hops.

• Random walk: issuing node u passes request for d to randomly chosen
neighbor, v . If v does not have d, it forwards request to one of its
randomly chosen neighbors, and so on.

Super-peer networks

Essence
It is sometimes sensible to break the symmetry in pure peer-to-peer networks:

• When searching in unstructured P2P systems, having index servers
improves performance

• Deciding where to store data can often be done more efficiently through
brokers.

Collaboration: The BitTorrent case

Principle: search for a file F

• Lookup file at a global directory ⇒ returns a torrent file
• Torrent file contains reference to tracker: a server keeping an accurate

account of active nodes that have (chunks of) F .
• P can join swarm, get a chunk for free, and then trade a copy of that

chunk for another one with a peer Q also in the swarm.

Cloud computing

SaaS

PaaS

IaaS

Cloud computing

Make a distinction between four layers
• Hardware: Processors, routers, power and cooling systems. Customers

normally never get to see these.

• Infrastructure: Deploys virtualization techniques. Evolves around
allocating and managing virtual storage devices and virtual servers.

• Platform: Provides higher-level abstractions for storage and such.
Example: Amazon S3 storage system offers an API for (locally created)
files to be organized and stored in so-called buckets.

• Application: Actual applications, such as office suites (text processors,
spreadsheet applications, presentation applications). Comparable to the
suite of apps shipped with OSes.

Edge-server architecture

Essence
Systems deployed on the Internet where servers are placed at the edge of the
network: the boundary between enterprise networks and the actual Internet.

Reasons for having an edge infrastructure

Commonly (and often misconceived) arguments
• Latency and bandwidth: Especially important for certain real-time

applications, such as augmented/virtual reality applications. Many people
underestimate the latency and bandwidth to the cloud.

• Reliability: The connection to the cloud is often assumed to be unreliable,
which is often a false assumption. There may be critical situations in
which extremely high connectivity guarantees are needed.

• Security and privacy: The implicit assumption is often that when assets
are nearby, they can be made better protected. Practice shows that this
assumption is generally false. However, securely handling data
operations in the cloud may be trickier than within your own organization.

Edge orchestration

Managing resources at the edge may be trickier than in the cloud
• Resource allocation: we need to guarantee the availability of the

resources required to perform a service.
• Service placement: we need to decide when and where to place a

service. This is notably relevant for mobile applications.
• Edge selection: we need to decide which edge infrastructure should be

used when a service needs to be offered. The closest one may not be the
best one.

Observation
There is still a lot of buzz about edge infrastructures and computing, yet
whether all that buzz makes any sense remains to be seen.

Processes in distributed systems

Three types of cloud services

• Infrastructure-as-a-Service covering the basic infrastructure
• Platform-as-a-Service covering system-level services
• Software-as-a-Service containing actual applications

IaaS
Instead of renting out a physical machine, a cloud provider will rent out a VM
(or VMM) that may be sharing a physical machine with other customers ⇒
almost complete isolation between customers (although performance isolation
may not be reached).

VMs and cloud computing

Distinguish application-level and middleware-level solutions

Client-server interaction

Logical development
With an increasing number of cloud-based applications, the question is how to
use those applications from a user’s premise?

• Issue: develop the ultimate networked user interface
• Answer: use a Web browser to establish a seamless experience

The Google Chromebook

Virtual desktop environment

Generally tailored for distribution transparency

• Access transparency: client-side stubs for RPCs
• Location/migration transparency: let client-side software keep track of

actual location
• Replication transparency: multiple invocations handled by client stub:

• Failure transparency: can often be placed only at client (we’re trying to
mask server and communication failures).

Client-side software

Basic model
A process implementing a specific service on behalf of a collection of clients. It
waits for an incoming request from a client and subsequently ensures that the
request is taken care of, after which it waits for the next incoming request.

Two basic types
• Iterative server: Server handles the request before attending a next

request.

• Concurrent server: Uses a dispatcher, which picks up an incoming
request that is then passed on to a separate thread/process.

Observation
Concurrent servers are the norm: they can easily handle multiple requests,
notably in the presence of blocking operations (to disks or other servers).

Servers: General organization

Observation: most services are tied to a specific port

ftp-data 20 File Transfer [Default Data]
ftp 21 File Transfer [Control]
telnet 23 Telnet
smtp 25 Simple Mail Transfer
www 80 Web (HTTP)

Dynamically assigning an end point: two approaches

Contacting a server

Common organization

Crucial element
The first tier is generally responsible for passing requests to an appropriate
server: request dispatching

Three different tiers

Observation
Spreading servers across the Internet may introduce administrative problems.
These can be largely circumvented by using data centers from a single cloud
provider.

Request dispatching: if locality is important
Common approach: use DNS:

1. Client looks up specific service through DNS - client’s IP address is part
of request

2. DNS server keeps track of replica servers for the requested service, and
returns address of most local server.

Client transparency
To keep client unaware of distribution, let DNS resolver act on behalf of client.
Problem is that the resolver may actually be far from local to the actual client.

When servers are spread across the Internet

Important note
The cache is often sophisticated enough to hold more than just passive data.
Much of the application code of the origin server can be moved to the cache as
well.

A simplified version of the Akamai CDN

Communication in distributed systems

Important
The transport layer provides the actual communication facilities for most
distributed systems.

Standard Internet protocols

• TCP: connection-oriented, reliable, stream-oriented communication
• UDP: unreliable (best-effort) datagram communication

Transport Layer

Distinguish...

• Transient versus persistent communication
• Asynchronous versus synchronous communication

Types of communication

Transient versus persistent

• Transient communication: Comm. server discards message when it
cannot be delivered at the next server, or at the receiver.

• Persistent communication: A message is stored at a communication
server as long as it takes to deliver it.

Types of communication

Places for synchronization

• At request submission
• At request delivery
• After request processing

Types of communication

Some observations
Client/Server computing is generally based on a model of transient
synchronous communication:

• Client and server have to be active at the time of communication
• Client issues request and blocks until it receives reply
• Server essentially waits only for incoming requests, and subsequently

processes them

Drawbacks synchronous communication

• Client cannot do any other work while waiting for reply
• Failures have to be handled immediately: the client is waiting
• The model may simply not be appropriate (mail, news)

Client/Server

Message-oriented middleware
Aims at high-level persistent asynchronous communication:

• Processes send each other messages, which are queued
• Sender need not wait for immediate reply, but can do other things
• Middleware often ensures fault tolerance

Messaging

Remote procedure call (RPC)

• Used to call procedures located on other machines
• Transparent to the program/programmer—looks like a local procedure
• Utilizes stubs (client and server) that the procedures are passed to/from
• Parameters marshaling is the passing of parameters, which is easier said

than done due to differences between machines/programs

Basic RPC operation

Observations
• Application developers are familiar with simple procedure model
• Well-engineered procedures operate in isolation (black box)
• There is no fundamental reason not to execute procedures on separate

machine

Conclusion
Communication between caller &
callee can be hidden by using
procedure-call mechanism.

1. Client procedure calls client stub.
2. Stub builds message; calls local OS.
3. OS sends message to remote OS.
4. Remote OS gives message to stub.
5. Stub unpacks parameters; calls server.

6. Server does local call; returns result to stub.
7. Stub builds message; calls OS.
8. OS sends message to client’s OS.
9. Client’s OS gives message to stub.

10. Client stub unpacks result; returns to client.

Basic RPC operation

RPC: Parameter passing

There’s more than just wrapping parameters into a message
• Client and server machines may have different data representations (think

of byte ordering)
• Wrapping a parameter means transforming a value into a sequence of

bytes
• Client and server have to agree on the same encoding:

• How are basic data values represented (integers, floats, characters)
• How are complex data values represented (arrays, unions)

Conclusion
Client and server need to properly interpret messages, transforming them into
machine-dependent representations.

Asynchronous RPCs

Essence
Try to get rid of the strict request-reply behavior, but let the client continue
without waiting for an answer from the server.

Essence
Sending an RPC request to a group of servers.

Sending out multiple RPCs

Berkeley socket interface

Operation Description
socket
bind
listen

accept
connect
send
receive
close

Create a new communication end point
Attach a local address to a socket
Tell operating system what the maximum number of pending
connection requests should be
Block caller until a connection request arrives
Actively attempt to establish a connection
Send some data over the connection
Receive some data over the connection
Release the connection

Transient messaging: sockets

Four possible combinations

Queue-based messaging

Message-oriented middleware

Essence
Asynchronous persistent communication through support of middleware-level
queues. Queues correspond to buffers at communication servers.

Operations

Operation Description
PUT Append a message to a specified queue
GET Block until the specified queue is nonempty, and

remove the first message

POLL Check a specified queue for messages, and remove
the first. Never block

NOTIFY Install a handler to be called when a message is put
into the specified queue

General model

Queue managers
Queues are managed by queue managers. An application can put messages
only into a local queue. Getting a message is possible by extracting it from a
local queue only ⇒ queue managers need to route messages.

Routing

Message broker

Observation
Message queuing systems assume a common messaging protocol: all
applications agree on message format (i.e., structure and data representation)

Broker handles application heterogeneity in an MQ system

• Transforms incoming messages to target format
• Very often acts as an application gateway
• May provide subject-based routing capabilities (i.e., publish-subscribe

capabilities)

Message broker: general architecture

➥ Next lecture: Coordination and naming

Questions?
Questions/feedback: carl.magnus.bruhner@liu.se

mailto:carl.magnus.bruhner@liu.se

