Course introduction

Marco Kuhlmann
Department of Computer and Information Science

This session

- What is language technology?
- Course organisation and examination
- Text segmentation

What is language technology?

What is language technology?

- Language technology is technology for the analysis and interpretation of natural language.
not programming languages!
- Language technology is an interdisciplinary research area involving computer science, linguistics, and cognitive science.
related names: natural language processing, computational linguistics

'We are drowning in information but starved for knowledge'.

John Naisbitt (1982)

Total number of pages indexed by Google

The Knowledge Gap

JEUPAROU!

This Stanford University alumna co-founded educational technology company Coursera.

SPARQL query against DBPedia

SELECT DISTINCT ?x WHERE \{
?x dbp:education dbr:Stanford_University. dbr:Coursera dbp:founder ?x.
\}

General-purpose linguistic representations

dbr:Coursera dbo:founder dbr:Daphne_Koller

What you will learn in this course

- basic methods and techniques for the analysis and interpretation of words, sentences, and texts
- language technology systems
- validation methods
- tools, software libraries, and data

Commercial interest

Diamond-level sponsors of the

ACL 2019
conference

Commercial interest

Doctrin • Ericsson • Etteplan

Findwise • Fodina Language Technology
Gavagai • IamIP • iMatrics
Opera Software • Redeye
Saab - Sectra • Spotify
Storytel • Svenska Dagbladet

A major challenge: Ambiguity

- The term ambiguity refers to fact that a linguistic expression can often mean several different things.

Time flies like an arrow. Fruit flies like a banana.

- Ambiguity arises at all levels of linguistic description.
lexical ambiguity, syntactic ambiguity, semantic ambiguity, ...
- Humans excel at resolving ambiguities, but for computers, ambiguity poses a major challenge.

Ambiguity causes combinatorial explosion

I	want	to	live	in	peace
PRON	VERB	PART	VERB	ADP	NOUN
NOUN	NOUN	ADP	ADJ	ADV	VERB
		ADV	ADV	ADJ	
			NOUN		

'I only want to live in peace, plant potatoes, and dream!' - Moomin

Ambiguity causes combinatorial explosion

I	want	to	live	in	peace
PRON	VERB	PART	VERB	ADP	NOUN
NOUN	NOUN	ADP	ADJ	ADV	VERB
		ADV	ADV	ADJ	
			NOUN		

'I only want to live in peace, plant potatoes, and dream!' - Moomin

Data to the rescue!

Recurring questions

- How does this method work?
often some kind of algorithm or mathematical formula
- How can we evaluate this method?
typically some evaluation measure, such as accuracy
- How does this method use data?
estimate probabilities, learn weights of a neural network, ...

This lecture

- What is language technology?
- Course organisation and examination
- Text segmentation

Course organisation and examination

Meet the team!

Ali Basirat

Marco Kuhlmann

Ehsan Doostmohammadi

Martin Funkquist

Jenny Kunz

Oskar Holmström

Marcel Bollmann

Riley Capshaw

		Monday 8-10		Tuesday 10-12		Wednesday 13-17		Friday 8-10
W03	Self-study		LEC	Course introduction	LAB	Text segmentation (2h)	UPG	Introduction to the project
W04	Self-study		LEC	Text classification	LAB	Text classification (2h)	LAB	Text classification
W05	Self-study		LEC	Language modelling	LAB	Language modelling (2h)	LAB	Language modelling
W06	Self-study		LEC	Part-of-speech tagging	LAB	Part-of-speech tagging (2h)	LAB	Part-of-speech tagging
W07	Self-study		LEC	Syntactic analysis	LAB	Syntactic analysis (2h)	LAB	Syntactic analysis
w08	Self-study		LEC	Semantic analysis	LAB	Semantic analysis (2h)	LAB	Semantic analysis
W09	UPG	Project supervision						
W10	UPG	Project supervision						
W11	Self-study		UPG	Project presentations	UPG	Project presentations	UPG	Project presentations
W12	EXA	Written digital exam (14-18)	Self-st		Self-s		Cours	deadline (2023-03-25)

Evaluation of the previous session

- The Spring 2022 session had 78 registered students. Out of these, 26 submitted a course evaluation. (Response rate: 33\%)
- Overall, students were quite positive about the course (average overall score 4.39 out of 5).

729G17: 4.39, TDPO30: 4.38

- The main point of criticism was that the examiner did not clearly communicate his expectations for the project.

Changes to the course

- More focus on the project, including a dedicated introduction (Friday) and examples in the teaching sessions
- Optional tests are back after the pandemic.

This lecture

- What is language technology?
- Course organisation and examination
- Text segmentation

Text segmentation

How text is stored on a computer

- Text is stored as a sequence of bytes. Each byte consists of 8 bits of information, yielding 256 different values.
- Bytes encode characters according to some encoding scheme.
- Unicode has been developed with the ambition to specify code points for all naturally occurring characters.
natural languages (even extinct), mathematical symbols, emoji, ...

Sample page from the Unicode specification

UTF-8 - 8-bit Unicode Transformation Format

- Unicode has slots for $2^{32}=4,294,967,296$ different characters.
- To encode Unicode characters into bytes, a single character is represented using more than one byte.
character $0-127=1$ byte, $128-2,047=2$ bytes, 2048-65,535 $=3$ bytes, \ldots
- This scheme is called Utf-8 (8-bit Unicode Transformation Format) and is the most widely used encoding scheme today. January 2019: 92.9\% of all websites (Source: w3techs.com)

VarrÃ̃r blir det sÃ¥ hÃar?

	S	a		[SPC]	h	$\ddot{\text { ä }}$		r
Unicode	115	229		32	104	228		114
UTF-8	115	195	182	32	104	195	165	114
Latin-1	115	195	182	32	104	195	165	114
	S	Ã	¥	[SPC]	h	\tilde{A}	0	r

Text segmentation

- Text segmentation refers to the task of segmenting a text into linguistically meaningful units, such as words and sentences.
- In the case where the relevant units are words or word-like units, the task is called tokenisation.
numbers, punctuation marks

A simple tokeniser based on whitespace

```
# tokenise a sequence of lines using whitespace
def tokenize(lines):
    for line in lines:
        for token in line.split():
                yield token
# open "foo.txt" and print all tokens in it
with open("foo.txt") as fp:
    for token in tokenize(fp):
        print(token)
```


Tokenisation is harder than one may think

- Undersegmentation: The tokeniser misses to split.
we're should be we + 're; bl.a. should be bl. + a. (?)
- Oversegmentation: The tokeniser splits where it shoud not. San + Francisco should be one token (?)
- Tokenisation is even harder for non-European languages.

Chinese word segmentation

A more useful tokenisation

The gorgeously elaborate continuation of "The Lord of the Rings" trilogy is so huge that a column of words cannot adequately describe co-writer/director Peter Jackson's expanded vision of J.R.R. Tolkien's Middle-earth.

List of tokens after tokenisation

The gorgeously elaborate continuation of " The Lord of the Rings " trilogy is so huge that a column of words cannot adequately describe co-writer / director Peter Jackson's expanded vision of J.R.R. Tolkien 's Middle-earth .

A simple tokeniser based on regular expressions

```
# tokenise a sequence of lines using a regular expression
def tokenize(regex, lines):
    for line in lines:
        for match in re.finditer(regex, line):
            yield match.group(0)
# open "foo.txt" and print all tokens in it
with open("foo.txt") as fp:
    for token in tokenize(fp):
        print(token)
```


Word tokens and word types

'Rose is a rose is a rose is a rose.'

Gertrude Stein (1874-1946)

Corpus	Tokens	Types
Shakespeare	ca. 884,000	ca. 31,000
Riksmöte 2012/2013	$4,645,560$	96,114
Google Ngrams	$1,176,470,663$	$13,588,391$

Normalisation

- Lowercasing
windows vs. Windows
- Harmonisation of spelling variants
colour, color; gaol, jail; metre, meter
- Stemming (suffix removal)
wanted \rightarrow want, wanting \rightarrow want, happily \rightarrow happily

Stop words

- A stop word is a word that is frequent but does not contribute much value for the application in question.

Examples from search engines: a, the, and

- Stop words are application-specific - there is no single universal list of stop words, and not all applications use such lists.

Stop words

a about above after again against all am an any are aren't as at be because been before being below between both but by can't cannot could couldn't did didn't do does doesn't doing don't down during each few for from further had hadn't has hasn't have haven't having he he'd he'll he's her here here's hers herself him himself his how how's i i'd i'll i'm i've if in into is isn't it it's its itself let's me more most mustn't my myself no nor not of off on once only or other ought our ours ourselves out over own same shan't she she'd she'll she's should shouldn't so some such than that that's the their theirs them themselves then there there's these they they'd they'll they're they've this those through to too under until up very was wasn't we we'd we'll we're we've were weren't what what's when when's where where's which while who who's whom why why's with won't would wouldn't you you'd you'll you're you've your yours yourself yourselves

Sentence segmentation

- For some applications, we want to identify not only words but also higher-level units such as sentences and paragraphs.
- Sentence segmentation refers to the task of dividing a text into individual sentences.
- Sentence segmentation is harder than splitting at periods.

We visited the U.S. After that, we visited Canada.

This lecture

- What is language technology?
- Course organisation and examination
- Text segmentation

