Language Technology (2023)

Part-of-speech tagging

Marco Kuhlmann **Department of Computer and Information Science**

This work is licensed under a **Creative Commons Attribution 4.0 International License.**

Parts of speech

- A **part of speech** is a category of words that play similar roles within the syntactic structure of a sentence.
- Three common parts of speech are noun, verb, and adjective. Kim loves fast cars.
- There are many different 'tag sets' for parts of speech. different languages, different levels of granularity

Universal part-of-speech tags: Universal Dependencies Project

Tag	Category	Examples	Tag	Category
ADJ	adjective	big, old	ADP	adposition
ADV	adverb	very, well	AUX	auxiliary verb
ΙΝΤͿ	interjection	ouch!	CCONJ	conjunction
NOUN	noun	girl, cat, tree	DET	determiner
PROPN	proper noun	Mary, John	NUM	cardinal numb
VERB	verb	run, eat	PRON	pronoun

plus PART, SCONJ, PUNCT, SYM, X

Examples

in, to, during

has, should

and, or, but

a, my, this

one, two bers

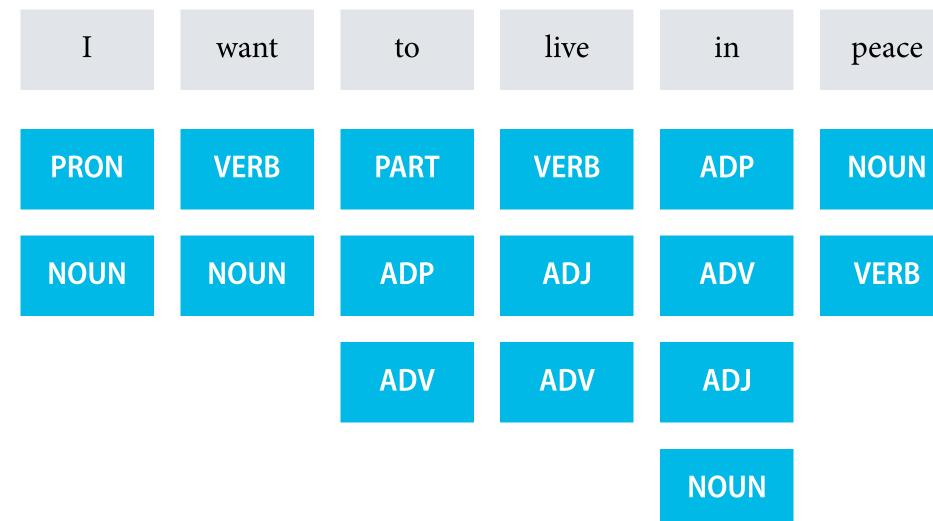
you, herself

Part-of-speech tagging

- A **part-of-speech tagger** is a computer program that tags each word in a sentence with its part of speech.
- Part-of-speech tagging can be cast as a supervised machine learning problem. This requires training data.

sentences whose words are tagged with their 'correct' part of speech

Ambiguity causes combinatorial explosion



'I only want to live in peace, plant potatoes, and dream!' – Moomin

SPARQL query against DBPedia

```
SELECT DISTINCT ?x WHERE {
    ?x dbo:almaMater dbr:Stanford_University.
    dbr:Coursera dbo:foundedBy ?x.
}
```


Source: MacArthur Foundation

Aspect-based sentiment analysis

{fajitas: negative, salads: positive}

Pontiki et al. (2014)

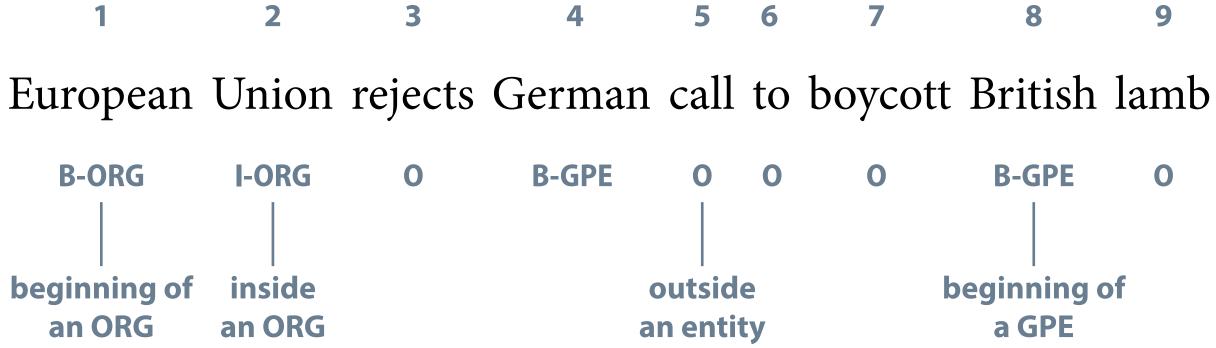
Named entity recognition as tagging

State-of-the algorithms treat named entity recognition as a word-by-word tagging task.

Just as part-of-speech tagging!

- The basic idea is to use tags that can encode both the boundaries and the types of named entity mentions.
- A common encoding is the **IOB scheme**, where there is a tag for the beginning (B) and inside of each entity type, as well as an additional tag for tokens outside (O) any entity.

Reducing NER to tagging



 $\{(1, 2): ORG, (4, 4): GPE, (8, 8): GPE\}$

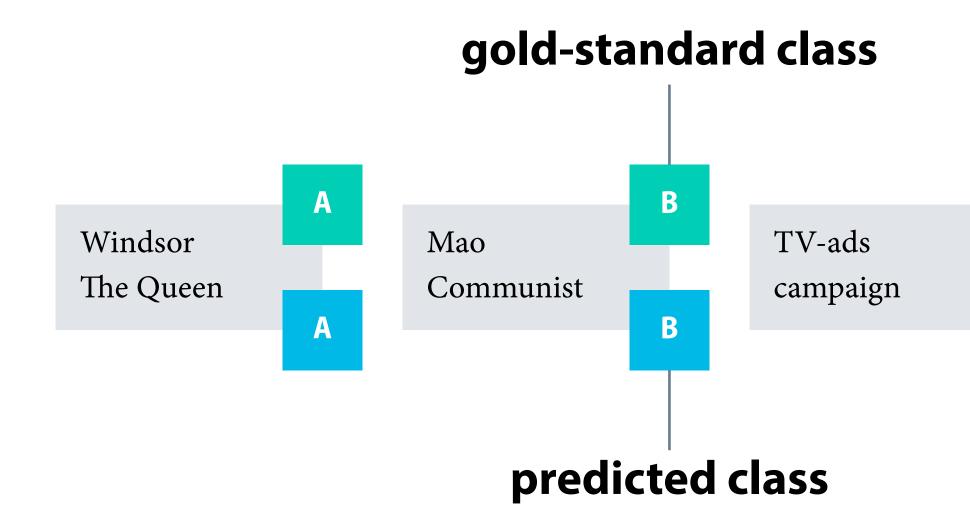
8 9 **B-GPE** 0 beginning of a GPE

This lecture

- Introduction to part-of-speech tagging
- Evaluation of part-of-speech taggers
- Part-of-speech tagging with hidden Markov models
- Part-of-speech tagging with multi-class perceptrons

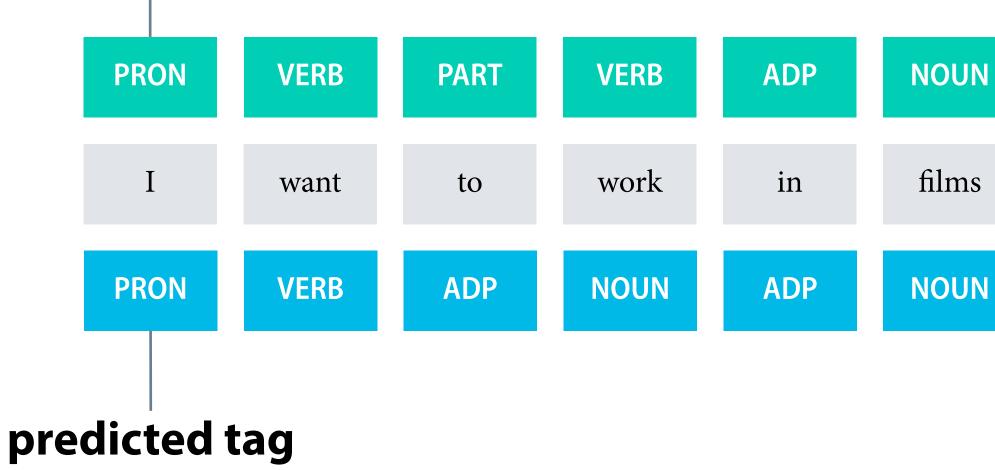
Evaluation of part-of-speech taggers

Reminder: Evaluation of text classifiers



Evaluation of part-of-speech taggers

gold-standard tag



Stockholm Umeå Corpus (SUC)

- suc is the largest manually annotated corpus for written Swedish, a collaboration of Stockholm and Umeå University. created in the early 1990s
- SUC contains more than 1.1 million tokens; these are annotated with parts of speech, morphological features, and lemmas.
- suc is a balanced corpus with texts from different genres.

Accuracy

	DET	ADJ	NOUN	ADP	VERB
DET	923	Ο	Ο	Ο	1
ADJ	2	1255	132	1	5
NOUN	Ο	7	4499	1	18
ADP	Ο	Ο	Ο	2332	1
VERB	Ο	5	132	2	3436

$\frac{12445}{12752} = 97.59\%$

predicted tag gold-standard tag

Precision with respect to NOUN

	DET	ADJ	NOUN	ADP	VERB
DET	923	Ο	Ο	Ο	1
ADJ	2	1255	132	1	5
NOUN	Ο	7	4499	1	18
ADP	Ο	Ο	Ο	2332	1
VERB	Ο	5	132	2	3436

$\frac{4499}{4763} = 94.46\%$

predicted tag

gold-standard tag

Recall with respect to NOUN

	DET	ADJ	NOUN	ADP	VERB
DET	923	Ο	Ο	Ο	1
ADJ	2	1255	132	1	5
NOUN	Ο	7	4499	1	18
ADP	Ο	Ο	Ο	2332	1
VERB	Ο	5	132	2	3436

4499 4525

$\frac{99}{25} = 99.43\%$

predicted tag gold-standard tag

Sample exam question

	NOUN	ADJ	VERB
NOUN	58	6	1
ADJ	5	11	2
VERB	Ο	7	43

Compute (a) precision on adjectives, (b) recall on verbs.

lard tag

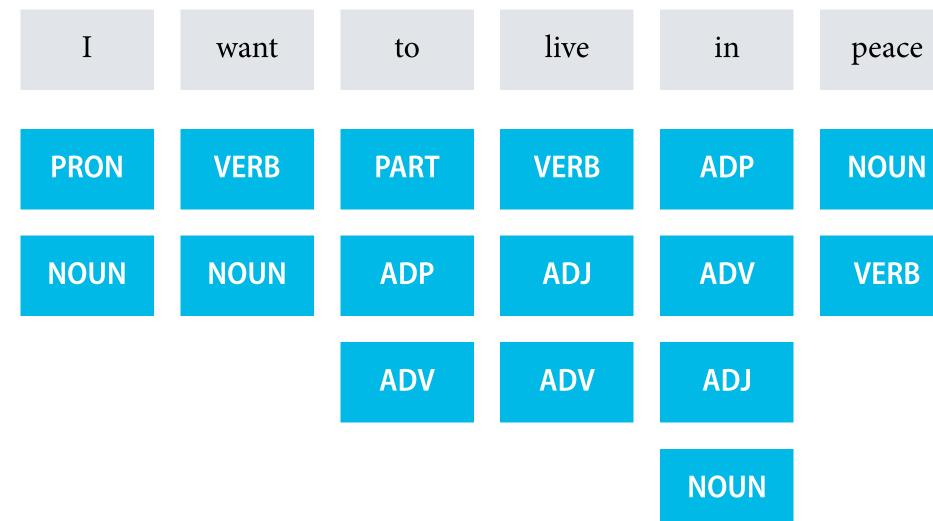
tag

This lecture

- Introduction to part-of-speech tagging
- Evaluation of part-of-speech taggers
- Part-of-speech tagging with hidden Markov models
- Part-of-speech tagging with multi-class perceptrons

Part-of-speech tagging with hidden Markov models

Ambiguity causes combinatorial explosion



'I only want to live in peace, plant potatoes, and dream!' – Moomin

Relative frequencies of tags per word

99.97% 100.00% 63.46% 83.87% 92.92% 100 NOUN NOUN ADP ADJ ADV VE	Ι	want	to	live	in	pea
NOUN NOUN ADP ADJ ADV VE 0.00% 0.00% 35.13% 14.52% 3.61% 0.0 ADV ADV ADV ADJ ADJ 0.0 0.12% 0.00% 0.03% NOUN NOUN	PRON	VERB	PART	VERB	ADP	NOL
0.00% 0.00% 35.13% 14.52% 3.61% 0.0 ADV ADV ADJ 0.12% 0.00% 0.03% NOUN NOUN 0.000 0.000 0.000 0.000	99.97%	100.00%	63.46%	83.87%	92.92%	100.0
ADV ADV ADJ 0.12% 0.00% 0.03% NOUN	NOUN	NOUN	ADP	ADJ	ADV	VER
0.12% 0.00% 0.03% NOUN	0.00%	0.00%	35.13%	14.52%	3.61%	0.00
NOUN			ADV	ADV	ADJ	
			0.12%	0.00%	0.03%	
0.27%					NOUN	
					0.27%	

ace

UN

00%

RB

0%

Data: UD English Treebank (training data)

Relative frequencies of next tags per tag

Tag / next tag	ADJ	ADP	ADV	NOUN	PART	PRON	VERB
ADJ	5,22 %	7,93 %	1,34 %	54,70 %	3,26 %	1,37 %	0,94 %
ADP	6,25 %	2,96 %	1,59 %	16,35 %	0,07 %	13,22 %	0,67 %
ADV	13,70 %	8,94 %	10,53 %	1,46 %	1,84 %	8,99 %	19,37 %
NOUN	1,14 %	20,91 %	3,70 %	12,70 %	2,82 %	4,13 %	5,87 %
PART	3,59 %	0,61 %	4,12 %	7,76 %	0,14 %	0,65 %	71,03 %
PRON	3,80 %	3,78 %	5,19 %	13,42 %	1,19 %	2,84 %	27,36 %
VERB	4,32 %	18,13 %	7,25 %	7,72 %	6,74 %	17,01 %	1,62 %

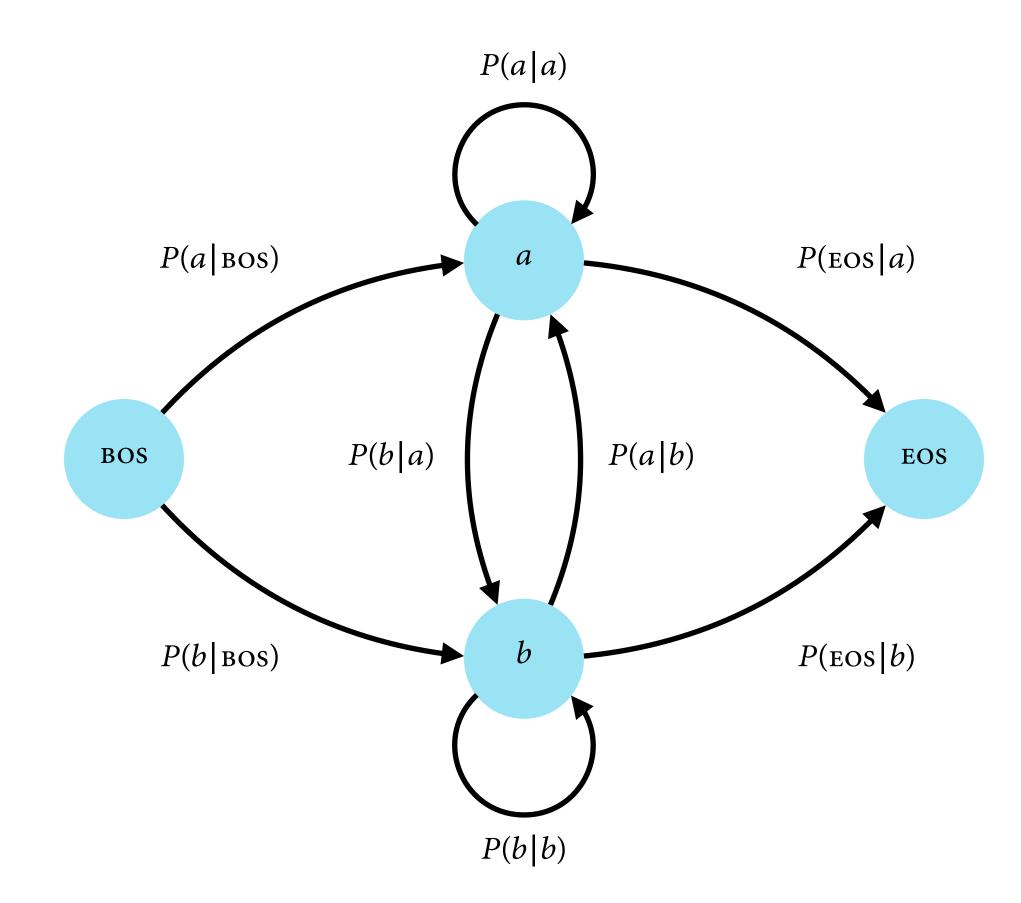
Data: UD English Treebank (training data)

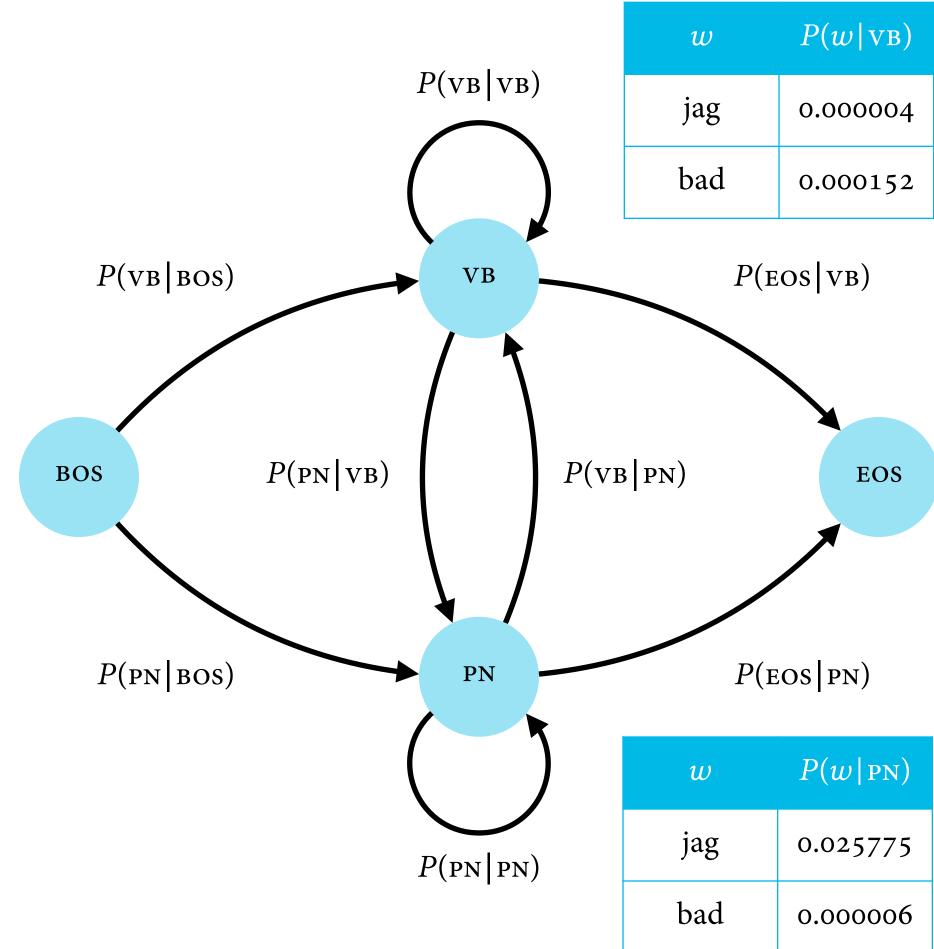
Hidden Markov Model

A hidden Markov model (нмм) is a generalised Markov model with two types of probabilities:

- transition probabilities P(next tag|tag)How probable is it to see a verb after having seen a pronoun?
- output probabilities P(word | tag)

How probable is it to see the word 'want' being tagged as a verb?





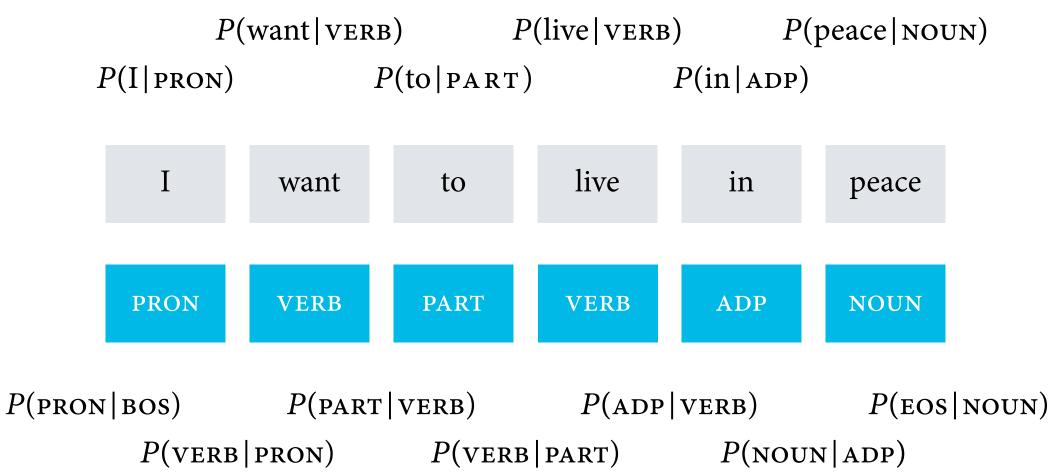
Learning hidden Markov models

To learn a hidden Markov model from a corpus, we can use maximum likelihood estimation just as before:

- To estimate the transition probability P(VERB|PRON), we ask: How often do we see VERB given that the previous tag was PRON?
- To estimate the output probability *P*(want|verв), we ask: How often do we see the word 'want' when the tag is VERB?

We can also use various smoothing techniques just as before.

Probability of a tagged sentence



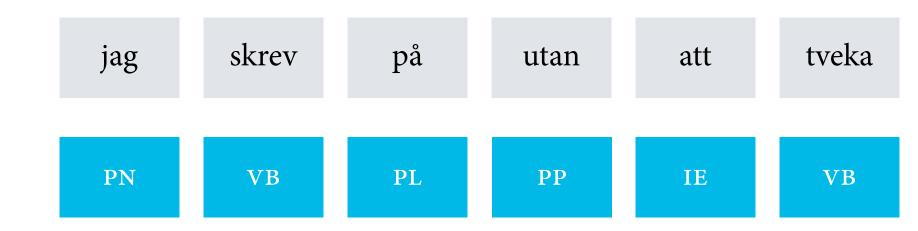
product of transition and output probabilities

Tagging with a hidden Markov model

- Given a sentence, we want to find a sequence of tags such that the probability of the tagged sentence is maximal. The tag sequence is not given in advance; it is 'hidden'!
- For each sentence there are many different tag sequences with many different probabilities. combinatorial explosion
- In spite of this, the most probable tag sequence can be found efficiently using the Viterbi algorithm.

Sample exam question

You want to compute the probability of this tagged sentence in an HMM:



You can ask the model for its atomic probabilities, but each such question costs 1 dollar. How much do you have to pay?

This lecture

- Introduction to part-of-speech tagging
- Evaluation of part-of-speech taggers
- Part-of-speech tagging with hidden Markov models
- Part-of-speech tagging with multi-class perceptrons

Part-of-speech tagging with multi-class perceptrons

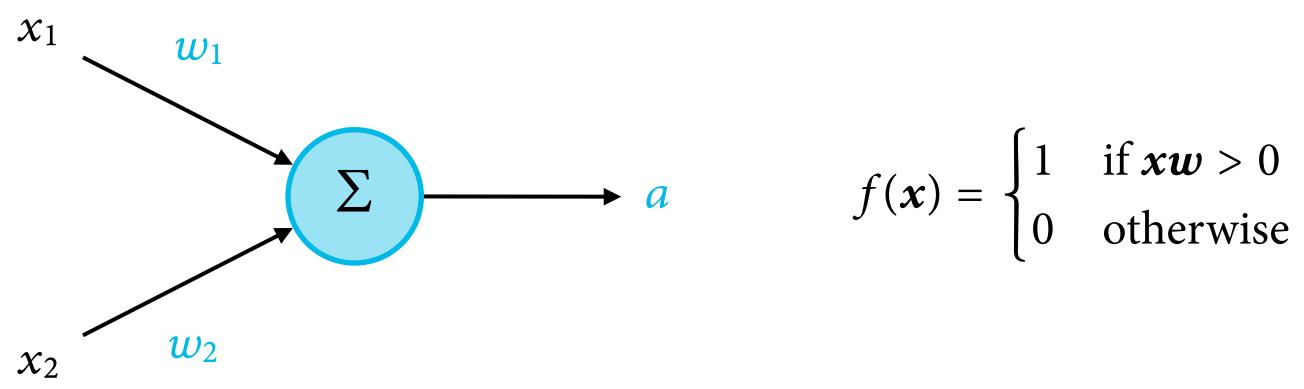
Part-of-speech tagging as classification

- Part-of-speech tagging can be cast as a sequence of classification problems – one classification per word in the sentence.
- Based on this idea, any method for classification can be used to build a part-of-speech tagger.

Naive Bayes

Here we use a very simple non-probabilistic method called the multi-class perceptron.

The classical perceptron



linear model + decision rule (threshold)

Inspiration from neurobiology

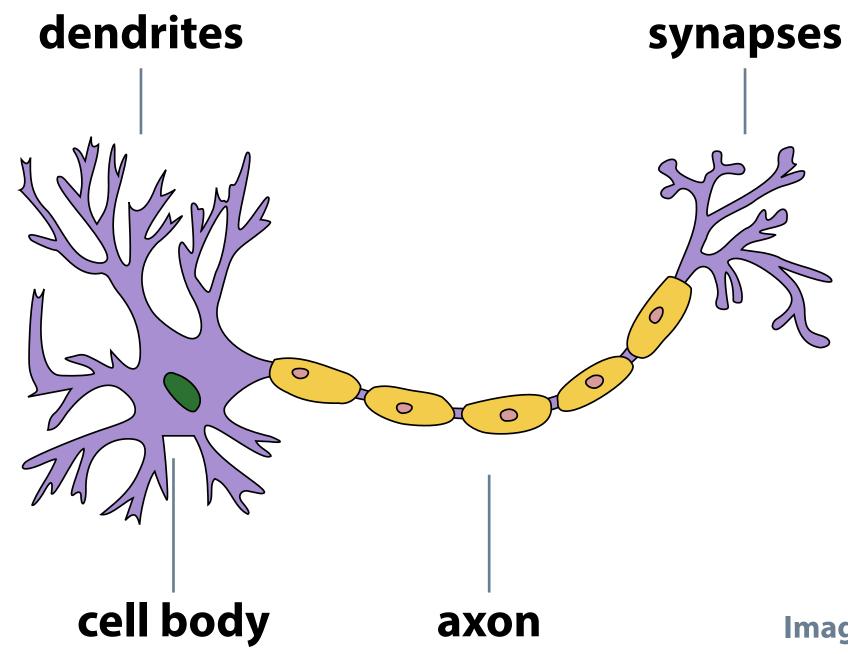
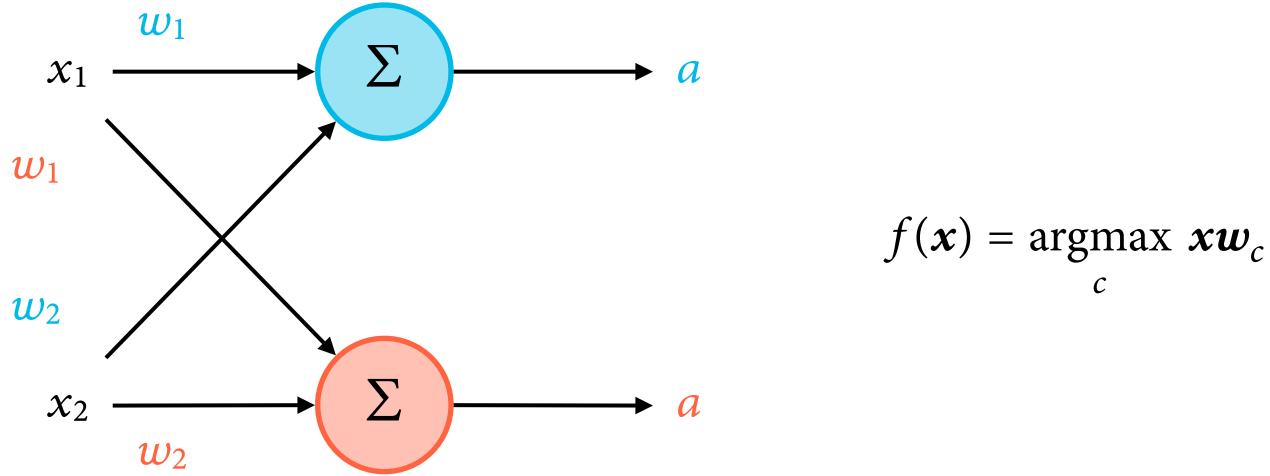


Image source: <u>Wikipedia</u>

The multi-class perceptron



linear model + decision rule (argmax)

С

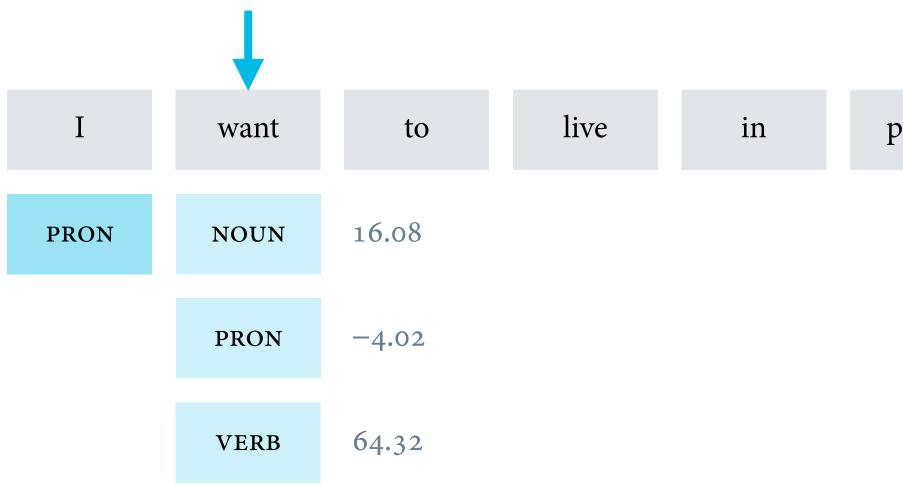
Feature vectors

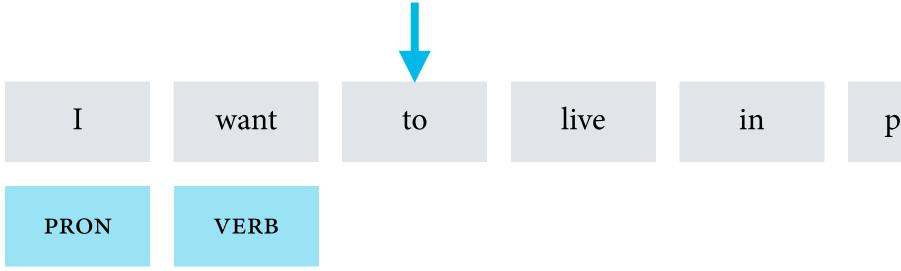
- In order to use the perceptron to classify data, we need to represent data samples as vectors. Slogan: We 'featurize' the data.
- Intuitively, the **feature vector** for a sample determines how the perceptron 'sees' this sample of the data.
- For most of the discussion here we will be assuming feature vectors whose values are non-negative floats.

Weight vectors

- Features whose weights are zero do not contribute to the activation; such features are ignored.
- Features whose weights are positive cause the activation to increase – they suggest that *x does belong* to the class at hand.
- Features whose weights are negative cause the activation to decrease – they suggest that *x does not belong* to the class.

This assumes that feature values are non-negative floats.





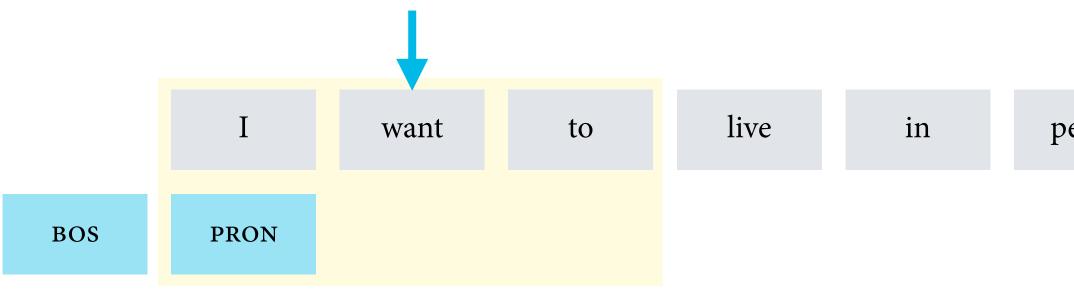
Feature windows

- Hidden Markov models look back one step; but sometimes it is a good idea to look back further, or to look ahead! I want to live in peace.
- At the same time, we do not want the classifier to 'see' too much information.

efficiency, data sparseness

A compromise is to define a limited **feature window**.

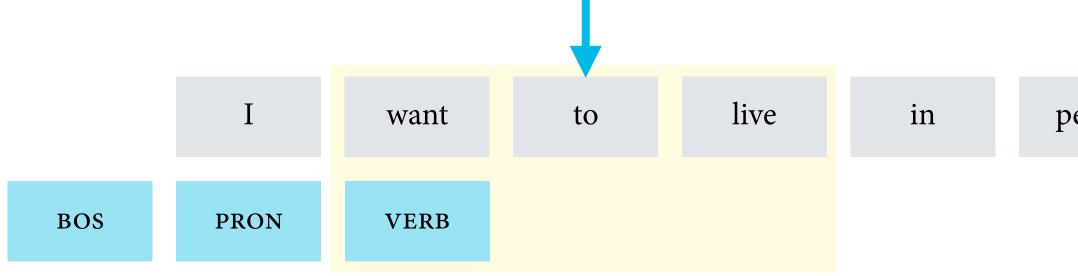
Feature window



With this feature window, we 'see' the current word, the previous word, the next word, and the previous tag.

EOS

Feature window



The feature window moves forward during tagging.

EOS

Examples of features in part-of-speech tagging

- (lowercase) word form of the current token
- word forms of the preceding tokens, next tokens
- capitalisation of the current token (upper, lower, N/A)
- type of the current token (digits, letters, symbols)

- various prefixes and suffixes of the current token
- whether the current token is hyphenated
- whether the token is first or last in the sentence
- various combinations of the features above

Comparison between the two methods

Part-of-speech tagging with hidden Markov models

- probabilistic
- exhaustive search for the best sequence (Viterbi algorithm)
- limited possibilities to define features (current word, previous tag)

Part-of-speech tagging with multi-class perceptrons

- non-probabilistic
- no search; locally optimal decisions
- more possibilities to define features (feature windows)

hm) revious tag)

Comparison between the two methods

Hidden markov model		Multi-class percept	
Viterbi search	greedy search	HMM features	fine
92.71 %	89.97 %	88.86 %	

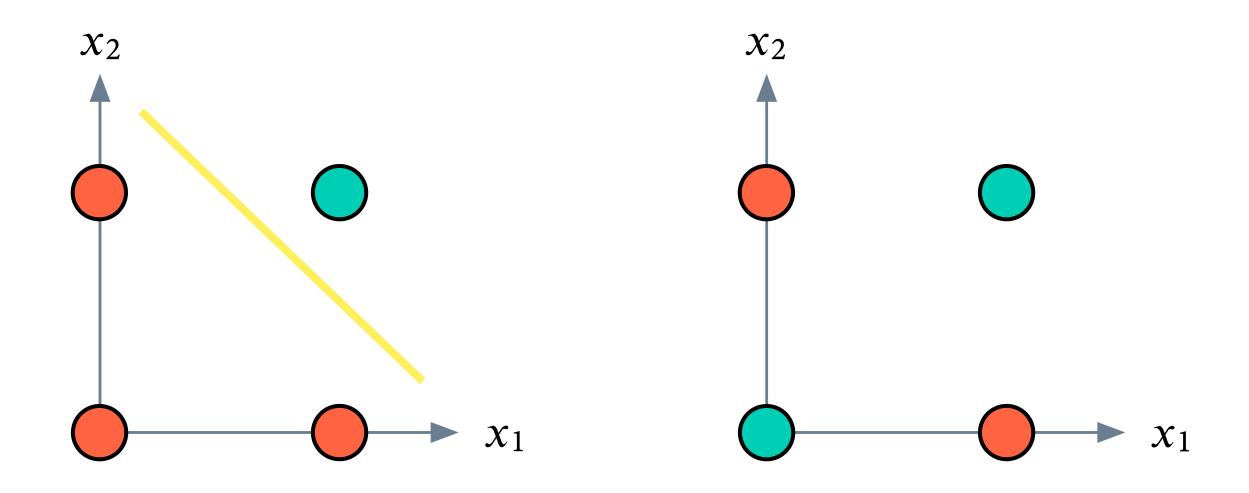
Tagging accuracy on the SUC test set

ptron

e-tuned features

95.30 %

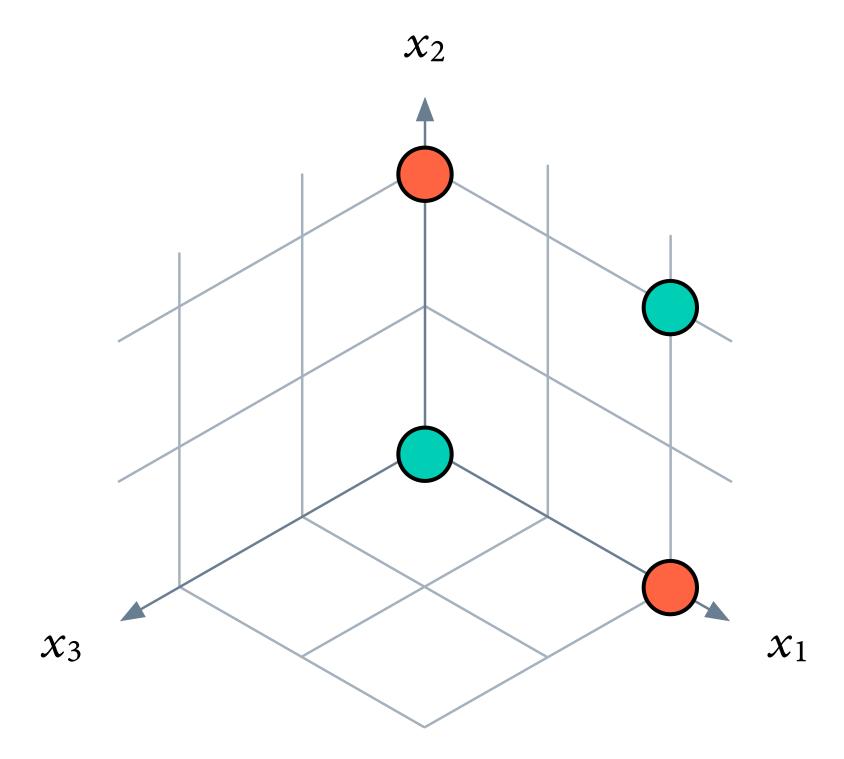
Limitations of the perceptron



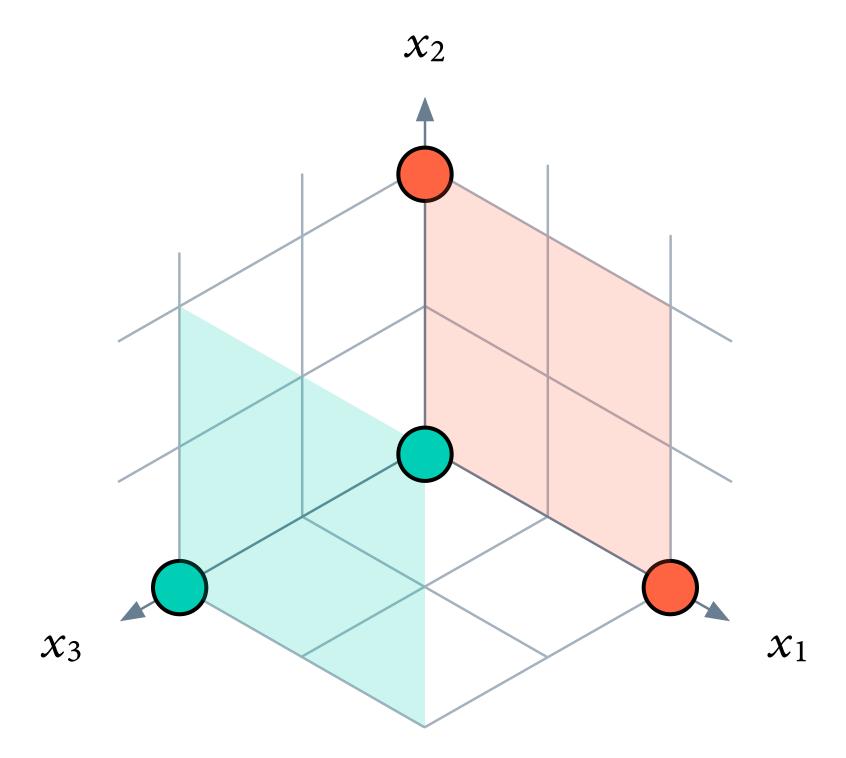
linearly separable

not linearly separable

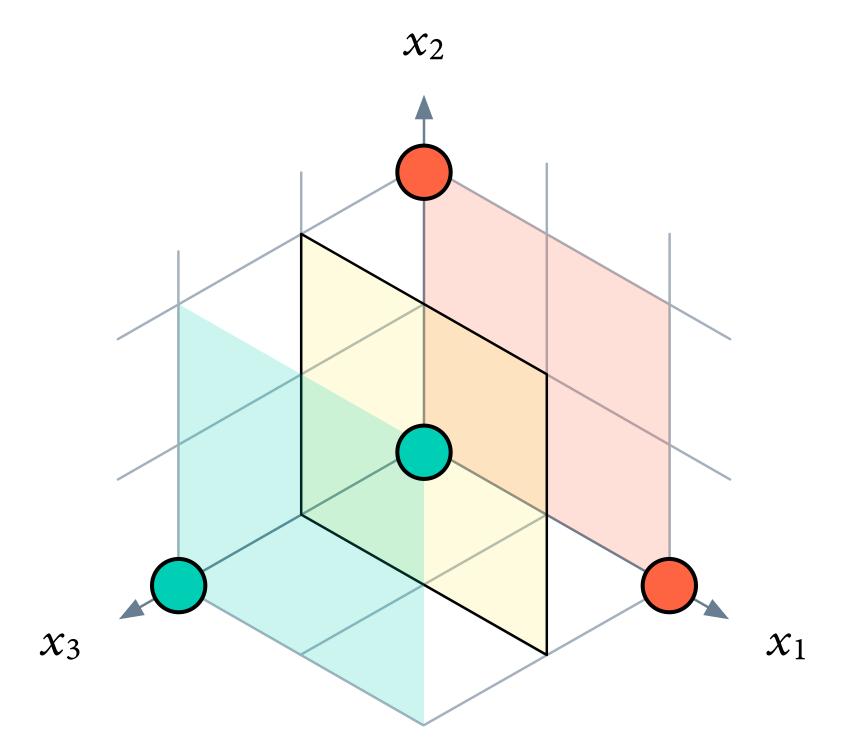
New features to the rescue!



New features to the rescue!



New features to the rescue!



How do we get new features?

Suppose that we could apply the linear model not to *x* directly but to a representation $\phi(x)$ of x. How could we get this representation?

- **Option 1.** Manually engineer ϕ using expert knowledge. feature engineering – linear classifiers
- **Option 2.** Make the model sensitive to parameters such that learning these parameters identifies a good representation ϕ . feature learning – neural networks

This lecture

- Introduction to part-of-speech tagging
- Evaluation of part-of-speech taggers
- Part-of-speech tagging with hidden Markov models
- Part-of-speech tagging with multi-class perceptrons