8/13/13

Designing a Secure REST (Web) API without OAuth

The Buzz Media

Video Games, Movies and Technology

Home Reviews Guides Software Advertise With Us Authors Contact

| R

verizon

terremark .

BT (meils

Situation

You want to develop a RESTful web API for developers that is secure to use, but
doesn’t require the complexity of OAuth and takes a simple “pass the credentials in
the query” approach... or something equally-as-easy for people to use, but it needs to
be secure.

You are a smart guy, so you start to think...

Problem

You realize that literally passing the credentials over HTTP leaves that data open to
being sniffed in plain-text; After the Gawker incident, you realize that plain-text or
weakly-hashed anything is usually a bad idea.

You realize that hashing the password and sending the hash over the wire in lieu of
the plain-text password still gives people sniffing at least the username for the
account and a hash of the password that could (in a disturbing number of cases) be
looked up in a Rainbow Table.

That’s not good, so you scratch your head some more...

Then you realize that a lot of popular public APIs seem to
use a combination of two values passed along with each
command request: one public value and one (hopefully)
private value that only the account owner is suppose to
know.

“Still not quite right!” you exclaim, because in this case (which is really a
username/password scenario all over again) you still suffer from the same problems
(sniffed traffic) that sending the username and password in plain text had.

At this point you are about to give up and concede to using OAuth, but you insist that
there has to be a secure but relatively easy way to design a public web API that can
keep credentials private.

Solution

After doing Peyote for 2 days straight (you should find

better ways to relax) it finally dawns on you: Amazon Web

Services has one of the largest and most used web APIs
online right now, and they don’t support OAuth at all!

www thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/

Subscribe by Email Subscribe to RSS
Subscribe by Email Subscribe to RSS

PROTECTING YOUR REPUTATION

Guard your most valued assets
with Terremark’s Managed
Security Services.

CONTACTUS

verizon

terremark

PROTECTING

REPUTATION Eil:i lﬁi ,,, 3

Guard your most

valued assats with 3
Terremark's Managed ¥
Security Services.

VISITUS NOW
u gl

POPULAR POSTS

Class Action Lawsuit against Sony for "Green ...
Patrick's 20 Favorite Action Movies

Designing a Secure REST (Web) API without OAu...
How to Install iPhone 2.2.1 Firmware on Jailb...
Gears of War PC Problems

Monkey Has His Way With a Frog

Samsung TV Capacitor "Clicking" Issue and Fre...
DDR2-800 vs DDR3-1333, Does Speed Matter?
PS3 + HDMI = Black Screen

How to Install iPhone 2.1 Firmware on Hacked ...
Halo 3 Screenshots Analyzed

Guitar Hero: World Tour Compatible with Rock ...
Netflix Throttling Instant Video Streaming Pe...

God, | Hate These Smarmy Atheists!

FourSquare Mayor Checkin Program w/ Source Co...
Gears of War Movie Treatment Summary

HP Printer Ink Class Action Lawsuit

How to Add Page-Link Tag (Multiple Page Post ...

1/50

http://ad.doubleclick.net/click;h=v8/3e3d/c/208/%2a/e;270144063;1-0;0;97721624;4307-300/250;53511049/53429188/1;u=xbAAXbk6p8_0DQGBQ3Uwx9Hw7D8Fv_jWvk97R7Cf1hqWQri3QyLXHVFTyY8xMh6ALbOgETTvDCPe6NFfpMOD0CyDceNuEYfAI0mQ;~sscs=%3fhttp://adclick.g.doubleclick.net/aclk?sa=l&ai=CV83_JeoJUuPhCqPCyAON5oH4C6DO6JsCyNzMnSG4ie6SaBABIABQgMfhxARg8a38haQfggEXY2EtcHViLTI1NjcxNTUzNjA0MDM2MzSgAayqu_IDyAEJqAMBqgS3AU_Q-6kvfreSZmnzQuURd4lYlTX7OJxKRypf990vwmVkj9TNcP0T1VMe3q6a8SwNoBn8Ol8EjpwQzFfvl_g-jkIVSQj5ch4n8xu_XmNr_uPqg-UYqo1R_nva5xPnYcm4d8TMlPdxPLhyUMXPSo2AKwqupY7WpyHiBNqGiL687cwJ_wGYDS8Gr89fvoUKc7XYSkQpQwQ0aX51nTgyBiF6rgyTW-GT9vGFrQHsODxB-Ogs1lIyw1iqhoAG_YaFwduZ_aTZAaAGIQ&num=1&sig=AOD64_3A62ndfFEzzr0ExmF1IUZm8emj8A&client=ca-pub-2567155360403634&adurl=http%3a%2f%2fwww.terremark.co.uk/services/security-services.aspx
http://www.thebuzzmedia.com/
http://www.thebuzzmedia.com/reviews/
http://www.thebuzzmedia.com/guides/
http://www.thebuzzmedia.com/software/
http://www.thebuzzmedia.com/advertise-with-us/
http://www.thebuzzmedia.com/authors/
http://www.thebuzzmedia.com/contact/

8/13/13

After a long afternoon of fever-dreams, you finally come
down enough to see how Amazon keeps it’s API requests
secure.

You aren’t sure why, but after reading the entire page on
how to assemble a request for an AWS service, it still

doesn’t make total sense to you. What’s with this
“signature” thing? What is the data argument in the code
examples?

So you keep searching for articles on “secure API design®...

You come across other people, asking the exact same question and see them getting
excellent replies that point at this “HMAC” thing... or something, you aren’t sure yet.

You find other articles that encourage you to use “HMAC” and you are H-FINE using
it, if someone would H-EXPLAIN it in plain H-ENGLISH!

You do run across a distillation of the basic concept that makes sense (yay!) and it
goes something like this in plain English:

A server and a client know a public and private key; only the server and
client know the private key, but everyone can know the public key... who
cares what they know.

A client creates a unique HMAC (hash) representing it’s request to the
server. It does this by combining the request data (arguments and values
or XML/JSON or whatever it was planning on sending) and hashing the
blob of request data along with the private key.

The client then sends that HASH to the server, along with all the
arguments and values it was going to send anyway.

The server gets the request and re-generates it’s own unique HMAC
(hash) based on the submitted values using the same methods the client
used.

The server then compares the two HMACs, if they are equal, then the
server trusts the client, and runs the request.

That seems pretty straight forward. What was confusing you originally is that you
thought the original request was being encrypted and sent, but really all the HMAC
method does is create some unique checksum (hash) out of the arguments using a
private key that only the client and server know.

Then it sends the checksum along with the original parameters and values to the
server, and then the server double-checks the checksum (hash) to make sure it
agrees with what the client sent.

Since, hypothetically, only the client and server know the private key, we assume that
if their hashes match, then they can both trust each, so the server then processes the
request normally.

You realize that in real-life, this is basically like someone coming up to you and
saying: “Jimmy told me to tell you to give the money to Johnny Two-toes", but you
have no idea who this guy is, so you hold out your hand and test him to see if he
knows the secret handshake.

If he does, then he must be part of your gang and you do what he says... if he doesn’t

www thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/

Designing a Secure REST (Web) API without OAuth

amazoncom

Mining the 21 Recipes for

Social Web Mining Twitter
Matthew A. Matthew A.
§ Russell... Russell...

New $26.48 New $26.99

Best $20.00 ' Best $18.44
| * Developer's Twitter API

Guide to Social Kevin Makice
L Programming New $23.48
s .. Mark D. Hawker

gl Best $0.01
New $25.98 .
Best $15.00

Privacy Information

RECENT COMMENTS

e Wilma on OtterBox iPhone 4 Defender Series Case
Review

e Gentlemen Radio: 61 | NERD TO THE CORE on
The Gentlemen Radio Episode 61: We Didn’t Go To
SDCC

e Brian Ford on WARNING: EdgeStar,
CompactAppliance.com and Living Direct are a
Terrible Shopping Experience

e Highland Rock on WARNING: EdgeStar,
CompactAppliance.com and Living Direct are a
Terrible Shopping Experience

e Steve C on Netflix Throttling Instant Video
Streaming Performance for Viewers

e Karl on Netflix Throttling Instant Video Streaming
Performance for Viewers

e squarism on The Triad Rises Brother.

e Annie on WARNING: EdgeStar,
CompactAppliance.com and Living Directare a
Terrible Shopping Experience

e Luciano on WARNING: EdgeStar,
CompactAppliance.com and Living Directare a
Terrible Shopping Experience

e Nick in Castle Pines, CO on Samsung TV Capacitor
“Clicking” Issue and Free Repair

CATEGORIES

e Entertainment (148)
e Humor & Fun (562)
e Life & World (392)
e Movies (241)

e Podcast (62)

e Programming (105)
e Shopping (67)

e Technology (1161)
e Uncategorized (15)
e Video Games (870)

STUFF WE LIKE

e Agoraquest
e AJAX Tools
e AtHome with Cats

2/50

http://www.amazon.com/?&tag=thbume-20&camp=211493&creative=379981&linkCode=op1&adid=1ZWNPVFTM5P21J2D1YD0&&ref-refURL=http%3A%2F%2Fwww.thebuzzmedia.com%2Fdesigning-a-secure-rest-api-without-oauth-authentication%2F
http://www.amazon.com/dp/1449388345?tag=thbume-20&camp=211493&creative=379981&linkCode=op1&creativeASIN=1449388345&adid=1ZWNPVFTM5P21J2D1YD0&&ref-refURL=http%3A%2F%2Fwww.thebuzzmedia.com%2Fdesigning-a-secure-rest-api-without-oauth-authentication%2F
http://www.amazon.com/dp/1449303161?tag=thbume-20&camp=211493&creative=379981&linkCode=op1&creativeASIN=1449303161&adid=1ZWNPVFTM5P21J2D1YD0&&ref-refURL=http%3A%2F%2Fwww.thebuzzmedia.com%2Fdesigning-a-secure-rest-api-without-oauth-authentication%2F
http://www.amazon.com/dp/0321680774?tag=thbume-20&camp=211493&creative=379981&linkCode=op1&creativeASIN=0321680774&adid=1ZWNPVFTM5P21J2D1YD0&&ref-refURL=http%3A%2F%2Fwww.thebuzzmedia.com%2Fdesigning-a-secure-rest-api-without-oauth-authentication%2F
http://www.amazon.com/dp/0596154615?tag=thbume-20&camp=211493&creative=379981&linkCode=op1&creativeASIN=0596154615&adid=1ZWNPVFTM5P21J2D1YD0&&ref-refURL=http%3A%2F%2Fwww.thebuzzmedia.com%2Fdesigning-a-secure-rest-api-without-oauth-authentication%2F
http://www.amazon.com/gp/dra/info
http://www.thebuzzmedia.com/otterbox-iphone-4-defender-series-case-review/comment-page-1/#comment-616218
http://nerdmobile.wordpress.com/2013/08/07/gentlemen-radio-61/
http://www.thebuzzmedia.com/the-gentlemen-radio-episode-61-we-didnt-go-to-sdcc/comment-page-1/#comment-616054
http://www.thebuzzmedia.com/warning-edgestar-compactappliance-com-and-living-direct-are-a-terrible-shopping-experience/comment-page-1/#comment-616032
http://www.thebuzzmedia.com/warning-edgestar-compactappliance-com-and-living-direct-are-a-terrible-shopping-experience/comment-page-1/#comment-616028
http://www.thebuzzmedia.com/netflix-throttling-instant-video-streaming-performance-for-pc-viewers/comment-page-2/#comment-616020
http://www.thebuzzmedia.com/netflix-throttling-instant-video-streaming-performance-for-pc-viewers/comment-page-2/#comment-616000
http://www.thebuzzmedia.com/the-triad-rises-brother/comment-page-1/#comment-615882
http://www.thebuzzmedia.com/warning-edgestar-compactappliance-com-and-living-direct-are-a-terrible-shopping-experience/comment-page-1/#comment-615759
http://www.thebuzzmedia.com/warning-edgestar-compactappliance-com-and-living-direct-are-a-terrible-shopping-experience/comment-page-1/#comment-615752
http://www.thebuzzmedia.com/samsung-tv-capacitor-clicking-issue-and-free-repair/comment-page-3/#comment-615714
http://www.thebuzzmedia.com/category/entertainment/
http://www.thebuzzmedia.com/category/humor-fun/
http://www.thebuzzmedia.com/category/life-world/
http://www.thebuzzmedia.com/category/movies/
http://www.thebuzzmedia.com/category/podcast-2/
http://www.thebuzzmedia.com/category/programming/
http://www.thebuzzmedia.com/category/shopping/
http://www.thebuzzmedia.com/category/technology/
http://www.thebuzzmedia.com/category/uncategorized/
http://www.thebuzzmedia.com/category/gaming/
http://www.agoraquest.com/
http://tools.thebuzzmedia.com/
http://www.youtube.com/view_play_list?p=30C72C30ECCA187F
http://docs.amazonwebservices.com/AlexaWebInfoService/1-0/RequestAuthentication.html
http://www.google.com/search?q=secure+api+design
http://www.sitepoint.com/forums/php-application-design-147/rest-api-authentication-677877.html
http://www.sitepoint.com/forums/php-application-design-147/rest-api-authentication-677877.html#post4596098
http://en.wikipedia.org/wiki/HMAC
http://rdist.root.org/2009/10/29/stop-using-unsafe-keyed-hashes-use-hmac/
http://www.faqs.org/rfcs/rfc2104.html
http://www.sitepoint.com/forums/php-application-design-147/rest-api-authentication-677877.html#post4596148

8/13/13 Designing a Secure REST (Web) API without OAuth

know the secret handshake, you decide to shoot him in the face (you have anger

Binary JSON Spec

issues). HN Notify
imgscalr.com
Katie Mullaly
TestSeek
amazon C0m® Today | Found Out
- Was it Up?
and you're done:’
ARCHIVES
You sort of get it, but then you wonder: “What is the best way to combine all the August 2013
parameters and values together when creating the giant blob?” and luckily the guy July 2013
behind tarsnap has your back and explains to you how Amazon screwed this up with June 2013
Signature Version 1. May 2013
April 2013
Now you re-read how Amazon Web Services does authentication and it makes sense, March 2013
it goes something like: February 2013
January 2013
1. [CLIENT] Before making the REST API call, combine a bunch of unique data December 2012
together (this is typically all the parameters and values you intend on sending, November 2012
it is the “data” argument in the code snippets on AWS’s site) October 2012
2. [CLIENT] Hash (HMAC-SHA1 or SHA256 preferably) the blob of data data :Zf:zs:jmz
(from Step #1) with your private key assigned to you by the system. July 2012
3. [CLIENT] Send the server the following data: June 2012
a. Some user-identifiable information like an “API Key”, client ID, user ID or May 2012
something else it can use to identify who you are. This is the public API April 2012
key, never the private API key. This is a public value that anyone (even evil March 2012
masterminds can know and you don’t mind). It is just a way for the system to February 2012
know WHO is sending the request, not if it should trust the sender or not (it January 2012
will figure that out based on the HMAC). December 2011
b. Send the HMAC (hash) you generated. November 2011
c. Send all the data (parameters and values) you were planning on sending ::z::bi(:121011
anyway. Probably unencrypted if they are harmless values, like AugUS 2011
“mode=start&number=4&order=desc” or other operating nonsense. If the July 2011
values are private, you'll need to encrypt them. June 2011
4. (OPTIONAL) The only way to protect against “replay attacks” on your API May 2011
is to include a timestamp of time kind along with the request so the server can April 2011
decide if this is an “old” request, and deny it. The timestamp must be included March 2011
into the HMAC generation (effectively stamping a created-on time on the hash) February 2011
in addition to being checked “within acceptable bounds” on the server. January 2011
5. [SERVER] Receive all the data from the client. December 2010
6. [SERVER] (see OPTIONAL) Compare the current server’s timestamp to the November 2010
timestamp the client sent. Make sure the difference between the two timestamps October 2010
it within an acceptable time limit (5-15mins maybe) to hinder replay attacks. ii::e;zs:smo
A, DO Desreto-eormp e e-He-seareareronesadbte ce ot foriss July 2010
thatpopupwith-daylight savings-time-change-overs: June 2010
b. UPDATE: As correctly pointed out by a few folks, just use UTC time and May 2010
forget about the DST issues. April 2010
7. [SERVER] Using the user-identifying data sent along with the request (e.g. API March 2010
Key) look the user up in the DB and load their private key. February 2010
8. [SERVER] Re-combine the same data together that the client did in the same January 2010
way the client did it. Then hash (generate HMAC) that data blob using the December 2009
private key you looked up from the DB. November 2009
a. (see OPTIONAL) If you are protecting against replay attacks, include the ::Z::;Oroiog
timestamp from the client in the HMAC re-calculation on the server. Since August 2000
you already determined this timestamp was within acceptable bounds to be July 2009
accepted, you have to re-apply it to the hash calculation to make sure it was June 2009

www thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/

3/50

http://ubjson.org/
http://hnnotify.com/
http://imgscalr.com/
http://katiemullaly.com/
http://testseek.com/
http://www.todayifoundout.com/
http://wasitup.com/
http://www.thebuzzmedia.com/2013/08/
http://www.thebuzzmedia.com/2013/07/
http://www.thebuzzmedia.com/2013/06/
http://www.thebuzzmedia.com/2013/05/
http://www.thebuzzmedia.com/2013/04/
http://www.thebuzzmedia.com/2013/03/
http://www.thebuzzmedia.com/2013/02/
http://www.thebuzzmedia.com/2013/01/
http://www.thebuzzmedia.com/2012/12/
http://www.thebuzzmedia.com/2012/11/
http://www.thebuzzmedia.com/2012/10/
http://www.thebuzzmedia.com/2012/09/
http://www.thebuzzmedia.com/2012/08/
http://www.thebuzzmedia.com/2012/07/
http://www.thebuzzmedia.com/2012/06/
http://www.thebuzzmedia.com/2012/05/
http://www.thebuzzmedia.com/2012/04/
http://www.thebuzzmedia.com/2012/03/
http://www.thebuzzmedia.com/2012/02/
http://www.thebuzzmedia.com/2012/01/
http://www.thebuzzmedia.com/2011/12/
http://www.thebuzzmedia.com/2011/11/
http://www.thebuzzmedia.com/2011/10/
http://www.thebuzzmedia.com/2011/09/
http://www.thebuzzmedia.com/2011/08/
http://www.thebuzzmedia.com/2011/07/
http://www.thebuzzmedia.com/2011/06/
http://www.thebuzzmedia.com/2011/05/
http://www.thebuzzmedia.com/2011/04/
http://www.thebuzzmedia.com/2011/03/
http://www.thebuzzmedia.com/2011/02/
http://www.thebuzzmedia.com/2011/01/
http://www.thebuzzmedia.com/2010/12/
http://www.thebuzzmedia.com/2010/11/
http://www.thebuzzmedia.com/2010/10/
http://www.thebuzzmedia.com/2010/09/
http://www.thebuzzmedia.com/2010/08/
http://www.thebuzzmedia.com/2010/07/
http://www.thebuzzmedia.com/2010/06/
http://www.thebuzzmedia.com/2010/05/
http://www.thebuzzmedia.com/2010/04/
http://www.thebuzzmedia.com/2010/03/
http://www.thebuzzmedia.com/2010/02/
http://www.thebuzzmedia.com/2010/01/
http://www.thebuzzmedia.com/2009/12/
http://www.thebuzzmedia.com/2009/11/
http://www.thebuzzmedia.com/2009/10/
http://www.thebuzzmedia.com/2009/09/
http://www.thebuzzmedia.com/2009/08/
http://www.thebuzzmedia.com/2009/07/
http://www.thebuzzmedia.com/2009/06/
http://www.tarsnap.com/
http://www.daemonology.net/blog/2008-12.html
http://www.thebuzzmedia.com/wp-content/uploads/2010/12/amazon-logo-large.jpg
http://aws.amazon.com/articles/1928
http://aws.amazon.com/articles/1928
http://stackoverflow.com/questions/1609899/java-equivalent-to-phps-hmac-sha1
http://en.wikipedia.org/wiki/Replay_attack
http://en.wikipedia.org/wiki/Replay_attack
http://en.wikipedia.org/wiki/Daylight_saving_time
http://www.thebuzzmedia.com/understanding-the-unix-epoch-in-java-time-zones-and-utc/

8/13/13 Designing a Secure REST (Web) API without OAuth

the same timestamp sent from the client originally, and not a made-up
timestamp from a man-in-the-middle attack.
9. [SERVER] Run that mess of data through the HMAC hash, exactly like you did
on the client.
10. [SERVER] Compare the hash you just got on the server, with the hash the client
sent you; if they match, then the client is considered legit, so process the
command. Otherwise reject the command!

REMINDER: Be consistent and careful with how you combine all parameters and
values together. Don’t do what Amazon did with Auth Signature version 1 and open
yourselfup to hash-collisions! (Suggestion: just hash the whole URL-encoded query
string!)

SUPER-REMINDER: Your private key should never be transferred over the wire,
it is just used to generate the HMAC, the server looks the private key back up itself
and recalculates it’s own HMAC. The public key is the only key that goes across the
wire to identify the user making the call; it is OK if a nefarious evil-doer gets that
value, because it doesn’t imply his messages will be trusted. They still have to be
hashed with the private key and hashed in the same manner both the client and
server are using (e.g. prefix, postfix, multiple times, etc.)

Update 10/13/11: Chris correctly pointed out that if you don’t include the
URI or HTTP method in your HMAC calculation, it leaves you open to more
hard-to-track man-in-the-middle attacks where an attacker could modify the
endpoint you are operating on as well as the HTTP method... for example
change an HTTP POST to /issue/create to /user/delete. Great catch Chris!

Denoument

It’s been a long few days, but you finally figured out a secure API design and you are
proud of yourself. You are super-extra proud of yourself because the security method
outlined above actually protects against another commonly popular way of hacking
APT access: side-jacking.

Session sidejacking is where a man-in-the-middle sniffs network traffic and doesn’t
steal your credentials, but rather steals the temporary Session ID the API has given
you to authenticate your actions with the API for a temporary period of time (e.g.
1hr). With the method above, because the individual methods themselves are
checksumed, there is no Session ID to steal and re-use by a nefarious middle man.

You rock.

You also slowly realize and accept that at some point you will have to implement
OAuth, but it will probably be OAuth 2.0 support and that isn’t quite ready yet.

I am relatively new to the RESTful API game, focusing primarily on client-side
libraries. If I missed something please point it out and I'll fix it right up. If you have
questions, suggestions or ideas that you think should go into the story above, please
leave a comment below.

Alternatively you can email me and we can talk about friendship, life and canoeing.

Gotchas (Problems to Watch For)

<This section was removed, because by using UTC time you avoid the daylight-
savings-time issue all together and my solution proposed here was stupid anyway.>

Additional Thoughts for APIs

www thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/

May 2009

April 2009
March 2009
February 2009
January 2009
December 2008
November 2008
October 2008
September 2008
August 2008
July 2008

June 2008

May 2008

April 2008
March 2008
February 2008
January 2008
December 2007
November 2007
October 2007
September 2007
August 2007
July 2007

June 2007

May 2007

April 2007
March 2007
February 2007
January 2007
December 2006
November 2006
October 2006
September 2006
August 2006
July 2006

June 2006

4/50

http://www.thebuzzmedia.com/2009/05/
http://www.thebuzzmedia.com/2009/04/
http://www.thebuzzmedia.com/2009/03/
http://www.thebuzzmedia.com/2009/02/
http://www.thebuzzmedia.com/2009/01/
http://www.thebuzzmedia.com/2008/12/
http://www.thebuzzmedia.com/2008/11/
http://www.thebuzzmedia.com/2008/10/
http://www.thebuzzmedia.com/2008/09/
http://www.thebuzzmedia.com/2008/08/
http://www.thebuzzmedia.com/2008/07/
http://www.thebuzzmedia.com/2008/06/
http://www.thebuzzmedia.com/2008/05/
http://www.thebuzzmedia.com/2008/04/
http://www.thebuzzmedia.com/2008/03/
http://www.thebuzzmedia.com/2008/02/
http://www.thebuzzmedia.com/2008/01/
http://www.thebuzzmedia.com/2007/12/
http://www.thebuzzmedia.com/2007/11/
http://www.thebuzzmedia.com/2007/10/
http://www.thebuzzmedia.com/2007/09/
http://www.thebuzzmedia.com/2007/08/
http://www.thebuzzmedia.com/2007/07/
http://www.thebuzzmedia.com/2007/06/
http://www.thebuzzmedia.com/2007/05/
http://www.thebuzzmedia.com/2007/04/
http://www.thebuzzmedia.com/2007/03/
http://www.thebuzzmedia.com/2007/02/
http://www.thebuzzmedia.com/2007/01/
http://www.thebuzzmedia.com/2006/12/
http://www.thebuzzmedia.com/2006/11/
http://www.thebuzzmedia.com/2006/10/
http://www.thebuzzmedia.com/2006/09/
http://www.thebuzzmedia.com/2006/08/
http://www.thebuzzmedia.com/2006/07/
http://www.thebuzzmedia.com/2006/06/
http://getclicky.com/53682
http://en.wikipedia.org/wiki/Man-in-the-middle_attack
http://www.daemonology.net/blog/2008-12.html
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-572339
http://en.wikipedia.org/wiki/Session_hijacking#Methods
http://blog.apigee.com/detail/why_you_need_oauth_for_your_api_or_app/
http://blog.apigee.com/detail/api_authentication_and_how_it_got_that_way_from_http_basic_to_oauth_2.0/
http://blog.apigee.com/detail/best_practices_for_oauth_2.0_vs._oauth_1.0_-_one_year_later/
https://github.com/thebuzzmedia
http://www.thebuzzmedia.com/understanding-the-unix-epoch-in-java-time-zones-and-utc/

8/13/13 Designing a Secure REST (Web) API without OAuth

What about the scenario where you are writing a public-facing API like Twitter,
where you might have a mobile app deployed on thousands of phones and you have
your public and private keys embedded in the app?

On a rooted device, those users could likely decompile your app and pull your private
key out, doesn’t that leave the private key open to being compromised?

Yes, yes it does.
So what’s the solution?

Taking a hint from Twitter, it looks like to some degree you cannot avoid this. Your
app needs to have it’s private key (they call it a secret key) and that means you are
open to getting your private key compromised.

What you can do though is to issue private keys on a per-application-basis,
instead of on a per-user-account basis. That way if the private key is compromised,
that version of the application can be banned from your API until new private keys
are generated, put into an updated version of the app and re-released.

What if the new set of keys get compromised again?

Well yes, that is very possible. You would have to combat this in some way on your
own, like encrypting the keys with another private key... or praying to god people
will stop hacking your software.

Regardless, you would have to come up with some 2nd layer of security to protect
that new private key, but at least there is a way to get the apps deployed in the wild
working again (new version) instead of the root account being locked and NONE of
the apps being able to access the service again.

Update #1: There are some fantastic feedback and ideas on securing a web-API
down in the comments, I would highly recommend reading them.

Some highlights are:

e Use “nonce” (1-time-use-server-generated) tokens to stop replay attacks AND
implement idempotentcy in your APIL.

e The algorithm above is “95% similar to ‘two-legged’ OAuth 1.0%, so maybe look
at that.

e Remove all the security complexity by sending all traffic to go over SSL
(HTTPS)!

Update #2: I have since looked at “2-legged OAuth” and it is, as a few readers
pointed out, almost exactly the process described above. The advantage being that if
you write your API to this spec, there are plenty of OAuth client libraries available
for implementors to use.

The only OAuth-specific things of note being:

e OAuth spec is super-specific with how you need to encode your pararms, order
them and then combine them all together when forming the HMAC (called the
“method signature” in OAuth)

e OAuth, when using HMAC-SHA1 encoding, requires that you send along a nonce.
The server or “provider” must keep the nonce value along with the timestamp
associated with the request that used that nonce on-record to verify that no
other requests come in with the SAME nonce and timestamp (indicating a
“replay” attempt). Naturally you can expire these values from your data store
eventually, but it would probably be a good idea to keep them on-file for a while.

o The nonce doesn’t need to be a secret. It is just a way to associate some

www thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/

5/50

http://stackoverflow.com/questions/3368895/oauth-design-for-api-without-users-permission
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-268243
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-269247
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-268609
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-269244
http://oauth.net/code/
http://tools.ietf.org/html/rfc5849#section-3.4.1.1

8/13/13 Designing a Secure REST (Web) API without OAuth

unique token to a particular timestamp; the combination of the two are like
a thumbprint saying “at 12:22pm a request with a nonce token of
HdjS872djas83 was received”. And since the nonce and timestamp are
included in the HMAC hash calculation, no nefarious middle-man can ever
try and “replay” that previous message AND successfully hash his request to
match yours without the server seeing the same timestamp + nonce
combination come back in; at which point it would say “Hey! A request with
this thumbprint showed up two hours ago, what are you trying to do?!”

e Instead of passing all this as GET params, all these values get jammed into one

giant “Authorization” HTTP header and coma-separated.

That is pretty much the high points of 2-legged OAuth. The HMAC generation using
the entire request and all the params is still there, sending along the timestamp and a
nonce is still there and sending along the original request args are all still there.

When I finally get around to implementing 2-legged OAuth from a server
perspective, I'll write up another article on it.

Related Stories

=

lis burried in werk ee—
—_
QN: imgscalr Explanations of kallasoft SmugMug Java Added a D-Link DIR-655
Java Image- Common Java SmugMug Java APIDownload SmugMug Java Updated
Scaling Library Exceptions API - Beta 3 Links Fixed APIFAQ Firmware
2.0 Released Released Hijacks Your
DNS

Tags: Amazon Web Services API, API, authentication, credentials, guide, HMAC, HMAC-SHA1,

HTTPS, nonce, OAuth, Public / Private Key, security, session sidejacking, SSL, tarsnap,
timestamp, tips, two-legged, web 2.0, web application
« Patrick’s 10 Most Anticipated 2011 Summer Movies
Understanding the Unix Epoch (in Java), Time Zones and UTC —

About Riyad Kalla

Software development, video games, writing, reading and anything shiny. |
ultimately just want to provide a resource that helps people and if | can't do
that, then at least make them laugh.

View all posts by Riyad Kalla —

Amazon Web Services API, API, authentication, credentials, guide, HMAC, HMAC-SHA1,
HTTPS, nonce, OAuth, Public / Private Key, security, session sidejacking, SSL, tarsnap,
timestamp, tips, two-legged, web 2.0, web application

« Patrick’s 10 Most Anticipated 2011 Summer Movies
Understanding the Unix Epoch (in Java), Time Zones and UTC —

192 Responses to “Designing a Secure REST (Web) API without
OAuth”

Jim April 27, 2011 at 12:40 pm #

As for your timestamp issue, if you use the # of seconds since the Unix Epoch
(commonly referred to as unix-time) your timezone concern is completely gone, as the
Unix Epoch is completely agnostic to timezones and daylight savings.

The concern then becomes whether or not your clients’ times are set correctly. There’s
not much | can think of that would fix that, so you just have to say “set your time right!”

www thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/

6/50

http://www.thebuzzmedia.com/patricks-10-most-anticipated-2011-summer-movies/
http://www.thebuzzmedia.com/understanding-the-unix-epoch-in-java-time-zones-and-utc/
http://www.thebuzzmedia.com/patricks-10-most-anticipated-2011-summer-movies/
http://www.thebuzzmedia.com/understanding-the-unix-epoch-in-java-time-zones-and-utc/
http://www.thebuzzmedia.com/tag/amazon-web-services-api/
http://www.thebuzzmedia.com/tag/api/
http://www.thebuzzmedia.com/tag/authentication/
http://www.thebuzzmedia.com/tag/credentials/
http://www.thebuzzmedia.com/tag/guide/
http://www.thebuzzmedia.com/tag/hmac/
http://www.thebuzzmedia.com/tag/hmac-sha1/
http://www.thebuzzmedia.com/tag/https/
http://www.thebuzzmedia.com/tag/nonce/
http://www.thebuzzmedia.com/tag/oauth/
http://www.thebuzzmedia.com/tag/public-private-key/
http://www.thebuzzmedia.com/tag/security/
http://www.thebuzzmedia.com/tag/session-sidejacking/
http://www.thebuzzmedia.com/tag/ssl/
http://www.thebuzzmedia.com/tag/tarsnap/
http://www.thebuzzmedia.com/tag/timestamp/
http://www.thebuzzmedia.com/tag/tips/
http://www.thebuzzmedia.com/tag/two-legged/
http://www.thebuzzmedia.com/tag/web-2-0/
http://www.thebuzzmedia.com/tag/web-application/
http://www.thebuzzmedia.com/author/riyad-kalla/
http://www.thebuzzmedia.com/tag/amazon-web-services-api/
http://www.thebuzzmedia.com/tag/api/
http://www.thebuzzmedia.com/tag/authentication/
http://www.thebuzzmedia.com/tag/credentials/
http://www.thebuzzmedia.com/tag/guide/
http://www.thebuzzmedia.com/tag/hmac/
http://www.thebuzzmedia.com/tag/hmac-sha1/
http://www.thebuzzmedia.com/tag/https/
http://www.thebuzzmedia.com/tag/nonce/
http://www.thebuzzmedia.com/tag/oauth/
http://www.thebuzzmedia.com/tag/public-private-key/
http://www.thebuzzmedia.com/tag/security/
http://www.thebuzzmedia.com/tag/session-sidejacking/
http://www.thebuzzmedia.com/tag/ssl/
http://www.thebuzzmedia.com/tag/tarsnap/
http://www.thebuzzmedia.com/tag/timestamp/
http://www.thebuzzmedia.com/tag/tips/
http://www.thebuzzmedia.com/tag/two-legged/
http://www.thebuzzmedia.com/tag/web-2-0/
http://www.thebuzzmedia.com/tag/web-application/
http://www.thebuzzmedia.com/qn-imgscalr-java-image-scaling-library-2-0-released/
http://www.thebuzzmedia.com/explanations-of-common-java-exceptions/
http://www.thebuzzmedia.com/kallasoft-smugmug-java-api-beta-3-released/
http://www.thebuzzmedia.com/smugmug-java-api-download-links-fixed/
http://www.thebuzzmedia.com/added-a-smugmug-java-api-faq/
http://www.thebuzzmedia.com/d-link-dir-655-updated-firmware-hijacks-your-dns/
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-267895

8/13/13 Designing a Secure REST (Web) API without OAuth

Also, your 10-15 minute time-window allows for replay attacks within that time period.
Essentially, if a user could make a legitimate request once, they could repeat it N number
of times for the next 10 minutes (or whatever your acceptable time-window is). I've seen
methods around this, one of which was to include the ‘microtime’ for each request
(basically the current number of milliseconds since the Unix Epoch) and any single micro-
timed request could never be run again for any single API client.

Good read, though, it was light and explanatory, and definitely gives a high level overview
of how private keys (and “secret api keys”) work.

REPLY
—
m Riyad Kalla April 27, 2011 at 3:55 pm #
ey

Jim,
| had actually been wondering about how timezone was defined for epoc time, |
didn’t realize that per the spec it is UTC; that makes my life infinitely easier not only
for this article, but for a data model | was specing out.

Thanks for the heads up!

As for the replay attack, very true, the window does give an opportunity to slip an
attack in, | was just following Amazon’s window which slides “up to 15mins” in some
services cases.

| don’t quite follow the microtime correction; can you clarify that? (sounds like you
are including the epoch time twice; once in seconds and once in milliseconds... not
sure on how that helps or doesn’t suffer the same issue of the existing timestamp
check?)

REPLY
T—

Jim Rubenstein Apri 28, 2011 at 8:24 am #

In reference to microtime, | was simply saying you could pass THAT
instead of /just/ the unix time (in seconds). This would give you your time
signature, time window limit, and could guard against a replay attack.

Basically my thought against the replay protection was that you'd log each
request from the client with the microtime timestamp. When a new request
came in and you determined that it was within the time-window constraint and
passed hash checks (and whatever other security layers you have) you'd
check to see if that microtime stamp had been used for another request. If it
had been used in the past, you assume it's a repeated request and kick it back
to the client with an error.

However, | really like Raphael’s idea of an idempotent. That seems like a more
significant undertaking though, you’d have to be more meticulous about what's
happening so you never do the same exact thing twice. I'd imagine some
services just can’t work as an idempotent service. As an example, if you ran a
web service that simply incremented a counter. Repeating the request would
increment the counter each time.

Without any research (so this might be completely off-base, and is pretty much
talking out of my butt, so take it with a grain of salt) I'd say the “simplest way”
to make an idempotent web service requires a 2-request system. The client
would initially make a request to the API to get a “request key.” Once the client
has received the request key, it uses that key to make *the* request to the API,
with the request key it received from the first request. Each request key is
single-time use, and you can put other restrictions on how long it's good for
(infinite if you want?). That seems like a lot of overhead (twice as much, really!)
but I'm not sure how else you’d create an idempotent feature into an API which
is similar to “incrementing a counter.”

I hope all that made sense, | kind of started to ramble, and | said the word
“idempotent” a friggin lot! Sorry for that @

www thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/

7/50

http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=267895#respond
http://www.thebuzzmedia.com/
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-268084
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=268084#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-269203

8/13/13 Designing a Secure REST (Web) API without OAuth

REPLY
E—

Jim Rubenstein Apri 28, 2011 at 8:32 am #

Dear Riyad, | need to be able to edit my comments because |
suck at proof-reading before pressing post!

“I really like the Raphael’s idea of an idempotent.” — stupid. What | meant
to say was, | really like Raphael’'s idea of an idempotent API.

Also, to clarify my first sentence even more:

In reference to microtime, | was simply saying you could pass THAT
instead of /just/ the unix time (in seconds). This would give you your time
signature, time window limit, and could guard against a replay attack.

Instead:

In reference to microtime, | was simply saying that you could pass it
instead of the unix time in seconds. This would give you your time
signature, time window limit, and could guard against a replay attack, all
in one piece of data passed to the API.

Sorry for the post spam.

REPLY

Riyad Kalla Apri 28, 2011 at 8:41 am #

Jim,

Thanks for the followup, | totally agree with you about Raphael’s
suggestion with regards to the nonce tokens.

You nailed my concern with that approach (doubling API traffic, and
increasing data-layer access) BUT, just like you mentioned, | really really
like how cleanly and exactly it solves the replay-attack issue AND
something you pointed out that | didn’t realize, is it can be used as part of
a mechanism to implement idempotency on the server side... “Has this
token been used? No, ok then re-try the command”.

There is still the pain point of doing your own “transactions” with a data
store that doesn’t natively support them, but it is at least a step forward
towards that goal.

Great feedback so far!

REPLY
Se—

. Jim Rubenstein April 28, 2011 at 8:57 am #

| don’t know that transactions would really be a problem
here. The response to the client doesn’t necessarily have to be a
failed one on an already used token. The transaction issue might
come into play when you try to do something on the API over
several API calls (in which case, ouch), but other than that — | think
executing the API request and marking the token as used after the
execution is successful is plenty.

If you’re worried about part of the API execution failing, that should
be handled on the application layer,provide an exception response
to the client, and not mark the token as used. Let the client fix their
request, and re-submit the request with the same token. If someone
replays that same request, then they’ll get the failed message all
day long. If the client re-submits their request after they fix it, the
token will be marked as used and no one will be able to use that

www thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/ 8/50

http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=269203#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-269222
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=269222#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-269230
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=269230#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-269247

8/13/13

Designing a Secure REST (Web) API without OAuth

token in the future.

| might be missing the problem you’re trying to solve with the
transactional issue, but | just can’t think of a use-case where I'd be
worried about it.

REPLY

u Riyad Kalla Apri 28, 2011 at 9:02 am #
2.
¥ .

You aren’t missing anything, you are spot on with a
tightly focused API (where each method represents a discrete
action).

In my previous reply | was waving my hands around and
inventing situations that don’t exist trying to think of the
downsides.

In my *specific* use-case, my API is extremely discrete and
what you outlined would be a perfect fit for my needs.

REPLY

ﬂ Ben Werdmuller January 18, 2012 at 7:24 pm #

This whole mechanism is pretty much exactly how the latakoo.com API
works, and | can tell you from experience that there are a bunch of Windows users
out there with their clock set incorrectly. The issue is usually that people set their
base time to their timezone-adjusted time. It's annoying, and weirdly has mostly up
in enterprise environments where users are unable to reset their clocks themselves
(i.e., where IT has screwed up). Nonetheless, it's secure and the timestamp issue is
usually surmountable.

REPLY

akhil handoo Mmay 13, 2013 at 11:56 am #

The attacker will have to know the secret key to create new Hash including
the new timestamp, which will be hypothetically impossible for it, since timestamp is
a part of the checksum.

REPLY

. Preston Lee April 27, 2011 at 2:06 pm #

Great writeup! Silly question... if both the server and client know the private key, why does

@Riyad,

the client need to submit it? (Step 3b.)
REPLY
Riyad Kalla April 27, 2011 at 3:47 pm #
.r-‘ i F

Preston, thanks for the heads up. That was an unfortunately “poorly
formed sentence” bug. | removed the confusing info. Your “WTF alarm” was
absolutely correct, the PK should never transfer over the wire.

That sentence should have only said “Send the HMAC (the one you made by
combining the private key and your data blob)”, but that parens section was
redundant and confusing, so | nixed it.

www thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/

9/50

http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=269247#respond
http://www.thebuzzmedia.com/
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-269257
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=269257#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-584113
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=584113#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-611332
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=611332#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-267971
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=267971#respond
http://www.thebuzzmedia.com/
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-268074

8/13/13 Designing a Secure REST (Web) API without OAuth
Thanks!

REPLY

g Raphael April 27, 2011 at 5:46 pm #

Great article!

Besides standardizing on UTC (which can still fail if the user’s workstation has the time-
zone setup incorrectly because they switch DST manually), there’s another way to handle
replay-attacks: If your API endpoints are idempotent, “replays” are turned into a feature
that clients can take advantage of in case of timeouts or network disruptions. It’'s also
considered a best practice in API design. I'm not sure if Amazon implemented it or not
(I've always worked with higher-level libraries that shielded me from the actual low-level
implementation details of their protocol).

Speaking of Amazon: They have an API for generating private API keys with reduced
privileges, in case you need to share your private key with someone like an EC2
monitoring service (I forgot the exact name of the API) or an external DNS management
service. Such keys can be easily revoked on demand (the tool to create these keys is a bit
clunky). And finally, Google implemented a similar “revokable” feature as part of their two-
factor authentication scheme for Google Accounts.

REPLY
S
m Riyad Kalla April 28, 2011 at 7:46 am #
5.
i 4

Raphael,

Good point about the UTC/DST issue... | haven’t found a perfect way around the
time-mismatch issue... | think besides crossing my fingers *really hard*, that's the
best | can do to keep failing clients from connecting.

The idempotent behavior, as you correctly pointed out, is important and from what
I've read/seen, a property of really well designed APIs for exactly the reason you
gave (easy recovery for clients by simply retrying).

How would you go about implementing idempotent behavior in an API for a call
that... let’s say inserts a record with a NoSQL data store? With a SQL datastore |
guess it's as easy as rolling back the transaction and either kicking a message back
to the client or just letting the client time out and try again.

But with a NoSQL store like Mongo, Redis or SimpleDB, I'm not totally clear on a
great way to do this... any ideas?

Ahhh! The IAM stuff over at Amazon, you are exactly right about the revokable keys;
that is another great approach for massive APIs that will be adopted by lots of folks.

Didn’t know about Google doing the same, thanks for the heads up!

REPLY
—

g Raphael April 28, 2011 at 3:13 pm #

There’s quite a bit of literature on how to implement idempotent
receivers as this is widely used in the enterprise space. A simple solution would
be for the client to attach a locally unique ID to each request (or a nonce), and
send it to the server together with the request (like many suggested here to
prevent replay attacks). The REST server would keep a key-value store of the
hash of the client ID with the request ID (the request ID is only guaranteed to
be unique per client, not globally) as the key in the store, and the request
status/result as the value. After successfully authenticating a request, the
REST server looks up the value from the store. An empty value means it's a
new transaction that needs to be processed. A non-empty value represents the
result that needs to be sent back to the client, without any further processing.

www thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/ 10/50

http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=268074#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-268185
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=268185#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-269159
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=269159#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-269776

8/13/13 Designing a Secure REST (Web) API without OAuth

You might need to include a time-stamp within each value so that you could
expunge stale items from the store over time, or use some other means to
achieve the same goal. Redis is an ideal storage solution for this (it also solves
the synchronization problem if you have more than a single REST server).

Transactions are not really a part of this protocol; this is just a fancy transport.
It's left to the client and backend server to implement such things as the
request parameters and results. If the request fails, the result object simply
represents that.

Idempotent APIs lend themselves beautifully to situations where you have long
requests which you process asynchronously. | just implemented something
very similar to what | describe above in Node.js. | used a constant in the result
value that signifies “in-progress”, to represent that a task has been committed
to the server but no results have yet been received for the client. This yields a
very simple API, minimal server overhead and complexity (idempotentcy
related code was less than fifty lines), and most importantly, most of the
robustness of a middleware server without any of the bloat.

On a slightly different subject: | remember reading some treatmentin a
Schneier/Ferguson book about the issue of whether to sign a request with a
nonce or leave the nonce out. Their recommendation was to sign (HMAC in
our case) everything together, nonce included, and they had some sound
security related arguments for doing that.

REPLY
Ee—r

Stevan Little April 27, 2011 at 6:33 pm #

' First of all, nice writeup, | just recently had to design something like this for a
whole suite of services are developing for a client (https://github.com/stevan/SAuth if you
are interested). It is always reassuring when you read that someone else has come to a
similar conclusion as you have.

Second, you could also use a nonce instead of (or along with) a timestamp. This should
still protect against man-in-the-middle attacks since a nonce can only be used once. It
works well with REST as well since in HTTP digest authentication there is already a
“nonce” field in the 401 response, and you can use the Authentication-Info header to
include a “nextnonce”. For me this was nicest since it left the payload free and clear of
auth details.

REPLY
S—

m Riyad Kalla April 28, 2011 at 7:47 am #
2.
= 4,

Stevan, never heard of the nonce approach, thanks for the pointer!

Also | absolutely am interested in the example code, appreciate you sending that
along as well so | can dig through and see what folks rolling to production are doing.

Do you have any pointers in hindsight after rolling out the API?

REPLY

Stevan Little April 28, 2011 at 7:59 am #

' Riyad, no real pointers at this time, but we have only rolled it out for
one application so far, | am sure as we add it to more apps things will come up.

Our system is very specifically tailored for our needs, which are a set of web-
services that need to securely interact with any number of web-enabled
applications and many different kinds of devices. It is very heavily based on
OAuth (1 and 2), but specifically leaves out anything that has to do with human
interaction/intervention, because we want this all to be transparent to the
actual users. We can get away with this mostly because this will all be used

www thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/

11/50

http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=269776#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-268243
https://github.com/stevan/SAuth
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=268243#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-269162
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=269162#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-269173

8/13/13 Designing a Secure REST (Web) API without OAuth

within a single company and is not for the general public.

REPLY

Riyad Kalla Apri 28, 2011 at 8:30 am #

L

Stevan,

| looked into nonce use — technically | really like the approach, have
some token server laying around doling out 1-time use tokens (similar to
how a lot of web frameworks protect forms against re-submits or invalid
submits (POSTs) from external sources).

The only downside i see is literally doubling the API traffic (1 nonce for
every API call) and increasing (doubling in the worst case) hits to your
datastore layer for 1-time-use data that aren’t that cacheable.

1 insert when it is generated and returned
1 query by the executing function to check
1 more insert to mark the nonce as “used”

BUT, that being said, unless you are trying to write the next twitter | really
like this approach from a technical/security standpoint and appreciate the
heads up on that. | may go with this myself because | am not writing the
next twitter and can spare the overhead

REPLY
Se—

Stevan Little April 28, 2011 at 10:10 am #

Actually there are no extra calls to be made. The initial
nonce is sent with the first 401 response (or can be asked for
explicitly though an API call if you want). And then after that nonce
is simply passed to the server-side via the clients Authorization
header and the next-nonce is passed to the client-side via the
Authentication-Info header. The whole thing is pretty standard
HTTP interaction, and really only adds one extra part to the
already-being-sent Authorization header and one extra header on
the way back.

As for the nonce storage, | am actually not storing them. We are
using a cryptographic secure random number generator (strong if
we can, but weak if we have too), which are pretty much
guaranteed to not repeat (only under extreme circumstances will a
weak generator repeat, which could likely be solved by just adding a
high-res timestamp to it).

REPLY
—

Pradeep Sharma November 29, 2011 at 2:37 am #

It is not so necessary to do insert. The entire algorithm for
generating nonce can use caching layer to cache the key for 5mins-
Thour duration.

REPLY
—

“ Morten Fangel April 28, 2011 at 12:41 am #

What you just described is 95% of what two-legged OAuth (1.0) is. OAuth really
isn’t that complicated, so | personally wouldn't try to reinvent the wheel just to avoid
figuring out how OAuth works.

www thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/ 12/50

http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=269173#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-269210
http://en.wikipedia.org/wiki/Cryptographic_nonce
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=269210#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-269333
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=269333#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-574363
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=574363#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-268609

8/13/13 Designing a Secure REST (Web) API without OAuth
However, use of two-legged OAuth isn’t that well known so perhaps you just missed it. But
try looking at it, and see if you don’t come to conclusion that it is infact terribly similar to
what you have outlined here.

REPLY
S
m Riyad Kalla April 28, 2011 at 7:50 am #
= 3

Morten,

| have been pushing back on making heads or tails of OAuth since it was announced
and the initial overview | read through made my eyes roll back in their head... that
was years ago though when | expected all web auth to ever be done with a
username and password; | think you are right | should take another look.

Thanks for the pointer to the “two-legged” OAuth; not heard that term before, but it
gives me a focused starting point.

Any idea what changes are coming in OAuth 2 that make this stuff better? | read
(from one of the linked OAuth articles above) that 2.0 is suppose to be easier to
integrate for API devs and other type of service interfaces, but knowing nothing
about OAuth, | didn’t know in what ways that was the case.

REPLY

Stephen Sugden April 28, 2011 at 10:13 pm #

| have to 100% agree with Morten, and your response.

| was asked this last november to implement “OAuth using this client-provided
private key”. It took me an embarrassingly long time to figure out that three-
legged (the one that 95% of my google results seemed to talk about) was not
at all required, and in fact all | wanted was two-legged OAuth or signature-
verification (those were the magic words google needed). After | sorted that
out, the actual implementation was dead simple and sounds remarkably similar
to what you describe in the article.

REPLY
T
m Riyad Kalla May 2, 2011 at 8:46 am #
%
i 4

Stephen,

Thanks for adding a bit about your own experience; my limited googling

around of OAuth a few months ago brought me many of the same types
of results you are talking about (I guess that is what is called “3-legged”).
| just scratched my head and moved on.

But now | have a more focused OAuth scenario to search for and
appreciate the help from you guys digging through this approach,
providing improvements (e.g. nonce) and even getting a good starting
point with OAuth (2-legged).

REPLY

i Amir April 28, 2011 at 8:05 am #

Why didn’t the author just end up using SSL? Don’t need to sign the request
anymore. Essentially what OAuth 2.0 is doing.

REPLY
S—

www thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/ 13/50

http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=268609#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-269165
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=269165#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-270209
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=270209#respond
http://www.thebuzzmedia.com/
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-275141
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=275141#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-269181
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=269181#respond

8/13/13 Designing a Secure REST (Web) API without OAuth

m Riyad Kalla April 28, 2011 at 8:26 am #
=
L

Amir, SSL is certainly an option, but has downsides like more processor
time on the server if your equipment budget isn’t as high as you would like.

This was just looking at one of many ways to secure an online API; | think right now
with most popular web-2 protocols, non-SSL APIs are probably a lot more common
than SSL-protected ones (e.g. twitter, facebook, google, aws)

But if you have the option of using SSL, | agree, it is definitely a good choice.

REPLY

. Pelle February 16, 2012 at 6:45 am #

The SSL being slow and processor intensive was maybe true 10
years ago. Now not so much.

All serious web services now a days use SSL anyway and for good reasons.

OAuth 2 is essentially ready to be used, but unless you need to deal with
delegation you don’t even need that.

The Bearer Token spec is what most people call OAuth 2 and is just a single
token in a http header or query string.

http://tools.ietf.org/html/draft-ietf-oauth-v2-bearer-16

If you need to share url’'s such as Amazons signed urls where you need to give
some access to a resource such as an image or download use the Mac token,
which is receiving serious security analysis now:

http://tools.ietf.org/html/draft-hammer-oauth-v2-mac-token-05

Both of them are still officially drafts, but are mainly receiving wording changes
now.

OAuth 1.0 should not be used for any new applications and was only
complicated for Library authors. It was always recommended that you never
attempt to implement OAuth 1.0 without a library.

REPLY

u Riyad Kalla February 16, 2012 at 10:22 am #
=
e

Pelle, while the overhead for encoding the communication does
seem to be an issue for servers of yester-year, the initial negotiation with
the API does still seem to take more time when done over HTTPS.

That being said, I'd agree with you that the trend absolutely looks to be
moving towards “everything over HTTPS” though.

Also appreciate the link on the specs, didn’t know about bearer tokens!

REPLY

. Jim Rubenstein Apri 28, 2011 at 8:27 am #

There is always that...haha.

REPLY
—

u Riyad Kalla Apri 28, 2011 at 8:37 am #
3.
= 4

Amir,

www thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/

14/50

http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-269206
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=269206#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-588500
http://tools.ietf.org/html/draft-ietf-oauth-v2-bearer-16
http://tools.ietf.org/html/draft-hammer-oauth-v2-mac-token-05
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=588500#respond
http://www.thebuzzmedia.com/
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-588514
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=588514#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-269207
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=269207#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-269228

8/13/13

Designing a Secure REST (Web) API without OAuth

| thought you brought up a fair point, so | did some more searching around
HTTP/HTTPS and it looks like the initial handshake is fairly expensive with an
HTTPS connection, so | imagine this would be a killer for a high-throughput API.

REPLY
E—

- Amir April 28, 2011 at 8:53 am #

| was looking at that link recently. | haven’t found the initial
handshake to actually degrade performance. | would be curious to see some
performance comparisons between the two with recent technology. | am also
curious to know how Android/iPhone handle the initial handshake and how
much of a loss it really is.

All this aside, your solution is sound to me. | had a similar task a year ago and
did something similar to yours but after much research, | found something
called “WRAP Access token” now renamed as OAuth 2.0. So | thought to
myself, if they are going that direction then | should do something similar. After
benchmarking on iPhone and Android | concluded that there really isn’t that
much loss.

| guess the big question is: Would you rather keep your API simple so clients
don’t have to do such crazy “signing” tasks by using HTTPS or gain a little
performance but keep the API harder to use. | leaned towards the first option
because | felt keeping the API easy to use is a winner.

REPLY

. Jim Rubenstein Apri 28, 2011 at 9:00 am #

Easy APIs for the win!

REPLY

Riyad Kalla April 28, 2011 at 9:05 am #

s

L

Amir,

| have nothing more than a few Google links and speculation to back up
the non-HTTPS-approach and absolutely agree with your focus on ease-
of-use priority.

It sounds like you have a lot more experience with this stuff than | do,
especially in the mobile space which is what | would be targeting.

Out of curiosity, once you had the API running over HTTPS, do you just
go back to basic authentication? Username/Password over-the-wire or

did you use some other mechanism, like an API Key with no additional

credentials?

REPLY

i Amir Apri 28, 2011 at 9:17 am #

No basic authentication. The idea is simple and exactly as
what you do above except no signing. This is how | implemented it

1. Client asks for a token by going to /REST/newToken?
user=Amir&pass=PASSWORD

The above should return a token to the client and the application
should save that token to associate with that user

2. To actually use the API, you do /REST/someservice?

www thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/

15/50

http://stackoverflow.com/questions/149274/http-vs-https-performance
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=269228#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-269244
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=269244#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-269256
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=269256#respond
http://www.thebuzzmedia.com/
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-269263
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=269263#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-269282

8/13/13 Designing a Secure REST (Web) API without OAuth

token=TOKEN

Here the TOKEN is from step 1.

You don’t need to sign anything because https is already taking
care of that for you. All the app needs to do is look up the token to
find the user.

Now you may ask, isn’t sending username and password in step 1
still exposing the password. | thought that too and if you look at
HTTPS closer, you will notice that even the URL is secured and any
man in middle can not see the URL.

So as you can see, the client is simpler because it doesn’t have to
worry about signing anything. The server is simpler because it just
relies on SSL doing the work for it. Everybody is happy. You don’t
even need to worry about replay attack because someone would
need to be able to look inside the HTTP request to be able to
resend everything.

The only hint | have is that Android is really fussy about SSL. For
example, last time | worked with it, it failed to validate the difference
between http://www.foo.com and foo.com in the SSL certificate. But
there are ways around that.

REPLY
—

Riyad Kalla April 28, 2011 at 10:15 am #

S Amir,
| appreciate the impl details. Are you timing out the tokens
eventually or are they infinite? Like if you deploy an app to
someone’s phone, and they login for the first time, they get a
token (with their phonelD associated or something) and for
the life of that app being on that phone, that app will keep
using the same token?

Seems like a good way of identifying devices.

REPLY
—r

i Amir Apri 28, 2011 at 10:19 am #

Yep. We set a limit to 10 tokens per user. So if
you had 10 devices you can still use all of them. You can
also send the device info when you are requesting for a
token. As you guessed it, this is an excellent way to track
devices and let the user detach from a device using the
web.

We specifically chose not to time out. But this is up to the
implementer. | am not sure which is better. | imagine if
you have financial data then you would want to timeout,
else make it infinite.

REPLY
S—

Gregg July 5,2011 at 10:15 am #

While all URL data (except the hostname) is
encrypted over-the-wire when using HTTPS, you still have to
worry about the URL data being stored in plaintext in the
server logs and in the user’s browser history. For this reason,
| suggest not including sensitive information in the URL.

www thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/ 16/50

http://www.foo.com/
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=269282#respond
http://www.thebuzzmedia.com/
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-269338
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=269338#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-269345
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=269345#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-363766

8/13/13 Designing a Secure REST (Web) API without OAuth

REPLY

Riyad Kalla July 5, 2011 at 10:28 am #

L

Gregg, great point. In discussing the idea of
using HTTPS further with other friends, there was this
false sense of security that “nothing can be hacked!” that
| think makes your point even more important, because
the tendency might be to trust the URL a little too much
with secure data (e.g. login credentials).

REPLY
E—r

i Amir July 5,2011 at 11:34 am #

This is true that logs are sometimes
stored in clear text. | believe that operations and
writing web application are two different domains.
For our clients, we had to secure all the hard
drives. Encrypt all mysql data. Encrypt all keys and
user cookies. The list can go on. '=! But good point,
| agree with that. Always use post if you can. (Even
though that can be logged)

E Nathan June 19, 2012 at 3:16 pm #

More expensive than having to hash your entire POST or UPDATE
payload *twice*?

REPLY
E—

- Nathan June 19, 2012 at 6:13 pm #
L, 1,
| mean, making the HMAC on the client and the server isn’t

“free.”

REPLY
—

Vinnie May 13, 2011 at 1:42 pm #

What | still don’t get is that it makes no difference if you use SSL for mobile or
desktop apps. | am far from an expert, but simply monitoring the traffic with a tool like
Fiddler allows anyone to see what the request looks like before they get encrypted with
SSL. Then they could easily just replay the request any time they wanted to download the
data outside the app.

Am | missing something? Yes, | understand they can’t replay 15 minutes later, but that
doesn’t solve the problem of the client app being unverified. Essentially, how would one
guarantee that the request to the web service is being sent by the binary app that the
users have installed on their device/computer? | can see how all these methods will work
from server to server, but | still don’t get the client app security here, not even mentioning
decompiling your app at this point.

REPLY
Se—

Riyad Kalla May 13, 2011 at 6:39 pm #

www thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/

17/50

http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=363766#respond
http://www.thebuzzmedia.com/
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-363788
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=363788#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-363862
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-598874
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=598874#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-598876
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=598876#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-290569
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=290569#respond
http://www.thebuzzmedia.com/
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-290780

8/13/13

Designing a Secure REST (Web) API without OAuth

m Vinnie,

7 If an SSL tunnel has been established between the client and server all
traffic between the two points is encrypted. What Fiddler does to “Decrypt

HTTPs traffic” (per this page:

http://www.fiddler2.com/Fiddler/help/httpsdecryption.asp) is dynamically generate an

SSL cert that you have to accept in order for it to eaves-drop on your traffic.

In the real-world deployment, you wouldn’t accept a random cert like that, so the
man-in-the-middle trying to do what Fiddler does wouldn’t be able to decrypt the
encrypted data.

As for decompiling the app, that would give you access to the private key used to
sign the requests; so you are correct, that would be an attack vector.

Twitter and other services combat this by accepting that your key can very well get
compromised, so keys can be disabled on the fly until new keys are generated and
used to replace the old ones.

I’'m not crazy about this as you can just get decompiled again and again, but |

haven’t seen a way around this yet.

REPLY
—

Vinnie May 16, 2011 at 6:23 am #

So forgive my ignorance here, but can’t they view the request data
using Fiddler and just replay that?

For instance, let's say | have a header named “Secret-api-key:” with a value of
“123456". The evil genius will use Fiddler to see the request being sent
through HTTPS, and just replay the request with the secret key from some self
made client. Basically, making their own tunnel.

Am | missing something again?

REPLY
Se—

i Amir May 16, 2011 at 7:16 am #

With SSL you cannot look at any of the headers or request
parameters. So how would they replay the request? With SSL everything
is secured including the URL it self.

REPLY
—

Vinnie May 16, 2011 at 10:14 am #

| guess I'm not understanding. So can Fiddler decrypt the
request or not?

REPLY

i Amir May 16, 2011 at 10:36 am #

This is how fiddler does it
http://www.fiddlertool.com/fiddler/help/httpsdecryption.asp

In abstract, it mimics a server and forwards everything to the
actual server. It does this by displaying many warnings to
browsers such as IE and FF that state you cannot trust this
certificate. So really it just used for testing purpose. In the real
world, one would have to step between foo.com and the client
by changing foo.com dns to actually point to fiddler. This is

www thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/

18/50

http://www.fiddler2.com/Fiddler/help/httpsdecryption.asp
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=290780#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-293738
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=293738#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-293809
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=293809#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-294096
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=294096#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-294132
http://www.fiddlertool.com/fiddler/help/httpsdecryption.asp

8/13/13 Designing a Secure REST (Web) API without OAuth

pretty hard. After that, the attacker creates fake certificates
which will actually be flagged by all browsers and probably
rejected by all mobile devices.

REPLY
E—

Vinnie May 16,2011 at 11:14 am #

| think we’re talking about two different things.
Here is my concern. Suppose | have an API with private
resources. For instance, | have picture that | want to
serve to a mobile app. This picture can’t be viewed in the
app until the user passes some sort of milestone... let’s
say getting to level 8 of a game. In one sense the
resource is public because it doesn’t care “who” is
accessing it, but in another sense it’s private because it
only wants my client app to access it. This is totally not a
real example so picking apart my scenario and
suggesting a different way is not what I’'m looking for. I'm
more interested in the security and keeping my API
strictly for my mobile app.

So the app sends out a request with the secret API key
encrypted using HTTPS. Using Fiddler, evil genius
captures the request in raw form. So, evil genius goes
and creates a .NET form app, sends the exact same
request using HTTPS that he just saw in Fiddler. Then
my server happily serves the image to his .NET form
because after all, it's got the secret key in the request.

Go easy on me if there’s just something not penetrating
my skull. | understand your “in the real world” comments
| think. But I'm still not getting how a REST web resource
can be secured without a personal username and
password for each person using a client app.

REPLY
E—

a

Amir May 16,2011 at 11:30 am #

| am still confused on this line —

“Using Fiddler, evil genius captures the request in
raw form.”

How would evil genius do that? he/she would need
to reroute the server to the fiddler server. And even
if they could access dns settings on some gateway,
all the certs would fail. which means all mobile
apps would reject it and the app would break.

Assuming he could take over the app by doing all
those things above then yes what you say is true.
But as you can see HTTPS was designed to not be
able to have any man in the middle attacks. Fiddler
simply just reroutes requests for dev and testing.

Vinnie May 16, 2011 at 1:12 pm #

| guess | am still confused too. | was
under the impression that Fiddler could decrypt the
request being sent from the client... headers and
all. If you're saying nothing can do that, then I'm

www thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/ 19/50

http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=294132#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-294167
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=294167#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-294188
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-294271

8/13/13 Designing a Secure REST (Web) API without OAuth
good to go.

I’m not saying evil genius would do this for every
single client, but just do it on his own iPhone using
Fiddler as a proxy. Does that make sense?

u Riyad Kalla may 16, 2011 at 8:15 pm #
4

Vinnie — right, Fiddler can’t just randomly
decrypt SSL traffic; only traffic where you have
agreed to it’s cert, and your app will never do that,
so no dice for the evil genius.

Eduardo Cereto February 16, 2012 at 2:19 am
#

Note that each fiddler installation has it's own cert.
So even if you also use Fiddler on you machine
and accepted the fake cert another person on
another machine routing the traffic through his
fiddler won’t be able to decrypt since he has a
different cert on that machine. Fiddler certs are
random and generated at install time.

Vinnie May 17, 2011 at 4:03 am #

Ahhh... Yes. That makes sense. Thanks for taking the time to get it through my
skull. My app won’t have the little popup that says “do you accept this suspicious Fiddler
cert?” and therefore won’t handshake. Got it.

REPLY

l Dennis December 27, 2012 at 12:41 pm #

I’'m with you Vinnie. I've seen instructions on how to get a Windows Phone
to install the Fiddler certificate and assume similar things exist on Android and
iPhone. If the device has accepted the Fiddler cert, then how would | guarantee that
my app won'’t ever accept a different certificate?

Wouldn’t my app be relying on the device to handle the SSL handshake? | don’t
think I'd be doing that myself.

I’'m not concerned with man-in-the-middle attacks so much as someone trying to
replay their own request that came from the app on their own device. Let’'s say my
API accepts a request with the user’s new high score or best time. If someone ran
the app and captured all the API traffic via fiddler, they could adjust the score and
re-submit the request.

HMAC hash and nonce seem like a good way to guard against that, but simply using

SSL doesn’t sound to me like it would be enough protection.

REPLY
E—

Napo June 15, 2011 at 6:24 pm #

Regarding AWS’s solution, private key is used to hash the content, that means
Amazon has to store my private key without hashing. For a secure REST
API(Browser/Server), | do not know where | can save the “private key” at client

www thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/ 20/50

http://www.thebuzzmedia.com/
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-294744
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-588497
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-295345
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=295345#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-604719
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=604719#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-336829

8/13/13 Designing a Secure REST (Web) API without OAuth

side(browser). In case client uses customer’s password as a hash key, does it mean |
have to save his password in plain text at server?

REPLY

Riyad Kalla June 16, 2011 at 7:15 am #
Y Napo,
You don’t need to store the key in plain-text necessarily, you could encrypt it, but
SOMEWHERE in your app you will have a decryption key for that encrypted key, so
that is just security-by-obscurity and if someone is digging that hard to pull the key
out of your app then yes, they will probably have access to your private key whether
you want them to or not.

I've not found a great solution to this on the client side, but on the server side I've
decided to follow a model similar to Twitter's — each account can register multiple
private APl Keys and expire them when they become compromised then
generate/embed new ones in an updated release of the app.

Not the best, but at least it is designed to cope with the eventual need to replace the
key up-front and the software doesn’t have to struggle with that portion down the
road. It still feels insecure to me, but | haven’t come across a great technique for
adding that last little bit of security on the client side to help make it harder to
compromise the keys.

If you find a method, please come back and share.

REPLY

Anonymous October 21, 2011 at 4:29 pm #

Why not have treat the private key as a hash of the password and
some salt (perhaps a hash of the username). Then have the same algorithm
on the client side of things. Nothing to be transferred as the user would just
enter their new password on the client side and everything is updated and
nothing stored in plaintext that the user might have not wanted to expose.

REPLY
Se—r

Ramesh July 15, 2011 at 5:00 am #

Great post !!!

Regarding the timestamp, | think the timestamp has to be sent as a separate parameter
(apart from it is being included in the signature)..since the server cannot fetch the time
from the signature.correct me if I'm wrong.

Also, it would be great if you can point me to sample code where the rest API
implementation with this autorization header. Just want to know how to read authorization
info from the header..might need to user filter/handler to intercept and read the header |
assume...

REPLY

i Amir July 15,2011 at 7:13 am #

Ramesh,
| think you are right. The client does have to send the timestamp with one of the
parameters. The idea is also to reject the request if the timestamp is after some time
period.

REPLY

www thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/

21/50

http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=336829#respond
http://www.thebuzzmedia.com/
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-337590
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=337590#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-572811
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=572811#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-382066
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=382066#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-382345
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=382345#respond

8/13/13 Designing a Secure REST (Web) API without OAuth

u Riyad Kalla July 16, 2011 at 7:56 am #
b g

Ramesh,

Absolutely correct — everything included in the signature (except the private key) has
to be sent to the server because it has to re-construct the same signature server
side and compare the two hashes to see if they match.

So technically every parameter is optional, just make sure whatever you use, you
send to the server (except private key) so it can re-produce. The signature
generation the server and client agree on just has to be the same.

FWIW, | saw an API the other day that used this HMAC method, but all it had you do
is use your private key to sign the api key and send that across as a signature.

The problem with this is that NONE of the params were included with the signature
calculation, so technically a malicious 3rd party could intercept the call, change any
and all params, and re-submit with the same signature hash and the server would
still accept it.

This *technically* becomes the same problem of side-jacking/session-jacking in that
a nefarious man-in-the-middle doesn’t need to get your credentials, just use your
authorized signature to be malicious.

That is why specs like OAuth define *Such* pedantic rules for how to combine all the
parameters together in a very specific way, so the client and server can agree on all
of it.

REPLY
—r

Ramesh July 20, 2011 at 1:24 am #

Riyad, totally agree with your points...also can you point me to actual
web service implementation which uses this kind of authorization? | would like
to know how to read the authorization header from the request. I'm using
Spring Restful web service.

REPLY

m Riyad Kalla July 22,2011 at 7:12 am #
ey

Ramesh, lots of web services use OAuth.

You'll want to find the OAuth support in the Spring REST WS libraries so
it can just do this stuff for you automatically, you wouldn’t want to write
this stuff by hand.

Jersey, for example, provides it's own support for OAuth.

| just did a quick Google for “spring restful web service oauth” and got
some results that might give you a starting plac.e

REPLY
—

! Sid July 19, 2011 at 7:35 am #

Excellent post. Describes exactly what | had been doing all last week (besides
the peyote)

REPLY

Fered July 20, 2011 at 4:46 am #

www thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/ 22/50

http://www.thebuzzmedia.com/
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-384863
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=384863#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-392532
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=392532#respond
http://www.thebuzzmedia.com/
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-398213
http://stackoverflow.com/questions/5431359/trying-to-protect-resources-with-oauth-in-spring-mvc
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=398213#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-391070
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=391070#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-392756

8/13/13 Designing a Secure REST (Web) API without OAuth

Thanks Riyad that’'s a good overview. Can you confirm if my understanding of
these points is correct?:

- There is no need for a Login method or Sessionld (since every call uses the
hmac instead)
- SSL improves security, but hmac is still required when using SSL
- The hmac must be sent as a http header, not a parameter to the method being called
- Nonce (if used) must be sent as a http header
- Does it matter what the name of that header is?

Thanks

REPLY

m Riyad Kalla July 22, 2011 at 7:21 am #
= 3]

Thanks Fered, I'm glad it helped. To your questions:
- Yes

- No. HMAC is used to protect the integrity of the params; help stop man in the
middle attacks and the like. Over SSL, there is no way for the man in the middle to
read the params in the first place, so you don’t need HMAC. When you use SSL, you
can use “old fashion” or easier methods of API authentication by having a user do
something like /login?username=bob&password=123abc and then give them a
session ID they send with every subsequent request to identify themselves.

- No. It doesn’t matter how you send the HMAC, all that matters is that the client and
server agree on (a) where to find it and (b) how to calculate it. You could, for
example, write the API such that the HMAC is always sent as a parameter named
“hamSandwiches” and that you calculated it by counting the characters in ALL your
parameters, adding them all together into 1 big number, like 1137, and then signing
that number with your secret key and submitting it. (that's not a great idea, it’s just
an example). The point being that you can literally do whatever you want, but every
client has to know how to do it the way the server expects it, because the server is
re-creating the SAME hash (HMAC) after it gets the request to verify nothing
changed.

- No. Same as question above, if you use a nonce, there is no magic here. It just has
to be a unique string that the server can identify as being used before or not. So if |
send you a request with “nonce=HelloSuzie”, the server will compute the HMAC,
store in the DB that “HelloSuzie” has been used and then process the request. Now
if ANY other request ever comes in again with a nonce of “HelloSuzie”, the server
can assume it is a man-in-the-middle or some nefarious client trying to re-submit
past requests again or trying to mess with the system some how and will reject it.
nonce’s are an absolute way to defend against “replay attacks” as opposed to
timestamps which help, but still leave wiggle room.

- It doesn’t matter what you name anything, as long as the server and client agree.

ok, now ALL that being said, if you were asking *specifically* about OAuth, then “yes”
to all your questions about specific header names.

OAuth does define very specific names and locations for things to be (it has to,

because it is a spec), you can see the names of those headers in the OAuth spec.

REPLY
T—

g Colin Wiseman August 18, 2011 at 11:14 pm #

So using SSL, and just like Facebook these days, you could just give the user
the access token in the app they are trying to acces (e.g. In their profile), to save a lot of
fuss. And this access token could actually just be a Guid, a random Guid or even the Guid
that is their profile Id? Cause if a developer of the other side isn’t secure with their access
token then really god help rhe for what ever happens

But utterly awesome article, you wrote down everything that was in my head, but gave the

www thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/ 23/50

http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=392756#respond
http://www.thebuzzmedia.com/
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-398225
http://tools.ietf.org/html/rfc5849#section-3.5.1
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=398225#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-449665

8/13/13 Designing a Secure REST (Web) API without OAuth

answer at the end! Nice one!

REPLY

m Riyad Kalla August 19, 2011 at 2:31 pm #
=
L

Colin, it is true that a lot of this just melts away and gets simpler when you
move to a SSL-secured stream, and thank you for the kind words!

REPLY
T—r

Tal Maizels August 22, 2011 at 10:48 pm #

Hi Riyad,
A kick-ass post! Found it very helpful and greatly written.

I’'m writing a web app with RESTful API, which will serve all the data for the JavaScript &
mobile client. Parts of the site can be browsed by everyone and parts are for authorized
users (authenticated & Role checked).

At first i was troubled by the possibility that everyone can get to my REST API and read
results in the parts that don’t need special authorization, but then i realized that it's exactly
the same as scanning the final html in the site.

The important thing is to verify that you don’t serve private data which you don’t show on
the page, through the RESTful API. Specifically this privacy breach can occur when
marshaling an entire object, which contains more data than needed in the page.

Be sure to do the marshaling wisely and avoid the fields you don’t need.

Thanks again and Good day.

REPLY
—

g Colin Wiseman August 23, 2011 at 12:32 am #

HAHAH! | have done that. Built a website, downloaded every via a generic
handler and JSON - it had all the user’s passwords in it. Thankfully it didn’t go live
straight away! DOH!

REPLY

g Alex Couper August 25, 2011 at 2:33 am #

Fantastic article.

REPLY
S
m Riyad Kalla September 3, 2011 at 10:07 am #
3.
= Thanks Alex.
REPLY
T

Chris October 12, 2011 at 11:08 am #

In your outline of the algorithm, you say “combine a bunch of unique data
together (this is typically all the parameters and values you intend on sending, it is the
“data” argument in the code snippets on AWS’s site)” then HMAC that.

Does this approach open the door to a different kind of man-in-the-middle attack? If the
hashed content is just the arguments, not the full URI of the request — wouldn’t an

www thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/

24/50

http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=449665#respond
http://www.thebuzzmedia.com/
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-450931
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=450931#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-456806
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=456806#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-456930
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=456930#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-462003
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=462003#respond
http://www.thebuzzmedia.com/
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-479657
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=479657#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-572339

8/13/13 Designing a Secure REST (Web) API without OAuth

attacker be able to intercept your API call, and change the URI and/or REST verb while
using the same valid arguments? In other words, change a CREATE CAT to a CREATE
DOG, or change an UPDATE DOG to a DELETE DOG, assuming the parameters are the
same?

Seems like the hash needs to be based on the entire request, not just params.

REPLY

m Riyad Kalla october 13, 2011 at 11:31 am #
"2
WU

Chris, *excellent* catch, you are exactly right. I've updated the post to add
a note about that.

REPLY
—

Venki October 18, 2011 at 7:57 pm #

Great article.. Well explained the intricate details in layman terms !! Looking
forward for more such elegant articles !!

REPLY

e Kele October 20, 2011 at 12:34 am #

Hi Riyad,
Great article and lots of great comments.

So in a pure javascript-based web app (the client) are there any best practices for storing
the private key? Or do you just try to bury it somewhere in the source code and hope
someone doesn’t want to spend the time looking for it.

Also if you also need to authenticate user accounts not just authorize a client app it still
does seem like SSL is the safest way to go. Or use OAuth and have the user authenticate
directly on the server first and grant access to the client app to make calls on their behalf.

REPLY
—

Kevin October 26, 2011 at 9:58 pm #

Riyad,

Excellent article! Very informative for someone like myself trying to get a foundation on
which to build my first API.

| have one questions, however. Are there glaring problems with simply issuing a client a
single “secret key” and then having each request (always sent over HTTPS/SSL) look
something like api.com/service/?param1=1?param2=27key=abcd1234 and then server-
side simply compare that “key” value to something stored in the database? If the key
matches, good to go! If not, 401.

Is the username/password -> issue a token necessary?

Thanks!

REPLY
T—

m Riyad Kalla october 29, 2011 at 9:11 am #
e
WU

Kevin,

Your thinking is spot on, if you are doing everything over HTTPS the interaction with

www thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/ 25/50

http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=572339#respond
http://www.thebuzzmedia.com/
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-572384
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=572384#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-572678
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=572678#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-572738
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=572738#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-572998
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=572998#respond
http://www.thebuzzmedia.com/
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-573075

8/13/13 Designing a Secure REST (Web) API without OAuth

the API becomes infinitely easier. If your customers are good about not sharing
keys, then sure, just having them send along a key with each request (with no “login”
action) is a perfectly viable usage model.

Adding the user/password “login” process to the API is just another level of security if
you need/want it.

If you don’t need it, the API key only is fine, you just want to make sure to educate
users on how important it is that they don’t share the key or inline URLs in their
website with references to your API with their key sitting there in plain-text.

If you aren’t ever going to have use-cases like these (e.g. an API for mobile app
devs) then that should be fine.

But if it is possible you COULD end up with situations like this with users that aren’t
so security-minded, then forcing the “login” sequence helps keep them safer from
themselves

REPLY
—

Kevin November 2, 2011 at 9:33 pm #

Riyad,

Thanks for the reply! It seems like my original thinking is OK; however, I've realized
another problem: we’d have to put that secret key in an AJAX call, which would be
exposed to the browser in plain-text.

| imagine a solution wherein the AJAX passes the data instead to an intermediate page
“callAPl.php” which then appends the secret key and in turn calls the actual API with all
necessary information, without any of it being exposed client-side.

Is having this intermediate page too clunky? Is there a more obvious solution I've missed?

Thanks again for the excellent article and help!

REPLY

m Riyad Kalla November 3, 2011 at 10:37 am #
"2
¥ 2

Ahhh yea with AJAX this gets harrier. The problem with that intermediary
page is that your AJAX code calls it with no way to verify that the call is from your
web page — meaning | can watch your calls in my AJAX console and call
“callAPl.php” directly myself and ruin your day, for example: callAPl.php?
action=eraseUser&id=1,2,3,4,5....

You get the idea.

So the question is how do you know you can “trust” the JavaScript making the call
because it resides, in plain text, on a machine outside your circle of trust and
honestly, | don’t know the right way to do this.

There was another developer working on a script-generation design framework that
was doing all the generation client-side in JS, then in an AJAX call, uploading all the
PHP to the server where it would run... | pointed out that *I* can call that same AJAX
call and upload my own PHP, which executes “rm -rf /” and he wouldn’t be able to
tell a difference between my call and his call to protect from that sort of thing.

| don’t think he ever ended up addressing the security hole so | am not sure what
the “right way” to do this is.

I'll poke around and asks ome smart folks and see what | can come up with. Let me
know what you find as well!

REPLY
—

Amir November 3, 2011 at 11:20 am #

www thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/

26/50

http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=573075#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-573296
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=573296#respond
http://www.thebuzzmedia.com/
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-573308
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=573308#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-573309

8/13/13 Designing a Secure REST (Web) API without OAuth

i Riyad,
There is at least one way you can stop ajax request being made
from an intruder. The idea is to do the same thing one would do to
stop cross-site request forgery (CSRF). Some common approaches are to
check for the referrer header or using some kind of token. Using any headers
obviously won’t work because they can’t be modified even by curl!

Assuming the token is the right way to go, you could create a token just for that
user’s session and then put a hidden field with that token on the form. The ajax
request will also need to post the token for it to work correctly. Another intruder
cannot intercept and repeat the same call because they don’t have access to
the same session.

Now the important part is if the intruder was sitting at the user’'s machine then
all hell will break loose because at that point you can do anything. The idea is
not to stop someone virus or persons on the host.

Here are some readings:

http://en.wikipedia.org/wiki/Cross-site_request_forgery
http://haacked.com/archive/2011/10/10/preventing-csrf-with-ajax.aspx
http://blog.stevensanderson.com/2008/09/01/prevent-cross-site-request-
forgery-csrf-using-aspnet-mvcs-antiforgerytoken-helper/

Let me know if it makes sense.

REPLY
S—

m Riyad Kalla November 4, 2011 at 10:47 am #
- 4

Amir, great point about the session ID — | see more and more
frameworks (at least in Java land) auto-generating those with forms now
to avoid re-submissions for exactly this purpose.

| am still trying to figure out how to protect against a nefarious client, let’s
say Bob Jones, that is a jerk and wants to cause you problems. So he
connects to your app and starts sniffing/analyzing your traffic with the
intent of breaking your app and ruining your day.

How would you protect against that? | can’t think of a scenario involving
private/public keys, because you don’t necessarily trust the client — so
you can'’t give them a key. | suppose the same is true for any Android or
iOS app that has been decompiled and the private key pulled out of it,
then the person would be free to make API calls using the stolen key
from any location and your service APl would be none the wiser.

There may not be ways to protect against this stuff, | just wanted to see

what you guys thought.

REPLY
—

i Amir November 4, 2011 at 11:03 am #

| had thought of this too and came to the conclusion that
SSL fixes this. | am not sure what you mean by “connect to your
app” . There are a few things going on:

- Man in the middle attack. (Protected by SSL will take care of this
because the handshake for SSL is strictly between the client and
the server)

- Having a user sent to a specific page for example delete.php?
id=xyz is protected because the user has a different session token

Are there any use cases | am missing?

REPLY
S—

www thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/ 27/50

http://en.wikipedia.org/wiki/Cross-site_request_forgery
http://haacked.com/archive/2011/10/10/preventing-csrf-with-ajax.aspx
http://blog.stevensanderson.com/2008/09/01/prevent-cross-site-request-forgery-csrf-using-aspnet-mvcs-antiforgerytoken-helper/
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=573309#respond
http://www.thebuzzmedia.com/
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-573343
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=573343#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-573345
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=573345#respond

8/13/13 Designing a Secure REST (Web) API without OAuth

Kevin March 7, 2013 at 9:09 am #

Hi Riyad,

An excellent article which provides clarity on many aspects of
HMAC and secure REST API development.

Wanted to know your thoughts on designing RESTful APIs for
Mobile applications.

1) How do the User {of an Mobile app} get the Public & Private keys
to consume the REST services. During registration or first login?

2) Also, should we have Public & Private keys bundled for the
Mobile App which is specific to OS {Android, iOS, Windows Mobile}.
Then keys are common for the OS across all the users for the
REST API.

Appreciate any suggestion or thoughts.

Thanks,
Kevin

REPLY

m Riyad Kalla March 23, 2013 at 4:03 pm #
-
¥ 5.

Kevin,
Great questions.

1. Your only concern is the private key and transferring that
securely to the client. One way to do that is to have the client
authenticate with the host server (over HTTPS) and then
transfer the secret key for that user and have it stored on the
mobile device in secure storage and used for future
communication.

2. Yep; this is a problem that exists today. Twitter just had all
their secret app keys compromised and posted online:
https://gist.github.com/re4k/3878505 — this means that
ANYONE can make twitter API requests and identify
themselves as “the official twitter app” (for example) — with
the current OAuth impl, there is no great way to fix this. You
have to trust something and in this case trusting the host
platform to keep the keys stored in a secure location is the
best we can do. This is considered one of the “biggest flaws”
with OAuth, but | put quotes around it, because it is actually a
flaw with public/private keys in general.

REPLY
—

ﬂ orftz November 4, 2011 at 9:47 am #

Well-written, funny, informative. Thanks a lot.

REPLY
—
Riyad Kalla November 4, 2011 at 10:50 am #
orftz, most welcome. Thank you for the kind words.
REPLY
I—

www thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/ 28/50

http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-607876
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=607876#respond
http://www.thebuzzmedia.com/
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-608328
https://gist.github.com/re4k/3878505
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=608328#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-573342
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=573342#respond
http://www.thebuzzmedia.com/
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-573344
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=573344#respond

8/13/13 Designing a Secure REST (Web) API without OAuth

Luca Degasperi November 8, 2011 at 4:17 am #

Hi Riyad,
I've found this article really interesting and informing. Still | have some questions and my
application will behave as follows:

Trusted Mobile App (with public and private key) sends username and password to the
server -> if the request is valid (hmac checksum, nonce and stuff) the app gets a token for
the user.

How can | send the password in a way that it's not decriptable? Can i hmac it with the
private app key?

REPLY
I
m Riyad Kalla November 9, 2011 at 2:00 pm #
2.
= 4,

Luca,

If you are sending credentials over the wire, you'll *have* to use HTTPS for that — it
is the only way to ensure that no man-in-the-middle sniffs your traffic and ends up
with information that is important user data (either login name and/or passwords).

Once you have “logged in” the user and given back a session ID, the hard part is
that you probably should still keep doing your requests over HTTPS, because again,
a man-in-the-middle can simply intercept your SessionlD’s and do what is called
sidejacking... basically mimick an authenticated user and make requests to the
system as them.

If you want to avoid “login” and “session” keys, what you do is distribute your
public/private keys inside the client app, and then there is no authentication step... it
just makes its request along with the HMAC, the server gets the request, re-
calculates the HMAC based on some unique ID identifying the user (typically an “API
key” registered to the user) and if the HMAC checks out, runs the command the user
requested.

You can run this over HTTP and there is no need for the “login” step. This is how
OAuth 2 API authentication works, AWS API auth, etc.

Let me know if you have more questions!

REPLY
—

‘ Luca Degasperi November 9, 2011 at 2:21 pm #

| understood what you are talking about. Still | don’t think is my
problem. I'll try to explain myself better. This is the flow | want to create:

- The mobile app has a public and a private key to make it identifiable by the
server

- the mobile app requires the user a username and a password (this
credentials should be sent in some secure way).

- the url gets hmac-ed with the private key

- if everything is fine, the server sends the mobile app an authorization token,
again hmac-ed with the private key of the mobile app.

- the mobile app makes the subsequent requests with the authorization token.

My question is: having a private key on the mobile app side, can i use it to
“securely” send the user credentials to the server?

REPLY

m Riyad Kalla November 12, 2011 at 11:54 am #
2.
4

There are a few different functional parts to this question (and

www thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/

29/50

http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-573474
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=573474#respond
http://www.thebuzzmedia.com/
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-573538
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=573538#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-573539
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=573539#respond
http://www.thebuzzmedia.com/
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-573670

8/13/13 Designing a Secure REST (Web) API without OAuth

to my answer).

Credentials ==> To safely exchange a username and a password, you
have to send this over HTTPS. Keep in mind that the 2 pieces of data
(username and password) are no different than “public key” and “private
key” — you are sending two pieces of data, 1 that can be publicly known
(username OR public key) and one that CANNOT be publicly known
(password or private key) — the only way to exchange this safely is to
use HTTPS.

Authorizing API Calls ==> The authorization of API calls requires two
things (1) you know WHO is making the call and (2) you TRUST who is
making the call.

For part 1 (WHO is making the call) you can identify the user in two ways:
using a public api_key (standard) OR making them login and then giving
them a temporary “session_id” or “auth_token” that they can give back to
you, identifying themselves with each subsequent request until the
session or auth key expires (e.g. in 1hr). NOTE: In either of these cases
a malicious man-in-the-middle can intercept your identifying value and
pretend to be the user by making its own requests with their api_key or
auth_token. It is because of this that you must go on to part 2...

For part 2 (TRUST who is making the call) you need a mechanism by
which you know to trust the requests coming into your API. You *have* to
assume that a malicious man-in-the-middle has recorded an api_key or
auth_token and will try and use it, so how do you protect yourself against
bad calls? Well, this is where the Private Key comes in.

Because you cannot send the private key back to the server in plain text,
you instead generate a checksum *of* each request and send it *with*
each request back to the server (HMAC). Now the server recalculates the
checksum and if it matches, realizes that YOU are someone who knows
the private key and trusts you.

=====> That is why your “login” step and “auth_token” approach aren’t
necessary — because each request back to the server needs more than
just a simple auth token, you need to re-verify with every request that
YOU are who you say you are.

If you just use an auth token, as a malicious man-in-the-middle, all | have
to do is wait until you authorize, steal your auth-token and then make all
the requests | want on your behalf. BUT, if every request you send to the
server includes an HMAC, signed with the private key, of all the
arguments you are sending me — as the man in the middle, there is no
way | can spoof your requests until | know the private key.

| hope that helped.

REPLY
—

‘ Luca Degasperi November 12, 2011 at 12:29 pm #

Sure, this helped a lot. The part of the HMAC is crisp and
clear, now also the part of user authentication. Thank you a lot!

REPLY
—

‘ Luca Degasperi November 12, 2011 at 12:33 pm #

But what if i HMAC the authentication request with booth the user password and
the private key of the app? the password will not be sended in this case.

So | will have the trust of the application making the call and the trust of the user.

Makes sense?

www thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/ 30/50

http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=573670#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-573672
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=573672#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-573673

8/13/13

Designing a Secure REST (Web) API without OAuth

REPLY
—

m Riyad Kalla November 13, 2011 at 3:21 pm #
= 2

Luca, functionally there is nothing wrong with that, it is just adding an
unnecessary step. If you are already authenticating *every* request by way of an
HMAC, then having the user “login” in order to get an authentication token is
unnecessary, and then hashing the auth request itself after you get it, is a 2nd level
of unnecessary steps.

To best understand this, take a step ALL THE WAY back to the beginning, what is
the *1* thing we are trying to accomplish? A method for the server to ensure that the
person making requests can be trusted.

An HMAC with a public/private key does this — it lets the server know that the client
making the request has access to the private key (Which is a secret only the server
and trusted client(s) know) — so if the server gets a request from a trusted source,
that’s it, it can execute the request.

There is no need to have the user login or get a token.

NOTE: If you are going to do *all* your traffic over HTTPS, then having a user login
to get a temporary session ID that is used in subsequent requests (only over
HTTPS) can make sense, but going over HTTP — you just need the HMAC and a
public/private key.

Hope that helps!

If this gets confusing, don’t be afraid to step back from all of it, and just start from
that one goal: how does the server know how to trust the client?

If you just walk from that perspective forward, step by step, | think this all makes
more sense.

FWIW, it took me like 3 months to understand all this nonsense, | knew *nothing*
about security let alone OAUTH or HMAC’s, it wasn’t until | sat down and thought
through it myself on a piece of paper that I finally understand WHY these things are
designed this way.

Take care.

REPLY
—

Luca Degasperi November 14, 2011 at 1:59 am #

“To best understand this, take a step ALL THE WAY back to the
beginning, what is the *1* thing we are trying to accomplish? A method for the
server to ensure that the person making requests can be trusted.”

Exactly. What | need is to ensure both the application and the user can be
trusted. So two signatures for the access_token request are required. one for
trusting the app and one for trusting the user. Also the access_token the
server sends back, will need to be signed?

REPLY
—

m Riyad Kalla November 15, 2011 at 2:50 pm #
=
i 4

Ohhh, Luca my appologies, | was so focused on the client-trust
issue that | was missing the fact that you are trying to auth a user as well.

Unfortunately | am not sure of a good way to secure the access_token
once it is granted... at any point a man-in-the-middle can intercept it,
BUT, I think that is OK because your API calls themselves will be
protected via the private_key.

You can either do *all* APl communication over HTTPS and get rid of the

www thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/

31/50

http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=573673#respond
http://www.thebuzzmedia.com/
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-573721
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=573721#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-573740
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=573740#respond
http://www.thebuzzmedia.com/
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-573771

8/13/13 Designing a Secure REST (Web) API without OAuth

idea of an HMAC and securing the API queries — or if you want to do the
login over HTTPS and all other followup calls over HTTP, then we just
assume the access_token (it's really more like a session_id used to
identify the user as “logged in” for a period of time) can be compromised
at any time and actually just acts as a temporary alias for the
username/password without you needing to send back the
username/password every time you make an API call.

This helps keep the username AND password out of the hands of a
nefarious man-in-the-middle, and instead gives them a temporary alias
(the session_id/access_token) that is expired by the server as a set
period of time... BUT, he still can’t make API requests because he
doesn’t have the private key you used to generate the HMAC for each
request.

So even if he gets the session_id he cannot sidejack your sessions.

So yes, | think that works. Good idea!

REPLY

Felix November 14, 2011 at 2:45 am #

This is (imho) by far the best article on this topic I've read.
And | like your funny style of writing.
Thanks for this article, it's already bookmarked

REPLY

Riyad Kalla November 15, 2011 at 2:50 pm #

Felix, | really appreciate the kind words man; made my day.

‘ Aravind November 23, 2011 at 9:19 am #

Hey Riyad, Thanks for the wonderful article. You saved me big time.
BTW, | was wondering if there are any tutorials available for securing REST with HTTPS
or just pointers to get me going. Thanks.

REPLY

Riyad Kalla November 23, 2011 at 10:19 am #

g)

Aravind, glad it helped!

Securing a RESTful web service using HTTPS is a hell of a lot easier because you
can trust the security of the connection, so you no longer have to worry about
eaves-droppers or men-in-the-middle, you just need a way to identify the user.

If it is a simple API, you can get away with a simple api_key that you issue to the
user. If it is a robust/secure web service like a banking API, you will probably need
secret credentials from the user. To avoid them needing to send the credentials in
every request, you can have them “login” by sending their credentials once to an
endpoint like /login and you give back a session_id that you keep on the server for
say 30mins registered to them. Then as requests come in from that session ID you
know who is making requests to you.

REPLY

www thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/

32/50

http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=573771#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-573742
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=573742#respond
http://www.thebuzzmedia.com/
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-573772
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=573772#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-574067
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=574067#respond
http://www.thebuzzmedia.com/
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-574071
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=574071#respond

8/13/13 Designing a Secure REST (Web) API without OAuth

rs Aravind November 24, 2011 at 2:46 am #

| have another question here. Isn’t the below a possibility ? Using the
basic SSL authentication mechanism and using a CA certificate. By this, we
can eliminate the session id being for each request. Sorry, If I'm getting too
basic here. Just trying to understand the possibilities.

REPLY

m Riyad Kalla November 24, 2011 at 6:07 am #
2.
4

Aravind, | don’t understand the question; can you rephrase it?

REPLY

‘ Aravind November 23, 2011 at 10:26 pm #

Thanks for the response Riyad. Since I'm very much a newbie to security, | was
wondering how to redirect all my API traffic to https. I'm using HttpBasicAuthentication in
Spring for security. After making changes to Tomcat, What are the config details that |
should modify in my context to reflect the SSL settings. Please LMK

REPLY
—

m Riyad Kalla November 24, 2011 at 6:06 am #
e
WU

Aravind, sorry | don’t know what the settings are off the top of my head.
The good news is that it is a very common thing to do, so | imagine
stackoverflow.com should have you covered there.

REPLY
—

Philippe December 16, 2011 at 5:19 pm #

Hi,
first of all, congrats and thanks for this post! It's just what | was looking for to understand
the authentication dance between client/server.

I’'m developing a mobile app, so | need to set up and API and of course secure it. FYI, |
intend to make all the API calls over HTTPS.

There is a thing | can’t figure out, and I'm sure the answer is here somewhere, but | really
can’t find... It is about the private key storage, and the public key generation.

You precise that there is two ways of handling the private key, either one private key by
user or one private key by app version (as twitter do, if I've well understood). So | have
questions for both case.

Case 1: One private key per user

So how do you generate the private key, and give it to the user(or device)? How and
when does the user(or device) know his private and public keys?

Is it at the account creation? Does the user creates his account via the mobile app, then
the answer from the server is his private and public keys that | have to store on the
device?

Is it during the installation of the app on the device? Is this possible?
Case 2: One private key per app version

So let’s say, my app version is 1.2.0, and the private key is somewhere in the code. If |
understand well, the main risk is that someone finds this private key (e.g by decompiling

www thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/ 33/50

http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-574085
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=574085#respond
http://www.thebuzzmedia.com/
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-574093
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=574093#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-574081
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=574081#respond
http://www.thebuzzmedia.com/
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-574091
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=574091#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-575040

8/13/13 Designing a Secure REST (Web) API without OAuth

the app) because it is shared by all the app users using the same app version?

In this case, the “hacker” can make call on the behalf of others users, if he also knows
their public keys? is this the real issue? Or do | miss something?

What's the point of using this solution (one private key per app) instead of the first one
(one private key per user)? This solution seems riskier than the first one.

Can we imagine a solution using both case? A private key per version which is used to
generate a private key for each user on the client and server side without the need of
sending this over the wire. Because both the client and server know the “app private key”
and how to generate a “user private key” (e.g, from his email or username).

Also do you have any advice of how generate private and public keys?

Sorry, If my questions are not really clear. It is because, all this is a bit new for me. I'm
used to the oauth protocol because | develop an app which interacts a lot with social
networks, but it's the first time | need to set up my own API.

REPLY
S—

Kevin March 7, 2013 at 8:45 am #

Hi Philippe,
Am in the same dilemma as you.

1. Were you able to figure out which one is better Private Key per User vs per App?
2. If App is decompiled then the risk of exposing the keys are high.

Any thoughts or ideas?

Thanks,
Kevin

REPLY
—

Andy December 19, 2011 at 1:59 pm #

Fantastic article, Riyad! Some great insight, and you actually made reading
about securing REST services entertaining — something | would have never thought
possible! 3]

REPLY
T—

Mingus January 23, 2012 at 9:48 pm #

Wonderful write-up, this was exactly what | was looking for.

Thank you!

REPLY
—

Riyad Kalla February 2, 2012 at 1:42 pm #

r vy

Most welcome Mingus, glad it helped!

REPLY
—

prabu February 3, 2012 at 4:54 am #
hi Riyad.
Great writeup!

www thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/

34/50

http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=575040#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-607874
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=607874#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-575177
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=575177#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-586364
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=586364#respond
http://www.thebuzzmedia.com/
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-587222
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=587222#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-587467

8/13/13 Designing a Secure REST (Web) API without OAuth

| will hope to dev security framwork for restfull webservice as my Masters of Information
security degree(Research project).So i need to submit project proposal to that.can you
give me some sugession to do that..

thanks,
prabath.

REPLY

ﬂ Raphael February 9, 2012 at 5:04 pm #

Solid article, exactly was | was looking for! Thanks for sharing such great info!

REPLY

. Cristiano Fontes February 16, 2012 at 5:27 am #

Hi, very nice article | was needing this.

But it would be nice if you could point out the solutions to send the private key to the user,
because | cannot find a proper way to do it without sending it thru the wire when the user
creates it's account.

Another thing, what is the safest way to store that data in the user computer ? using
localstorage ? cookies ?

What if the user loses it ? how to proceed ?

Thanks for the article !

REPLY
T—

ahmet alp balkan February 16, 2012 at 10:54 am #

In the following blog post | explained how we can create REST APIs with a very
simple OAuth 2 authentication.

http://news.ycombinator.com/item?id=3599744

| appreciate your comments on it.

REPLY
—

Carl Partridge February 19, 2012 at 10:39 am #

Thank you so much for this — | was just beginning to consider how to secure my
new REST server and this article was comprehensive, easy-to-understand and perfect for
an introduction.

Not only that, but since my web service will be mainly dealing with mobile app clients, the
comments were really useful too. If anyone does get some good benchmarks on
iPhone/Android performance over SSL, please let us know here.

FWIW, | decided to go with SSL in the end — and | guess I'll just have an API key that can
be passed, unencrypted, as part of the querystring each time. The costs for a cert are
really reasonable these days.

C

REPLY
T—

Dima Q February 21, 2012 at 4:19 am #

Why not use SSL?

www thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/ 35/50

http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=587467#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-588107
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=588107#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-588499
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=588499#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-588519
http://news.ycombinator.com/item?id=3599744
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=588519#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-588872
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=588872#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-589163

8/13/13 Designing a Secure REST (Web) API without OAuth

All of these issues are already addressed. Get a free cert from e.g. startcom and you can
even send plaintext passwords in request if you want too, although random secure long-
lived cookie is simpler and safer.

And if you really really want, you can even disable encryption in SSL and bring stack to
the level of integrity and transparency that you propose.

REPLY

nbari February 27, 2012 at 8:28 am #

Hi, | am trying to find a way of making an “auth + post” in one single shot.

Based on your excellent article and on how amazon APl works, | think the way to go is to
share a common secret key on the client/server and on every post from the client, sign
(hash_mac) the parameters with the secret key, sending as a parameters the user key
timestamp and data.

So far so good, but | am a little lost on how to guarantee the integrity of the data, | can
authenticate, but how, from the serve side, could | check the integrity of the submitted
data?.

let me put an example, | want to use a json-rpc API for posting articles to a blog, where
the article can contain, text, images and in some cases some .zip files.

The flow | am thinking will be something like this:

1. when the editor/user submits the article, build a package, with all the text, images, zip
files etc.

2. create a checksum of the package.

3. post the data to the main server with something like:
{ authorization: user key,

signature: hash_mac($parameteres, ‘secrete_key’),
checksum: sha1_file(‘package’)

}

4. on the main server, search the secret key based on the authorization field, and validate
the signature plus the checksums.

The goal besides been authenticated, to store on the server the same data used for
creating the article and avoid possible data corruption.

Any ideas ?

REPLY

m Riyad Kalla February 27, 2012 at 9:20 am #
2.
= a0,

nbari,

You have the basic gist correct; the thing you have to remember is that the hash
(HMAC) you generate with the secret key has to include EVERY value that you don’t
want to change.

So consider this, if you just hash the params for your submission and the article
text/title but only send along checksums (e.g. MD5 or SHA-1) for your images and
ZIPs separately, if | am a nefarious man-in-the-middle, | can grab your images or
ZIPs, repackage them with my OWN content and then send them to you with correct
(new) checksums.

On the server when you to re-check the checksums on the files, they all check out
because you are just re-hasing the files *I* sent you.

What you would need to do is include the binary file checksums in your HMAC
calculation as well; so if ANYTHING AT ALL changed on its way to the server, when
you went to re-calculate all that information server side, something would be
different and you would know that someone is messing with your data and reject it.

www thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/

36/50

http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=589163#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-590256
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=590256#respond
http://www.thebuzzmedia.com/
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-590259

8/13/13 Designing a Secure REST (Web) API without OAuth

REPLY
—

Learner March 4, 2012 at 11:35 pm #

| am trying to understand. Can you please explain;
1. Why oauth2 requires params to be ordered and encoded?. (for 2-legged)

All it has to worry about is the matching signature in both the end for the given data(query
string).

We can just check the signature generated using the query string right?. (e.g ?a=1&b=2).
Since the signature is generated based on the secret key which is known only to the client
and provider, we can only consider the query string without any ordering/encoding.

Any advantage in doing ordering/encoding and then creating the signature?

REPLY

Learner March 5, 2012 at 12:49 am #

one more
How can this signature save me from man-in-the middle attack?
If I have to make a request like this to my server from client;
increaseUserPoints?userld=1&pointsToAdd=5&appld=x&token=XYZ

Now the token XYZ will be always same in the above case. The hacker can keep
posting the same request to increase the points. The server will allow since the
generated token is from the given appld is same. How to handle this case?.

REPLY
—

m Riyad Kalla March 7, 2012 at 7:27 pm #
3.
i 4

Learner,

Good question; the reason for ordering to be required is to avoid ANY potential
inconsistency in the method used to generate the signature. It is possible that an
intermediary proxy or app server modifies the query string in some way; maybe
changing the case or manipulating it by adding an additional parameter, in that case
it is important that OAuth clarify *exactly* what be used to generate the sig.

The other reason you might not want to just sign the entire query string as a string
String is because part of the query string itself is the signature and potentially other
args you *don’t* want to be part of the hash. So instead OAuth defines these
pedantic rules about combination and generation to avoid issues.

REPLY

Maxi Wu March 7, 2012 at 7:37 pm #

Hi, great discussion and article.
| have only one question, “never send the private key over the wire”.
Then, how would you and the server have the same private key?

1. mobile app, maybe the key comes with app installation
2. other URL base app, how do you get your private from the “system”?
does this system means the RESTful API? or some Key issuing web page like AMAZON?

REPLY
T—

www thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/ 37/50

http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=590259#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-590715
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=590715#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-590718
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=590718#respond
http://www.thebuzzmedia.com/
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-590830
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=590830#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-590831
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=590831#respond

8/13/13 Designing a Secure REST (Web) API without OAuth

Steven Stieng April 4, 2012 at 4:09 am #

In order to get a private key, you either have to sign up for the service and
retrieve it when you are logged in, or the whoever has the web service creates one
for you and sends it to you by e-mail.

REPLY
S—

Elvis Ligu March 29, 2012 at 5:15 am #

After reading your post | would like to share with you how | solved a problem |
had in the past in designing some secure REST services and their corresponding API
(client, and server).

Disclaimer: it was a student project and no careful design was made to solve all security
issues, however it solved a lot of issues (well at least it was a good design because it was
conforming with the project requirements). The application was developed in Java.

| had some REST services and | wanted them to be secure, so this is what | did:
1 — Design a login REST service:

REST is stateless so | couldn’t use any session oriented API the Java could offer me. So
what | did was to invent (very dummy) a session. In my design a session was just a
Session object which had a session ID (uuid) and a lastAccessTime property.

| designed a session manager which was simply an object (singleton) that would manage
the session. This manager’s job was to create a session and keep a map that would
associate sessions with session ids. An other job was to periodically check whether a
session was expired by checking the session’s currentTime — lastAccessTime >
fixedTime. The reason why the manager would check for expired sessions was just to
keep low memory footprint.

| had a service ../pubKey to which the client would perform a GET request to retrieve the
server’s public key. Once the client has the server’s public key the client issues a POST
(create) request to ../login service with the user’s credentials (password, username),
along with a client’s public key.

After the client makes a POST request to the /login service the server’s check user
credentials if they are ok, it creates a session and associates that session with the client’s
public key, and sends an OK response (actually a No Content) to client along with two
headers: session id, secret token. The secret token is encrypted with client’s public key.

What is secret token? Each time a client perform a request to server the client sends the
session id and a secret token (encrypted with server’s public key). When the server
receives this secret token it requires from session manager the session with the specified
ID, if so the server decrypts secret token using its private key and check to see if the
current secret token that this session has is the same with that that was returned from
client. In other words for each request (associated with a session) the server generates a
secret token and respond to the client with this secret token (encrypted with client’s public
key). This way if next time the client want to issue a request to the server he must specify
the secret token (the one he got from server the last time he talked to server).

After a successful login there are two things that are happening:

a) a session is required, and it is associated with the client’s public key. Also the session’s
last access time is put to the current time, and a secret token (a random string) is
generated for this session.

b) the session id and the secret token (encrypted with client’s public key) are sent to client
(as http headers).

When the client makes a call to any secure REST service he sends the session id and the
secret token (encrypted with server’s public key) along with other required (from service)
data.

When a request is sent to server the server decrypt the secret token and compare it with
the one of the session (with the specified session id). If the secret token is equal than he
proceed with the request and responds to client sending a new secret token (ecnrypted
with client’s public key), the same session id, and the other required data (if any). Also the
session’s last access time is put to current time.

www thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/ 38/50

http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-592111
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=592111#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-591950

8/13/13 Designing a Secure REST (Web) API without OAuth

Note that the secret token is sent from client to server using server’s public key and from
server to client using client’s public key. So this means that the client in order to use the
token for the next response must decrypt it with its private key and encrypt it with server’s
public key.

Using this mechanism | was able to avoid some of the security issues that you pointed out
in your post.

1) There is no way one to perform man in the midle attack: the secret token is encrypted.
2) There is no way one to perform reply attack: for each request there is always one token
so if the client already did a request an attacker can not reply the same request because
the expected token (for the specified id) is a new one.

3) Secret token, is always secure and can not be sniffed, not or used from any other
except the client: the secret token, when it is sent from server to client, is encrypted with
the client public key, so only the client who has the corresponding private key can decrypt
it.

4) No security issues with time stamp and different time zones: there is no time stamp
exchanged. A session will expire only if the time elapsed from the last access exceed a
fixed amount of time (let say 30 mins).

5) What in case a client wants to keep a session open for a long time, a functionality like
browser-cookie where the browser preserve the session cookie? We can add another
layer of negotiation (let say another REST service) where a client can instruct the server
to never expire (or to chose the amount the session can stay alive) the session, so the
server can persist the session and current secret token, and the client can do the same.
6) REST in peace: REST services are kept intact because they are not tight to security,
their URI and or query parameters are not altered, not or the resource representation. So
a developer can change service URI and query parameters, or can change the resource
representation preserving the security constraints. In the same manner he can changes a
service from secured to unsecured ignoring the http headers. In this case | have to say
that the client doesn’t presume a service is secured, he just send those headers to any
service along with its request, and when the server sends back a response he just check
for those headers, if they are present they are kept in order to make the next call to
server.

A backward of this protocol is that it is not a standard so a browser can not directly speak
to a REST service, however, if there is a javascript client available one can use AJAX to
perform a request to a service. | don’t know how can be done but | assume it is possible.

Conclusions: | just wanted to give my two cents about my (dummy) implementation of this
specific task (securing REST services), and wanted to share that with you. | don’t think my
solution is the best out there, but at least it helped me to achieve what the project
requirements were. However, if this solution is good or not, | would really like to see your
thoughts. Thank you in advance.

Elvis.

REPLY

E CaptRespect April 10, 2012 at 10:13 am #

So after all that about not using OAuth you end up with OAuth.

REPLY

Riyad Kalla April 30, 2012 at 5:47 pm #

g)

Technically 2-legged OAuth, but yes. [still thought the writeup showing the
journey would be helpful since | wasn’t familiar with OAuth before hand and didn’t
really understand the problem it was solving. So | figured I'd write the whole thing up
and hope it might help someone else.

REPLY
—

DreamMerchant september 7, 2012 at 8:36 am #

www thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/

39/50

http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=591950#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-593465
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=593465#respond
http://www.thebuzzmedia.com/
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-594106
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=594106#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-602244

8/13/13 Designing a Secure REST (Web) API without OAuth

| must say very nice article and the explanation is
excellent,crisp,clear and Simple.Kudos to Riyad.

What do you suggest in a scenario where you have multiple types of
client like mobile/.net/php and your service is exposed using
SOAP/wsH(ttpBinding(WCF).

REPLY

AA April 21, 2012 at 4:19 pm #

Thanks, you have a gift for writing, and explained in 10mins reading what |
didn’t get from reading a book on OAuth! If you wrote a Kindle book on how to build a
secure AP using OAuth 2, I'd buy it!

REPLY

Ollie Armstrong May 8, 2012 at 3:08 pm #
]

Would just like to thank you for this brilliant post. Was just about to pull my hair
out trying to work out how to make it secure! You truly are a gem of the internet!

REPLY
S—

Yadu June 24, 2012 at 9:27 pm #

Nice post! However IMHO we should start with problem statements before
putting solution.

If protocol is HTTPS then it's not possible to know real message, even if someone tries to
sniff the data, because whole data in HTTP message (except hostname) is encrypted.
Said that we need to address

- Authentication
- Data Integrity (malicious user cannot understand data but can tamper it blindly)
- Replay Attacks

Solution proposed above addresses these issues.
Apart from this | got a question.
What if someone hacks the server database and finds private key (used to get HMAC

hash) in plain text, unlike passwords which are supposed to be stored as salted hash?

REPLY

PBS June 28, 2012 at 12:09 am #

| am designing REST based APIs and was looking for something which can
throw some light on security. | found article quite interesting and detailed on same topic.
Thanks for the article.

But | have a question when the article said:

“Before making the REST API call, combine a bunch of unique data together (this is
typically all the parameters and values you intend on sending, it is the “data” argument in
the code snippets on AWS’s site)”

| have an API call like:
“DELETE /post/498578 HTTP/1.1"

There is no request parameter or body just the URI to delete.(Yes there is authentication
key also but that is part of the request headers and not body!!)

| am not sure how and what data combinations can be taken from this request. Is there

www thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/ 40/50

http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=602244#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-593843
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=593843#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-594688
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=594688#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-599005
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=599005#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-599140

8/13/13 Designing a Secure REST (Web) API without OAuth

any way to secure the authentication key in this case?

REPLY

Peter Wolanin June 30, 2012 at 9:43 am #

We’ve implement a couple HTTP APIs that use HMAC authentication and
something that's missing here and also missing in the OAuth1 2-leg and OAUth 2 MAC
spec is validation of the response from the server to the client.

You can essentially just run the process in reverse for the response — the server should
calculate a HMAC on the response body (or on a sha2 hash of the response body). We've
set it up so the response uses the same nonce as the request, and a timestamp which is
different. Send that info in a custom response header, and then the client can use the
secret key to check that the response is authentically from the service and has no been
tampered in transit.

A specific use case is for a service that provides a hosted search server. If an attacker
could inject spam or links to malware in the search response, and those were displayed to
the end user, it would be very harmful to the client.

REPLY

John July 12, 2012 at 8:18 am #

This was an excellent read, | must say. But, | am confused over one thing. The
entire article revolves around HMAC hash that is sent along with the data by the client. On
the server the data is re-hashed using the same private key that the client used. Then the
hash generated by the server is checked to be the same as the hash that was received
with the data from the client. This appears to be overly complicated.

Now, wouldn't it be easier to simply use something like openssl_encrypt (PHP) to encrypt
the data using a private key (known only to client and the server) and then later decrypt it
on the server using the same private key via openssl_decrypt? If needed the timestamp
could be added during encryption and decryption to prevent replays. Correct me if | am
wrong?

REPLY

Kanmeh West August 12, 2012 at 12:09 am #

Yo Taylor, 'm happy for you and I’'mma let you finish, but Amazon Web
Services has one of the largest and most used web APIs online right now!

REPLY
T—

a OSteEL september 11, 2012 at 10:17 am #

You're a hero.

REPLY
I
Moritz Zander September 27, 2012 at 2:32 am #
Great article! Awesome writing style.
Thanks a lot!
REPLY
—

www thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/ 41/50

http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=599140#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-599189
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=599189#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-599583
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=599583#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-601229
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=601229#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-602401
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=602401#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-602652
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=602652#respond

8/13/13 Designing a Secure REST (Web) API without OAuth

Taz October 1, 2012 at 8:38 am #

An excellent article, scarily close to my thought pattern on this one.

I'm currently developing an HTML5/jQuery/Ajax WCF JSON calls,CSS mobile app that
uses Kendo Ul Mobile to style the interface to look like a native app, it's a neat solution
although Kendo Mobile isn’t quite finished yet

| have the same issue, since it's a single page model the secretkey is exposed via the
javascript code and session variables are horribly exposed (sessionStorage.getltem etc).

I have two WCF Rest services, one for authorization and one for the data services, it’s all
SSL and currently the login validation which is done against AD returns a token, just a
guid.

The idea was to hold that key as a session variable and submit it to the data service in the
headers and validate, it's already messy as | had to take care of CORS request after
ditching JSONP calls.

| plan to hold the key and the users ID in a table on the server and check against that on
data service requests and maybe have an expiry time for the key.

Would this be enough using SSL to reasonably protect the WCF service? all the calls are
read-only thankfully in this app.

I've I'm leaving a big security hole here then please let me know, this is the 1st type of app
using WCF Rest and a mobile client I've done.

Great blog and great post.

REPLY
—

Jay Gridley October 24, 2012 at 6:46 am #

Very nice article. Thanks for it. But | have some questions... | would like to
know, how long the private key and hashed payload have to be to hmacSHA256 hash
algorithm work as designed. Or it does not mather? Thanks

REPLY
—

m Riyad Kalla october 27, 2012 at 5:32 am #
=)

Jay, good question, it doesn’t matter. The SHA256 algorithm will output a
fixed-length result regardless of input.

REPLY

Quinn November 15, 2012 at 3:07 pm #

bookmarked!!, | like your blog!

my web-site; Ratings And Reviews

REPLY
—

JPSavard December 8, 2012 at 11:02 am #

In a situation where | have a Web Client to my Public API, and lets say |
use the member password of a site as a private key and doesn’t want my client to
explicitly login and type his/her username/password everything they open the client
application, how should | deal with the secret key(password) ?

Should | store it in the cookies at least for the first login(this is a vulnerable time
frame)?

www thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/ 42/50

http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-602698
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=602698#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-602889
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=602889#respond
http://www.thebuzzmedia.com/
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-602971
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=602971#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-603481
http://www.castlelake.ie/member/168098/
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=603481#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-604024

8/13/13 Designing a Secure REST (Web) API without OAuth

Thanks in advance!

REPLY

JPSavard December 8, 2012 at 11:03 am #

In a situation where | have a Web Client to my Public API, and lets say | use the
member password of a site as a private key and doesn’t want my client to explicitly login
and type his/her username/password everything they open the client application, how
should | deal with the secret key(password) ?

Should | store it in the cookies at least for the first login(this is a vulnerable time frame)?

Thanks in advance!

REPLY
—

Shafi_trumboo December 24, 2012 at 1:06 am #

| have the same question as asked by learner??
How can this signature save me from man-in-the middle attack?
If | have to make a request like this to my server from client;
increaseUserPoints?userld=1&pointsToAdd=5&appld=x&token=XYZ

Now the token XYZ will be always same in the above case. The hacker can keep posting
the same request to increase the points. The server will allow since the generated token is
from the given appld is same. How to handle this case?.

REPLY
—

Lalit January 2, 2013 at 7:04 am #

Excellent work!
I like your style of explaining...its simple yet effective...what a writeup.

You have just explained the whole security thing so nicely, that even a newbie can secure
his endpoints without any issue and that even using any technology....Great work!!!

Really helped me a lot

REPLY

Bsh Jason McCreary January 2, 2013 at 11:04 am #

g

C

| noticed this asked a few times without a clear answer. | too have the same
question:

How do we *send* the user their private key. Consider a distributed mobile app. Until the
user logs in, it won’t have the private key. Clearly | don’t want to *send* the private key
back in plain text. | could use their credentials as the private key. But now login is a weak
link.

As noted, SSL seems to solve most of these issues. But I'm curious how a private key is
*sent™ in this case...

REPLY
S—

JSDesigner January 22, 2013 at 8:46 am #
To my believe you should add the content of an http request to your signature.

www thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/ 43/50

http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=604024#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-604025
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=604025#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-604581
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=604581#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-604937
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=604937#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-604941
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=604941#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-605887

8/13/13 Designing a Secure REST (Web) API without OAuth
We are talking about POST/PUT scenarios obviously.

Unfortunately I'm really really unable to read the content out of a request neither in a
DelegatingHandler nor in a Filter. This is due to the fact that the request can only be read
once — and apparently it already has been read. So here’s my question.

1. What am | doing wrong here... am | supposed to read the content in a
DelegatingHandler?

2. As a workaround | imagine you could build yet another hash (solely) over the content
and add that one to the header too. This way | could add the content hash to my HMAC
signature.

REPLY

Darren Mart January 29, 2013 at 3:42 pm #

You have an excellent writing style Riyad. I've got a long way to go before I've
wrapped my head around OAuth and/or other options for securing my web APls, but your
article was the first I've found that was a pleasure to read from beginning to end. The
comments have been very valuable also; the questions and follow-ups have echoed my
own questions and concerns along the way.

Very well done, kudos!

REPLY
—

Yoshi February 27, 2013 at 8:11 pm #

| know I'm late to the party on this one, but how are the private keys best
distributed in the 1st place? You say they can be disabled based on a compromise, and
need to be updated, so say it's a mobile device how are they updated?

Do you just inherently take the risk here and make sure it's over SSL?

REPLY
T—

i Dallin Skinner March 1, 2013 at 1:13 pm #
|

Thank you for the article. | found it very helpful in securing my own API. Well-
written and broken down in easy to digest steps. Once again, thank you.

In addition to this | also wrote my own blog post using an analogy with cupcakes that may
help explain the concept to a non-technical user.

http://verisage.us/en/blog/2013/02/27/securing-restful-api-hmac/

REPLY
—

Kondur March 8, 2013 at 10:33 am #

Twitter API keys & secrets have been compromised. Verified all the keys that
are mentioned in the Gist. They all work. Again brings the interesting debate whether it is
safe to bundle the keys & secrets within a mobile or desktop clients. As they can be
decompiled & exposed.

Will be interesting to see how Twitter respond to this.

http://www.readability.com/articles/27khdlyz

REPLY

Mike Miller April 10, 2013 at 3:15 pm #

www thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/ 44/50

http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=605887#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-606110
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=606110#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-607402
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=607402#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-607483
http://verisage.us/en/blog/2013/02/27/securing-restful-api-hmac/
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=607483#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-607907
http://www.readability.com/articles/27khdlyz
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=607907#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-609537

8/13/13 Designing a Secure REST (Web) API without OAuth

Great posting, and | really enjoyed the writing style — so much better than a lot
of the dry technical stuff you find other places.

REPLY
S
m Riyad Kalla April 30, 2013 at 6:52 am #
=
" Thanks Mike!
REPLY
T

fvisticot April 18, 2013 at 12:52 am #

Really great article !! and very useful
I think | have understood the mechanism when used with “standart application (mobile or
not) BUT it seems that this mechanism can not work for a pure Javascript client (what |
would like to do...)

- How to keep the private key “secure” in a pure HTML5 app ? ... everybody can open a
console and read the private key (who is part of the javascript code @)

- Is it possible to detail a “Javascript solution” and explain how to secure the APl in a pure
Javascript client... My first impression is that using HTTPS is the more simple and secure
approach.... Is it correct ?

- Another approach is to use the presented solution (private and public keys) and

obfuscate the javascript (by using JScrambler or equivalent) .. does it make sense ?

REPLY
—

m Riyad Kalla April 30, 2013 at 6:51 am #
= a5,

You are exactly right; in a pure HTML5 (JS/CSS/HTML) app, there is no
protecting the key. You would do all communication over HTTPS in which case you
wouldn’t need a key since you could safely identify a client using a standard
API_KEY or some other friendly identifier without the need or complexity of an
HMAC.

Obfuscating the JS won't help if someone wants to get to your key; so just use
HTTPS and you are all set.

REPLY
—

Nik Martin may 2, 2013 at 11:05 am #

You handle this by not storing the API key anywhere but memory. Provide
a Login form that does a round trip to the server like a normal login, but use the
user’s password as the secret API key, and store in the client’s browser as a
variable. This fiddle shows the use of HTMLS5 localStorage to achieve this:
http://jsfiddle.net/Sdx4F/

REPLY

Miqdad May 2, 2013 at 5:43 am #
Hi,

Could you please help me to write a class which will communicate with linkedin api without
oauth class ?

Thanks is advance

www thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/ 45/50

http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=609537#respond
http://www.thebuzzmedia.com/
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-610718
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=610718#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-610069
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=610069#respond
http://www.thebuzzmedia.com/
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-610717
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=610717#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-610814
http://jsfiddle.net/Sdx4F/
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=610814#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-610804

8/13/13 Designing a Secure REST (Web) API without OAuth

REPLY
—

Nik Martin may 2, 2013 at 10:56 am #

FYI, Cloudstack’s API is exactly like this. One thing that you might mention,
when generating hashes to sort all fields alphabetically before hashing with the key
on both sides (client and server) this will ensure that you are actually hashing the
same data on both ends. Some Javascript code (requires a crypto module):

https://gist.github.com/nikmartin/5499838

REPLY
—

Nik Martin May 2, 2013 at 10:58 am #

FYI, Cloudstack’s API is exactly like this. One thing that you might mention,
when generating hashes to sort all fields alphabetically before hashing with the key on
both sides (client and server) this will ensure that you are actually hashing the same data
on both ends. Some Javascript code (requires a crypto module):

https://gist.github.com/nikmartin/5499838

REPLY
I
Matt D May 13, 2013 at 7:08 am #
Great article.
REPLY
I

Matt G June 11, 2013 at 8:47 am #
£

Great article — looks like something that | need, but I'm rather new to all of this...

One confusion for me though: if my client is in javascript, how can | securely combine the
parameters with the private key and keep it private? Anyone will be able to read the
javascript and discover the private key...

REPLY
S
Khan June 12, 2013 at 4:09 am #
| am on the same boat, can some body reply to the question raised
please?
REPLY
'

Yoshi June 13,2013 at 9:15 pm #

| had similar questions when | first read this. A lot of what I've read
since then is that this sort of thing is great for app to server connections where
a predefined key can be put in the code and protected somehow, or via the
use of an encrypted keychain of some sort, but that it can tend to fall down
when used for client uses where the private key can be not so private, or even
variable.

Basically the private key needs to be secure and known to both parties before
the communication begins.

www thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/ 46/50

http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=610804#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-610812
https://gist.github.com/nikmartin/5499838
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=610812#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-610813
https://gist.github.com/nikmartin/5499838
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=610813#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-611321
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=611321#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-613073
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=613073#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-613118
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=613118#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-613206

8/13/13 Designing a Secure REST (Web) API without OAuth
If it's in a web browser or something then you could investigate setting a
localstorage variable when they put in their password (if that’s where you'’re
heading) that is scoped for your site and then having the code reference that
variable rather than hard coding the key in. If it's not a password but rather a
proper pre-shared key that is static then that's not a problem unique to this.
At least mobile devices have some sort of secure keychain for this sort of thing.

REPLY
—

E Matt G June 13, 2013 at 10:15 pm #

Many thanks for those pointers Yoshi, | will have a look and see
if | can do something along those lines.

REPLY
—

JM May 16, 2013 at 3:40 pm #

Hi guys! Great article. Some of you lost me, though, when you wrote about how
using two-legged OpenAuth is easy. I'm struggling with that part.

Is there some sample code out there for that? Everything | see is three-legged, and uses

SSL certs (was looking at DotNetOpenAuth, but the authorization server component loads
certs. From what | understand, if | only need two-legged auth, and | already have to have
certs, shouldn’t | just go ahead with SSL (if | already have to have the certs anyway?)

REPLY
—

Trackbacks/Pingbacks

1. Understanding the Unix Epoch (in Java), Time Zones and UTC - April 27, 2011

[...] I get different values, does that mean when | am writing a web service or REST API, |
need the client to send me it's timestamp as well as it’s timezone so | can properly [...]

2. My WCF4 REST Service and Entity Framework with POCO trip (5)-identity
authentication - september 22, 2011

[...] put it realize perfect, you will find yourself a and OAuth exactly the same things out, for
exampleThe elder brothersAnd he was very excited to declare their invented a need not
OAuth identity verification, results in [...]

3. AWS Elastic Load Balancer sends 2 Million Netflix APl Requests to Wrong Customer
- October 29, 2011

[...] example, if you are deploying a RESTful web service, consider securing it using 2-legged
OAuth or an HMAC or for a standard web application, only allow logins over [...]

4. Designing a Secure REST API with OAuth2 You Can Be Proud Of | ahmet alp balkan
: blog - February 16, 2012

[...] Designing a Secure REST API with OAuth2 You Can Be Proud Of Yesterday there has
been a popular post on Hacker News about Designing Secure REST API without OAuth. |
don’t agree that OAuth is that difficult to use and I'll introduce my way shortly. This post is
intented to be a reply on this topic. [...]

5. Interesting Finds: February 16, 2012 « Hank Wallace - February 16, 2012

[...] Getting started with designing a Secure REST (Web) API — Riyad Kalla Modern Web
Development — Part 5 — Shawn Wildermuth Camels, XAML and Silverlight is dead- Long live
Silverlight 5! — Surf4Fun SQL AZURE LOST ITS LEASE! EVERYTHING MUST GO! — Brent
Ozar What If You're Not CEO Material? — David Cohen What makes the Boston startup
scene special — Jeff Bussgang Share this:FacebookTwitterStumbleUponDiggRedditLike
this:LikeBe the first to like this post. [...]

6. My most important Twitter Messages #13 - Flash, Programming, Interaction | der

www thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/

47/50

http://www.thebuzzmedia.com/understanding-the-unix-epoch-in-java-time-zones-and-utc/
http://unknownerror.net/2011-08/71900-my-wcf4-rest-service-and-entity-framework-with-poco-trip-5-identity-authentication.html
http://www.thebuzzmedia.com/aws-elastic-load-balancer-sends-2-million-netflix-api-requests-to-wrong-customer/
http://ahmetalpbalkan.com/blog/designing-a-secure-rest-api-with-oauth2-you-can-be-proud-of/
http://hankwallace.wordpress.com/2012/02/16/interesting-finds-february-16-2012/
http://blog.derhess.de/2012/02/21/my-most-important-twitter-messages-13/
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=613206#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-613209
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=613209#respond
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/comment-page-1/#comment-611469
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/?replytocom=611469#respond

8/13/13 Designing a Secure REST (Web) API without OAuth

1.

hess - February 21, 2012

[...] RT Great article summing up how to implement a secure authentication scheme for
REST based web services [...]

API - Techniques | Pearltrees - March 19, 2012
[...] Designing a Secure REST (Web) API without OAuth [...]
Learning | Pearltrees - April4, 2012

[...] You realize that hashing the password and sending the hash over the wire in lieu of the
plain-text password still gives people sniffing at least the username for the account and a
hash of the password that could (in a disturbing number of cases) be looked up in a Rainbow
Table . Designing a Secure REST (Web) API without OAuth [...]

TE OAuth, FiT—1NEEH Rest (Web) APl (R52#F4%) | MyOwnSpace - May 8, 2012

[...] FEXXFELL @ http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-
authentication/ Situation [...]

Simply using HTTPS to secure your APIs | MyOwnSpace - May 10, 2012

[...] http://lwww.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/

(-]

. Quick and Dirty REST Security (or Hashes For All!) at blog.phpdeveloper.org - May 14,

2012

[...] for something a bit more lightweight (and simpler to implement a bit more quickly) | came
across this older article with a suggestion of a private key/hash combination. | figured that
could do the job nicely for a [...]

ushi » atropa API & Key based authentication - may 24, 2012

[...] spannender Punkt an einer API ist die Authenfizierung — Nach ein wenig stdébern, bin ich
auf diesen Artikel gestoRen, der die grundsatzliche Funktionsweise einer schllisselbasierten

[-]
Securing my Node.js app's REST API? | PHP Developer Resource - May 28, 2012

[...] http://lwww.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/

[.]
Securing access to PHP API | active questions php - July 5,2012
[...] have read this article but | am unsure what they mean when they [...]

» How to REST and not die trying — Writing API’s the REST way Commented Out -
August 8, 2012

[...] Custom techniques [...]
REST API for website which uses Facebook for authentication - feed99 - August 21, 2012

[...] methods as Basic Auth over HTTPS, as there are no credentials for a user as such.
Something like this seems to be only for authenticating applications using the [...]

Secure API | Code Link Archive - August 28, 2012
[...] http://lwww.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/
[.]

How do | secure my REST API? | Jisku.com - Developers Network - September 9, 2012

[...] second option is to follow the path of Amazon Web Services, where i use public/prvate
key authentication. When a user registers i use a https api to save [...]

La veille du week-end (quarante-troisiéme) | LoicG - September 14, 2012
[...] Designing a Secure REST (Web) API without OAuth : via @OSteEL [...]

RESTful APIs with Node.js and Express.js, and Backbone.js client side «
Picanteverde - October 30, 2012

http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/

(-]
(-]

Distributed Weekly 184 — Scott Banwart's Blog - December 7, 2012

www thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/

48/50

http://blog.derhess.de/2012/02/21/my-most-important-twitter-messages-13/
http://www.pearltrees.com/politicus/api-techniques/id2731714#pearl38350263&show=reveal,6
http://www.pearltrees.com/keith9820/learning/id2635786#pearl39979322&show=reveal,6
http://www.stevewang.net/?p=9
http://www.stevewang.net/archives/22
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/
http://blog.phpdeveloper.org/?p=484
http://ushi.wurstcase.net/2012/05/atropa-api-key-based-authentication/
http://www.dkphp.com/questions-2/rest/securing-my-node-js-apps-rest-api.html
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/
http://activequestionsphp.16mb.com/securing-access-to-php-api/
http://www.commented-out.com/2012/08/08/how-to-rest-and-not-die-trying-writing-apis-the-rest-way/
http://www.feed99.com/2012/08/rest-api-for-website-which-uses-facebook-for-authentication/
http://blog.shaneowens.ie/?p=188
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/
http://jisku.com/blog/2012/09/how-do-i-secure-my-rest-api/
http://blog.loicg.net/autour-dun-cafe/la-veille-du-week-end-quarante-troisieme/
http://picanteverde.wordpress.com/2012/10/31/restful-apis-with-node-js-and-express-js-and-backbone-js-client-side/
http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/
http://rogue-technology.com/blog/2012/12/distributed-weekly-184/

8/13/13 Designing a Secure REST (Web) API without OAuth
[...] Designing a Secure REST (Web) API without OAuth [...]

2. 2-legged OAuth PHP implementasyonu | Aykut Farsak - December 24, 2012

[...] geldi bu 6rnek uygulamaya 2-legged OAuth implementasyonuna. Designing a Secure
REST (Web) API without OAuth adresinde yer alan galisma yéntemini uygulayalim. Oncelikle
akisi [...]

3. IneatConseil » RESTful Authentication - January 29, 2013

[...] Designing a Secure REST (Web) API without OAuth
. http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/ [...]

4. Mobile Apps | Verisage | Blog - March 1, 2013
[...] Designing a Secure REST api without Oauth [...]
5. Authenticating RESTful web applications | on Code - April 5, 2013

[...] additional security (such a timestamps to mitigate relay attacks) to this, and | recommend
reading this excellent tutorial which sets out many of [...]

6. Restful web service API user authentication on every single call : Android
Community - For Application Development - Apri 7, 2013

[...] use HMAC-SHA256 to send a hash of the URL params over to the server. Amazon does
that and there is an article that covers how this is done. It is not as complicated as [...]

7. Secured RESTful API that can be used by Web App (angular), iOS and Android |
BlogoSfera - may 6, 2013

[...] the API like Amazon S3 as described in this great article. In short, he says that both
server and client would know of a private key, which they would use to [...]

8. Two legged OAuth authentication with Web API | BlogoSfera - May 12, 2013

[...] my approach to be similar to how Amazon Web Services does their authentication, and
there’s a great article on The Buzz Media that specifically describes how they do their
authentication at a high level. | [...]

9. Secured RESTful API that can be used by Web App (angular), iOS and Android -
Tech Forum Network - July 22, 2013

[...] the API like Amazon S3 as described in this great article. In short, he says that both
server and client would know of a private key, which they would use to [...]

0. HMAC REST API Security | 9bit Studios - July 29, 2013

[...] Designing a Secure REST (Web) API without OAuth [...]

Leave a Reply

Submit Comment

www thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/

49/50

http://aykutfarsak.com/2-legged-oauth-php-implementasyonu
http://blog.ineat-conseil.fr/2013/01/restful-authentication/
http://verisage.us/blog/2013/02/27/securing-restful-api-hmac/
http://www.errant.me.uk/blog/2013/04/authenticating-restful-web-applications/
http://androiddev.orkitra.com/?p=38454
http://www.blogosfera.co.uk/2013/05/secured-restful-api-that-can-be-used-by-web-app-angular-ios-and-android/
http://www.blogosfera.co.uk/2013/05/two-legged-oauth-authentication-with-web-api/
http://techforumnetwork.com/techqns/secured-restful-api-that-can-be-used-by-web-app-angular-ios-and-android/
http://www.9bitstudios.com/2013/07/hmac-rest-api-security/

8/13/13 Designing a Secure REST (Web) API without OAuth

MOST POPULAR TAGS

Android announcement Apple
awesome bizarre buggy cell
phones deals E3 funny game
gameplay Google auitar Hero
HDTV reatn Humor and
FuniPhone Javalaw Linux
Microsoft movie nintendo
opinion performance podcast
pO|itiC_S PS3 release
FeVvIeW screenshots
security ShenanlganS
software development Sony T-
Mobile the Gentlemen Radio tlp trailer
Video Video Games Wii xbox
Xbox 360

www thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/ 50/50

http://www.thebuzzmedia.com/tag/android/
http://www.thebuzzmedia.com/tag/announcement/
http://www.thebuzzmedia.com/tag/apple/
http://www.thebuzzmedia.com/tag/awesome/
http://www.thebuzzmedia.com/tag/bizarre/
http://www.thebuzzmedia.com/tag/buggy/
http://www.thebuzzmedia.com/tag/cell-phones/
http://www.thebuzzmedia.com/tag/deals/
http://www.thebuzzmedia.com/tag/e3/
http://www.thebuzzmedia.com/tag/funny/
http://www.thebuzzmedia.com/tag/game/
http://www.thebuzzmedia.com/tag/gameplay/
http://www.thebuzzmedia.com/tag/google/
http://www.thebuzzmedia.com/tag/guitar-hero/
http://www.thebuzzmedia.com/tag/hdtv/
http://www.thebuzzmedia.com/tag/health/
http://www.thebuzzmedia.com/tag/humor-and-fun/
http://www.thebuzzmedia.com/tag/iphone/
http://www.thebuzzmedia.com/tag/java/
http://www.thebuzzmedia.com/tag/law/
http://www.thebuzzmedia.com/tag/linux/
http://www.thebuzzmedia.com/tag/microsoft/
http://www.thebuzzmedia.com/tag/movie/
http://www.thebuzzmedia.com/tag/nintendo/
http://www.thebuzzmedia.com/tag/opinion/
http://www.thebuzzmedia.com/tag/performance/
http://www.thebuzzmedia.com/tag/podcast/
http://www.thebuzzmedia.com/tag/politics/
http://www.thebuzzmedia.com/tag/ps3/
http://www.thebuzzmedia.com/tag/release/
http://www.thebuzzmedia.com/tag/review/
http://www.thebuzzmedia.com/tag/screenshots/
http://www.thebuzzmedia.com/tag/security/
http://www.thebuzzmedia.com/tag/shenanigans/
http://www.thebuzzmedia.com/tag/software-development/
http://www.thebuzzmedia.com/tag/sony/
http://www.thebuzzmedia.com/tag/t-mobile/
http://www.thebuzzmedia.com/tag/the-gentlemen-radio/
http://www.thebuzzmedia.com/tag/tip/
http://www.thebuzzmedia.com/tag/trailer/
http://www.thebuzzmedia.com/tag/video/
http://www.thebuzzmedia.com/tag/gaming/
http://www.thebuzzmedia.com/tag/wii/
http://www.thebuzzmedia.com/tag/xbox/
http://www.thebuzzmedia.com/tag/xbox-360/

