
Huanyu Li

Human-Centered Systems, Department of Computer and
Information Science

TDP013 – Web Programming and
Interactivity

Lecture 3: JS in the browser, AJAX, CORS, Ethics
assignment

Recap from lectures 1 and 2

• JavaScript

• Callback function

• Node.js

• Server framework written in JavaScript

• Support for almost everything in ES6 (if you work with defining your code

as a module)

• MongoDB

• HTML, CSS, JavaScript Cookies

JavaScript in the
browser

JavaScript in the browser

• Browsers have a JavaScript engine that executes JavaScript code

• e.g. V8 in Chrome, SpiderMonkey in Firefox

• Web APIs are typically used with JavaScript

• A list of Web APIs: https://developer.mozilla.org/en-US/docs/Web/API

• HTML DOM API

• access to and control of HTML elements via DOM

• https://developer.mozilla.org/en-US/docs/Web/API/HTML_DOM_API

https://developer.mozilla.org/en-US/docs/Web/API
https://developer.mozilla.org/en-US/docs/Web/API
https://developer.mozilla.org/en-US/docs/Web/API
https://developer.mozilla.org/en-US/docs/Web/API/HTML_DOM_API
https://developer.mozilla.org/en-US/docs/Web/API/HTML_DOM_API
https://developer.mozilla.org/en-US/docs/Web/API/HTML_DOM_API
https://developer.mozilla.org/en-US/docs/Web/API/HTML_DOM_API

DOM

Node in DOM

• Each element in an HTML document is a node in the DOM tree (including

• <!-- comments -->)

• There are 12 different types of nodes

• Element, TextNode and AttributeNode are the three types that are generally

interesting for web design

Navigating the DOM

• To make changes to the DOM tree with JavaScript, you need to be able to get specific

elements, e.g.:

• document.getElementById(’param’) returns the element with the specified ID

• document.getElementsByTagName(’param’) returns a list of elements with a specific

tag

• document.querySelector(<css selector>) returns the first element based on a CSS

selector

• document.querySelectorAll(<css selector>) retrieves a list of elements based on a

CSS selector.

Operations on nodes

• element.childNodes returns a list of all nodes directly below element in the DOM tree.

• element.parentNode returns the node directly above element in the DOM tree.

• element.nextSibling returns the node directly to the right and at the same level as the

element in the DOM tree.

• element.previousSibling returns the node directly to the left and at the same level as

the element in the DOM tree.

Operations on nodes

• document.createElement(’param’) creates a new element based on a tag expressed

as a string

• document.createTextNode(’param’) creates a new TextNode from a string.

• element.appendChild(child) places the specified element child last in the list of nodes

directly below element

• element.removeChild(child) removes an element from the list of nodes directly below

the specified element. The node must be in the list of the element’s children.

Callback and
asynchronous calls

Event-loop

• Node.js only uses on one thread and all requests are executed in this

thread

• If Node.js waits for each line of the code to execute before continuing,

it means that everyone who made the calls to the server need to wait

If we have such a function call above, the response can be very slow

• Node.js uses Promises to handle asynchronous operations

// a function that needs longer running time
let data = ProcessNeedsLongerRunning()

Asynchronous calls

• Run a function without pausing

• can utilize callbacks or Promises

• asynchronous functions are marked with async, and return promises

• To wait on an async function use await

• wait for a resolved promise, inside an async function

• can be used to make asynchronous calls behave serially

async function doSomething(){
// e.g., time consuming processing
return "Hello World"

}

async function main() {
let a = await doSomething();
console.log(a);

}

Asynchronous calls - Promise

• Object representing a “promise”

• acts as a placeholder for a result to be available at some point

• 3 states

• pending: initial state

• fulfilled: the operation succeeded

• rejected: the operation failed

• created using “new Promise()” constructor

• the constructor takes an argument, i.e., an executor function with 2
arguments

• resolve: a function to call if the operation succeeds

• reject: a function to call if the operation fails

Asynchronous calls - Promise

• .then(...)

• this block handles successful resolutions

• .catch(...)

• this block handles rejections happened in the promise or any of the

.then blocks

• multiple .then(...) can be defined for the same Promise

Asynchronous calls - Promise

function loadData(){

return [

{'title': 'Gone in 60 seconds', 'year': 2000},

{'title': 'Pulp Fiction', 'year': 1994}

]

}

let p = new Promise((resolve, reject) => {

let data = loadData()

if(data !== null){

resolve(data)

} else {

reject('Failed to load data')

}

})

p.then((x) => {

// ‘then’ is called if we succeed

console.log('Data loaded successfully:')

console.log(JSON.stringify(x, null, 2))

}).catch((msg) => {

// 'catch' is called if we fail

console.log(`Something went wrong: ${msg}`)

})

What are callbacks?

• functions as arguments to functions

• hands over the responsibility for capturing data and events to the

called function

• in JavaScript and third-party libraries

• “If I give you my passport, could you pick up the package I ordered,

leave it outside my door and then call me?”

HTTP calls
Retrieving and Sending data on the web

Synchronous calls on the web

• The user must wait for a response and cannot do anything in the meantime.

• The entire page is refreshed.

Picture: https://www.rose-hulman.edu/Class/csse/csse290-WebProgramming/201330/Slides/lecture21-ajax.shtml

Asynchronous calls on the web

• The user can do other things while waiting for a response from the server.

• Only the affected parts of the page are changed.

https://www.rose-hulman.edu/Class/csse/csse290-
WebProgramming/201330/Slides/lecture21-ajax.shtml

AJAX

• Asynchronous JavaScript and XML

• Enables asynchronous calls on the web via JavaScript

• Is done a little differently depending on which browser is used, but the differences are

today very small

• What comes back from the server is (usually) JSON, XML, etc.

AJAX – Send request

0 UNSENT

1 OPENED

2 HEADERS_RECEIVED

3 LOADING

4 DONE

let xhttp = new XMLHttpRequest();
xhttp.onreadystatechange = () => {

if (xhttp.readyState == 4 && xhttp.status == 200) {
let data = JSON.parse(xhttp.responseText);
console.log(data);

}
};
xhttp.open('GET', 'https://gorest.co.in/public/v1/users', true);
xhttp.send();

"true" makes the call

asynchronous

HTTP methods

HTTP – methods

• Request-Response model between client and server

• Most common methods

• GET – Asks the server to return a specific resource

• HEAD – Asks the server to send information about a specified resource (without
sending the content itself)

• POST – Sends information to the server that changes information on the server
OR sends information that is inappropriate to include as part of the URL

• PUT – Adds or updates a resource

• DELETE – Deletes the specified resource

• OPTIONS – Asks the server to return a list of HTTP commands that the server
supports

HTTP – methods

• Request-Response model between client and server

• Most common methods

• GET – Asks the server to return a specific resource

• HEAD – Asks the server to send information about a specified resource (without
sending the content itself)

• POST – Sends information to the server that changes information on the server
OR sends information that is inappropriate to include as part of the URL

• PUT – Adds or updates a resource

• DELETE – Deletes the specified resource

• OPTIONS – Asks the server to return a list of HTTP commands that the server
supports

AJAX – Send data with GET

0 UNSENT

1 OPENED

2 HEADERS_RECEIVED

3 LOADING

4 DONE

let xhttp = new XMLHttpRequest();
xhttp.onreadystatechange = () => {

if (this.readyState == 4 && this.status == 200) {
let data = JSON.parse(this.responseText);
console.log(data);

}
};
xhttp.open('GET’, 'https://gorest.co.in/public/v1/users', true);
xhttp.send();

"true" makes the call

asynchronous

AJAX – Send data with POST

let xhttp = new XMLHttpRequest();
xhttp.onreadystatechange = function() {

if (this.readyState == 4 && this.status == 200) {
let data = JSON.parse(this.responseText);
console.log(data);

}
};
xhttp.open('POST', 'https://gorest.co.in/public/v1/users', true);
xhttp.setRequestHeader('Content-type', 'application/json');, xhttp.setRequestHeader('Authorization', 'Bearer
<access token>');
xhttp.send('{"name": "John Doe", "gender": "male",

"email": "john.doe@noone.com", "status": "active"}');

Code Example

fetch(...)
AJAX with promises

Why promises or callback-hell

fetchResource(
url,
function (result) {

// Do something with the result
fetchResource(

newUrl,
function (result) {

// Do something with the new result
fetchResource(
anotherUrl,
function (result) {

// Do something with the new result
},
failureCallback

);
},
failureCallback

);
},
failureCallback

);

fetchResource(url)
.then(handleResult, failureCallback)
.then(handleNewResult, failureCallback)
.then(handleAnotherResult, failureCallback);

JavaScript Fetch API

• The API allows web browser to make HTTP requests to web server

• no need to use XMLHttpRequest

• https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API

https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API

AJAX – Send request

0 UNSENT

1 OPENED

2 HEADERS_RECEIVED

3 LOADING

4 DONE

let xhttp = new XMLHttpRequest();
xhttp.onreadystatechange = () => {

if (xhttp.readyState == 4 && xhttp.status == 200) {
let data = JSON.parse(xhttp.responseText);
console.log(data);

}
};
xhttp.open('GET', 'https://gorest.co.in/public/v1/users', true);
xhttp.send();

"true" makes the call

asynchronous

fetch: AJAX with promises

const url = 'https://gorest.co.in/public/v1/users'
fetch(url, { 'method': 'GET' })

.then(resp => resp.json()) // parse and move on to the next 'then'

.then(data => {
console.log(data);

});

const url = 'https://gorest.co.in/public/v1/users'
let resp = await fetch(url, { 'method': 'GET' })
if (resp.ok) { // HTTP status 200-299

let data = await resp.json();
console.log(data);

}

CORS
Cross-Origin Resource Sharing

Same-origin policy

• A security model for web browsers

• Restrictions about how a document /scripts from one origin can access data from

another origin

• Same origin

• same protocol, host and port, “scheme/host/port”

• Link an image from an external website

• Fetch data from your API

CORS

• Restrictions due to security reasons

• “Cross-site scripting”

• Risk of injections

• Can bypass authentication

• AJAX requires that all calls are made to exactly the same domain that the client is

running on!

• If your page is on the domain http://example.com, you can only call services on

http://example.com/...

• CORS is used to explicitly grant permissions to the server for certain domains

http://example.com/
http://example.com/

CORS

• Browsers typically use the "same-origin policy"

• Before the GET/POST call, an OPTIONS call is sent to the server

• If the correct headers are returned, the browser allows you to perform GET/POST

• A relatively "neat" way of doing it that minimizes too much code changes in existing

systems

• configure CORS on the server side

CORS: Response headers

• On the server side, you add what and which domains should be allowed

based on what is written as a response in headers

• Must be added to all outgoing "responses" that you want to make available

• NOTE: Here we choose to set '*' which allows all domains to call the server. In

a production environment, you usually specify domains that should be allowed

to send calls.

let headers = {};
headers['Access-Control-Allow-Origin'] = '*';
headers['Access-Control-Allow-Methods'] = 'POST, GET, OPTIONS';
res.writeHead(200, headers);
res.end();

CORS: Response headers

• How can you speed up and simplify the process with headers?

if(req.method == 'OPTIONS'){
let headers = {};
headers['Access-Control-Allow-Origin'] = '*';
headers['Access-Control-Allow-Methods'] = 'POST, GET, OPTIONS';
res.writeHead(200, headers);
res.end();

} else {
// vid POST, GET, etc.
}

CORS: Response headers

• In Express.js we can do this easily with .use(…)

• .use(…) is called every time the app receives a request, regardless of which route is

used

• There are libs that make working with CORS even easier

• https://www.npmjs.com/package/cors

• https://www.npmjs.com/package/helmet

• …but it's a good idea to check that you don't open things up too much!

app.use((req, res, next) => {
res.header('Access-Control-Allow-Origin', '*');
res.header('Access-Control-Allow-Headers', 'Origin, X-Requested-With, Content-Type, Accept');
next();

});

https://www.npmjs.com/package/cors
https://www.npmjs.com/package/cors
https://www.npmjs.com/package/helmet
https://www.npmjs.com/package/helmet

CORS: cors middleware

• Simple usage by enabling all cross-origin requests

https://expressjs.com/en/resources/middleware/cors.html

import express from 'express';
import cors from 'cors';

let server = express();

server.use(cors())

server.get('/cors', (req, res) => {
res.status(200).send('cors');
});

CORS: cors middleware

• With cors configuration

https://expressjs.com/en/resources/middleware/cors.html

const corsOptions = {
origin: 'http://example.com',
optionsSuccessStatus: 200,
methods: ['GET', 'POST', 'PUT', 'PATCH']

};

server.use(cors(corsOptions))

server.get('/cors', cors(corsOptions), (req, res) => {
res.status(200).send('cors');

});

// cors not enabled for this route
server.get('/no-cors', (req, res) => {

res.status(200).send('no cors');
});

Can you do without CORS?

• Yes, but it gets more complicated

• You can use a “proxy” that handles all calls to the domain

• A proxy can also have other benefits such as “caching” while also working with all

browsers

• Out-of-scope in this course!

How do we check that CORS works?

• Call your server from an external domain

• Easy if your server is online

• Option 1:

• Create a file that makes a call to localhost

• Then open the file directly in the browser!

• NOTE: Does not always work for all browsers

• Option 2:

• Make a call with OPTIONS and check the content in the headers

Code Example

Responsive web design

Responsive web design

• Make web pages render well and look good on all devices

• desktops, laptops, mobiles, tablets, watches, etc.

How to design responsive web sites

• Media queries, introduced in CSS3

• it allows us to apply CSS styles based on some conditions such as screen size, device orientation,

resolution.

@media CONDITION {
/* … */
}

@media (max-width: 600px) {
body {

font-size: 14px;
background: lightblue;

}
}

More conditions: https://developer.mozilla.org/en-
US/docs/Web/CSS/CSS_media_queries/Using_media_queries

Toolkit
• Bootstrap

• Foundation

• Zimit Framework

• Pure.css

Bootstrap
• CSS framework for mobile-first front-end web development

• Grid system and components

• Button example:

• https://jsfiddle.net/lihuanyuasas/scemh0ny/

Ethics Assignment

Task Overview

• Reflect on corporate ethics policies

• Learning objective
• “Kunna redogöra och analysera etiska aspekter relaterade till ämnesområdet”

• What you need to do:

• choose a company with a formal ethical code or policy (e.g., “code of conduct”)
• software or hardware development with a global connection.

• Send your choice to Huanyu, and register on webreg by September 26, 23:59
• Assign group for seminars on October 1st

• https://www.ida.liu.se/webreg3/TDP013-2025-1/UPG1

• Apply Gibbs’s Reflective Cycle (adapted version) to analyze and reflect

• Write a reflection about 1 page (ca. 500 words)

https://www.ida.liu.se/webreg3/TDP013-2025-1/UPG1
https://www.ida.liu.se/webreg3/TDP013-2025-1/UPG1
https://www.ida.liu.se/webreg3/TDP013-2025-1/UPG1
https://www.ida.liu.se/webreg3/TDP013-2025-1/UPG1
https://www.ida.liu.se/webreg3/TDP013-2025-1/UPG1

Ethics assignment

• Include or link to the code of ethics or policy

• Upload the documents to git

• The seminar assignment is done individually

• Deadline for report: Wednesday, October 1st

• Seminar: Wednesday, October 1st 1:15 PM–5:00 PM

• Charlie Simonson: 1:15pm to 2pm, 2:15pm to 3:00pm

• Anders Fröberg: 1:15pm to 2pm, 2:15pm to 3:00pm

• Huanyu Li: 3:15pm to 4pm, 4:15pm to 5:00pm

	Slide 1: TDP013 – Web Programming and Interactivity Lecture 3: JS in the browser, AJAX, CORS, Ethics assignment
	Slide 2: Recap from lectures 1 and 2
	Slide 3
	Slide 4: JavaScript in the browser
	Slide 5: DOM
	Slide 6: Node in DOM
	Slide 7: Navigating the DOM
	Slide 8: Operations on nodes
	Slide 9: Operations on nodes
	Slide 11
	Slide 12: Event-loop
	Slide 13: Asynchronous calls
	Slide 14: Asynchronous calls - Promise
	Slide 15: Asynchronous calls - Promise
	Slide 16: Asynchronous calls - Promise
	Slide 17: What are callbacks?
	Slide 19
	Slide 20: Synchronous calls on the web
	Slide 21: Asynchronous calls on the web
	Slide 22: AJAX
	Slide 23: AJAX – Send request
	Slide 25
	Slide 26: HTTP – methods
	Slide 27: HTTP – methods
	Slide 28: AJAX – Send data with GET
	Slide 29: AJAX – Send data with POST
	Slide 31: Code Example
	Slide 32
	Slide 33: Why promises or callback-hell
	Slide 34: JavaScript Fetch API
	Slide 35: AJAX – Send request
	Slide 36: fetch: AJAX with promises
	Slide 37
	Slide 38: Same-origin policy
	Slide 39: CORS
	Slide 40: CORS
	Slide 42: CORS: Response headers
	Slide 43: CORS: Response headers
	Slide 44: CORS: Response headers
	Slide 45: CORS: cors middleware
	Slide 46: CORS: cors middleware
	Slide 47: Can you do without CORS?
	Slide 48: How do we check that CORS works?
	Slide 49: Code Example
	Slide 50
	Slide 51: Responsive web design
	Slide 52: How to design responsive web sites
	Slide 53: Toolkit
	Slide 54: Bootstrap
	Slide 55
	Slide 56: Task Overview
	Slide 57: Ethics assignment
	Slide 58

