
Introduction to distributed systems

TDTS04 – Computer Networks and Distributed Systems
Carl Magnus Bruhner, ADIT/IDA

Distributed Systems

Based on slides by M. van Steen and A. S. Tanenbaum,
Distributed Systems, 4th ed., distributed-systems.net

https://www.distributed-systems.net/

What is this module?

• Distributed systems, part of TDTS04 (and TDDE35)
• Four lectures, giving a broad overview
• Follows the book Distributed Systems (M. van Steen & A. S. Tanenbaum)

Available for free at: https://www.distributed-systems.net/index.php/books/ds4/

• Application of fundamentals of computer networking

https://www.distributed-systems.net/index.php/books/ds4/

Who am I?

• Second year PhD student in computer science/cybersecurity at ADIT/IDA
• Study web security and privacy
• Web certificate ecosystem (the “Web PKI”), used for TLS/HTTPS
• User privacy, including cookies and consent

• First-time lecturer this semester with this course
• Previously involved in the TDTS04/06/11 & TDDE35 labs for many years

What have I done with the module?

• New set of slides, based on van Steen & Tanenbaum’s latest companion
material to the book (where you can find more details)
• Focus:
• Cut number of slides
• More high-level concept than details (available in book)
• Tighter tie to the Distributed Systems book/structure

• Exam questions will be updated to match this material (i.e., slides)
• Continuous iteration: feel free to give me feedback – and ask questions 🙋

Introduction to distributed systems

Why study distributed systems?

• Understand the foundation of large-scale systems
• Understand tradeoffs when building large-scale systems
• Get knowledge useable in a broad set of applications
• Understand how the modern/connected world operates behind the scenes
• Appy knowledge of computer networking

What many people state

Centralized Decentralized Distributed

When does a decentralized system become distributed?

• Adding 1 link between two nodes in a decentralized system?
• Adding 2 links between two other nodes?
• In general: adding k > 0 links....?

Distributed versus Decentralized

Alternative approach

Two views on realizing distributed systems
• Integrative view: connecting existing networked computer systems into a

larger a system.

• Expansive view: an existing networked computer systems is extended
with additional computers

Two definitions
• A decentralized system is a networked computer system in which

processes and resources are necessarily spread across multiple
computers.

• A distributed system is a networked computer system in which processes
and resources are sufficiently spread across multiple computers.

Recall…

Note: The following slides are based on companion material of
Computer Networking: A Top-Down Approach, 8th ed.

© 1996-2023, J.F Kurose and K.W. Ross, All Rights Reserved

Thinking about the DNS
humongous distributed database:
§ ~ billion records, each simple

handles many trillions of queries/day:
§many more reads than writes
§ performance matters: almost every

Internet transaction interacts with
DNS - msecs count!

organizationally, physically decentralized:
§millions of different organizations

responsible for their records

“bulletproof”: reliability, security

DNS: services, structure
Q: Why not centralize DNS?
§ single point of failure
§ traffic volume
§ distant centralized database
§ maintenance

A: doesn‘t scale!
§ Comcast DNS servers alone:

600B DNS queries/day
§ Akamai DNS servers alone:

2.2T DNS queries/day

DNS name resolution

Iterated query

requesting host at
engineering.nyu.edu

gaia.cs.umass.edu

root DNS server

local DNS server
dns.nyu.edu

1

2
3

4

5

6

authoritative DNS server
dns.cs.umass.edu

7

8

TLD DNS server

requesting host at
engineering.nyu.edu

gaia.cs.umass.edu

root DNS server

local DNS server
dns.nyu.edu

1

2 3

45

6

authoritative DNS server
dns.cs.umass.edu

7

8

TLD DNS server

Recursive query

File distribution: client-server vs P2P
Q: how much time to distribute file (size F) from one server to

N peers?
• peer upload/download capacity is limited resource

us

uN

dN

server

network (with abundant
bandwidth)

file, size F

us: server upload
capacity

ui: peer i upload
capacity

di: peer i download
capacityu2 d2

u1 d1

di

ui

Client-server vs. P2P: example
client upload rate = u, F/u = 1 hour, us = 10u, dmin ≥ us

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25 30 35

N

M
in

im
um

 D
is

tri
bu

tio
n

Ti
m

e P2P
Client-Server

imap.gmail.com

smtp.gmail.com

Example: Gmail

(Illustration CC BY-SA 3.0 Ludovic/Privacy Canada, via Wikimedia Commons)

Example: Content-Delivery Network (CDN)

Centralized content server
(non-CDN)

Distributed content servers
(CDN)

https://commons.wikimedia.org/wiki/File:NCDN_-_CDN.png

Back to the fundamentals…

Some common misconceptions

Centralized solutions do not scale
Make distinction between logically and physically centralized. The root of the
Domain Name System:
• logically centralized
• physically (massively) distributed
• decentralized across several organizations

Centralized solutions have a single point of failure
Generally not true (e.g., the root of DNS). A single point of failure is often:
• easier to manage
• easier to make more robust

Important
There are many, poorly founded, misconceptions regarding scalability, fault
tolerance, security, etc. We need to develop skills by which distributed systems
can be readily understood so as to judge such misconceptions.

Perspectives on distributed systems

Distributed systems are complex: take perspectives

• Architecture: common organizations
• Process: what kind of processes, and their relationships
• Communication: facilities for exchanging data
• Coordination: application-independent algorithms
• Naming: how do you identify resources?
• Consistency and replication: performance requires of data, which need to

be the same

• Fault tolerance: keep running in the presence of partial failures
• Security: ensure authorized access to resources

Perspectives on distributed systems

Distributed systems are complex: take perspectives

• Architecture: common organizations
• Process: what kind of processes, and their relationships
• Communication: facilities for exchanging data
• Coordination: application-independent algorithms
• Naming: how do you identify resources?
• Consistency and replication: performance requires of data, which need to

be the same

• Fault tolerance: keep running in the presence of partial failures
• Security: ensure authorized access to resources

Lecture 2

Lecture 3

Lecture 4

Revisited later in a
separate security lecture

Overall design goals

• Support sharing of resources

• Distribution transparency

• Openness

• Scalability

What do we want to achieve?

Canonical examples

• Cloud-based shared storage and files
• Peer-to-peer assisted multimedia streaming
• Shared mail services (think of outsourced mail systems)
• Shared Web hosting (think of content distribution networks)

Observation
“The network is the computer”

(quote from John Gage, then at Sun Microsystems)

Sharing resources

What is transparency?
The phenomenon by which a distributed system attempts to hide the fact that
its processes and resources are physically distributed across multiple
computers, possibly separated by large distances.

Observation
Distribution transparency is handled through many different techniques in a
layer between applications and operating systems: a middleware layer

Distribution transparency

Types

Transparency Description
Access Hide differences in data representation and how an

object is accessed

Location Hide where an object is located
Relocation Hide that an object may be moved to another location

while in use
Migration Hide that an object may move to another location
Replication Hide that an object is replicated
Concurrency Hide that an object may be shared by several

independent users
Failure Hide the failure and recovery of an object

Distribution transparency

Degree of transparency

Aiming at full distribution transparency may be too much

• There are communication latencies that cannot be hidden
• Completely hiding failures of networks and nodes is (theoretically and

practically) impossible
• You cannot distinguish a slow computer from a failing one
• You can never be sure that a server actually performed an operation

before a crash
• Full transparency will cost performance, exposing distribution of the

system
• Keeping replicas exactly up-to-date with the master takes time
• Immediately flushing write operations to disk for fault tolerance

Exposing distribution may be good

• Making use of location-based services (finding your nearby friends)

• When dealing with users in different time zones
• When it makes it easier for a user to understand what’s going on (when

e.g., a server does not respond for a long time, report it as failing).

Conclusion
Distribution transparency is a nice goal, but achieving it is a different story, and
it should often not even be aimed at.

Degree of transparency

Openness of distributed systems

Open distributed system
A system that offers components that can easily be used by, or integrated into
other systems. An open distributed system itself will often consist of
components that originate from elsewhere.

What are we talking about?
Be able to interact with services from other open systems, irrespective of the
underlying environment:

• Systems should conform to well-defined interfaces
• Systems should easily interoperate
• Systems should support portability of applications
• Systems should be easily extensible

Observation
Many developers of modern distributed systems easily use the adjective
“scalable” without making clear why their system actually scales.

At least three components

• Number of users or processes (size scalability)

• Maximum distance between nodes (geographical scalability)

• Number of administrative domains (administrative scalability)

Observation
Most systems account only, to a certain extent, for size scalability. Often a
solution: multiple powerful servers operating independently in parallel. Today,
the challenge still lies in geographical and administrative scalability.

Scale in distributed systems

Size scalability

Root causes for scalability problems with centralized solutions

• The computational capacity, limited by the CPUs

• The storage capacity, including the transfer rate between CPUs and disks

• The network between the user and the centralized service

• Cannot simply go from LAN to WAN: many distributed systems assume
synchronous client-server interactions: client sends request and waits for
an answer. Latency may easily prohibit this scheme.

• WAN links are often inherently unreliable: simply moving streaming video
from LAN to WAN is bound to fail.

• Lack of multipoint communication, so that a simple search broadcast
cannot be deployed. Solution is to develop separate naming and directory
services (having their own scalability problems).

Problems with geographical scalability

Essence
Conflicting policies concerning usage (and thus payment), management, and
security

Examples
• Computational grids: share expensive resources between different

domains.
• Shared equipment: how to control, manage, and use a shared radio

telescope constructed as large-scale shared sensor network?

Exception: several peer-to-peer networks

• File-sharing systems (based, e.g., on BitTorrent)
• Peer-to-peer telephony (early versions of Skype)
• Peer-assisted audio streaming (Spotify)

Note: end users collaborate and not administrative entities.

Problems with administrative scalability

Hide communication latencies
• Make use of asynchronous communication

• Have separate handler for incoming response

• Problem: not every application fits this model

Techniques for scaling

Facilitate solution by moving computations to client

Techniques for scaling

Partition data and computations across multiple machines

• Move computations to clients (Java applets and scripts)

• Decentralized naming services (DNS)

• Decentralized information systems (WWW)

Techniques for scaling

Replication and caching: Make copies of data available at different
machines
• Replicated file servers and databases

• Mirrored Websites

• Web caches (in browsers and proxies)

• File caching (at server and client)

Techniques for scaling

Applying replication is easy, except for one thing
• Having multiple copies (cached or replicated), leads to inconsistencies:

modifying one copy makes that copy different from the rest.

• Always keeping copies consistent and in a general way requires global
synchronization on each modification.

• Global synchronization precludes large-scale solutions.

Observation
If we can tolerate inconsistencies, we may reduce the need for global
synchronization, but tolerating inconsistencies is application dependent.

Scaling: The problem with replication

File transfer: Technically simple, but not flexible:

• Figure out file format and layout
• Figure out file management
• Update propagation, and update notifications.

Shared database: Much more flexible, but still requires common data scheme
next to risk of bottleneck.

Remote procedure call (RPC): Effective when execution of a series of
actions is needed.

Messaging: RPCs require caller and callee to be up and running at the same
time. Messaging allows decoupling in time and space.

How to integrate applications

Distributed pervasive systems

Observation
Emerging next-generation of distributed systems in which nodes are small,
mobile, and often embedded in a larger system, characterized by the fact that
the system naturally blends into the user’s environment.

Three (overlapping) subtypes
• Ubiquitous computing systems: pervasive and continuously present, i.e.,

there is a continuous interaction between system and user.

• Mobile computing systems: pervasive, but emphasis is on the fact that
devices are inherently mobile.

• Sensor (and actuator) networks: pervasive, with emphasis on the actual
(collaborative) sensing and actuation of the environment.

Ubiquitous systems

Core elements
1. (Distribution) Devices are networked, distributed, and accessible

transparently
2. (Interaction) Interaction between users and devices is highly unobtrusive
3. (Context awareness) The system is aware of a user’s context to optimize

interaction
4. (Autonomy) Devices operate autonomously without human intervention,

and are thus highly self-managed
5. (Intelligence) The system as a whole can handle a wide range of dynamic

actions and interactions

Mobile computing

Distinctive features
• A myriad of different mobile devices (smartphones, tablets, GPS devices,

remote controls, active badges).

• Mobile implies that a device’s location is expected to change over time ⇒
change of local services, reachability, etc. Keyword: discovery.

• Maintaining stable communication can introduce serious problems.
• For a long time, research has focused on directly sharing resources

between mobile devices. It never became popular and is by now
considered to be a fruitless path for research.

Bottomline
Mobile devices set up connections to stationary servers, essentially bringing
mobile computing in the position of clients of cloud-based services.

Mobile cloud computing

Mobile edge computing

Mobile computing

Sensor networks

Characteristics
The nodes to which sensors are attached are:

• Many (10s-1000s)

• Simple (small memory/compute/communication capacity)

• Often battery-powered (or even battery-less)

Two extremes

Sensor networks as distributed databases

The cloud-edge continuum

Observation
Many distributed systems are needlessly complex, caused by mistakes that
required patching later on. Many false assumptions are often made.

False (and often hidden) assumptions

• The network is reliable

• The network is secure

• The network is homogeneous

• The topology does not change

• Latency is zero

• Bandwidth is infinite

• Transport cost is zero

• There is one administrator

Developing distributed systems: Pitfalls

In summary

Distributed systems

• A distributed system is a networked computer system in which processes
and resources are sufficiently spread across multiple computers.
• Examples include DNS, P2P, and CDNs.
• The overall design goals are sharing of resources, distribution

transparency, openness, and scalability.
• Distributed pervasive systems are ubiquitous, mobile, and sensor systems

supported by cloud and edge.
• Distributed systems can be very complex, with many pitfalls and risk of

false assumptions.

➥ Next lecture: Architecture, processes, and communication

Questions?
Questions/feedback: carl.magnus.bruhner@liu.se

mailto:carl.magnus.bruhner@liu.se

