
Huanyu Li

Human-Centered Systems, Department of Computer and 
Information Science

TDP013 – Web Programming and 
Interactivity

Lecture 1: JavaScript, Node.js, Express, MongoDB



The Web



Web applications

• No installations required

• One version for all operating systems

• Easy to “try it out”

• Web applications can run on all devices with a browser

• Updates can be made available immediately 

• Without any user actions required

• Lower maintenance costs

• Compared with desktop applications

picture from https://en.wikipedia.org/wiki/Web_server



Develop a Web application



The nature of a web server

• Hardware, a computer storing software and 

component files

• Software, controlling how web users access those 

component files

• Static Web pages

• Dynamic Web applications



HTTP communication

• HTTP, as a request-response protocol 

in client-server model

• Client sends request

• Server receives request

• Server processes request

• Server sends response

• Client receives response



HTTP overview

• Terms 

• HTTP methods



HTTP overview

• Terms 

• HTTP methods

• GET: request data from a server

• POST: send data to a server to create/update a resource

• PUT

• HEAD

• DELETE

• etc.



HTTP overview

• Terms 

• HTTP methods

• Response Codes/HTTP status messages



HTTP overview

• Terms 

• HTTP methods

• Response Codes/HTTP status messages

• 1xx: Information

• 2xx: Successful

• 3xx: Redirection

• 4xx: Client Error

• 5xx: Server Error



HTTP overview

• Terms 

• HTTP methods

• Response Codes/HTTP status messages

• Server Ports

• 80: HTTP

• 443: HTTPS



How do we call a server

• URL (Uniform Resource Locator)

• schema:

• host:

• port

• path

• query string

• fragment

       

  

u  ri  o  

 o t

  ort

  t 

  u ry   r     t

picture from https://en.wikipedia.org/wiki/URL



JavaScript



JavaScript (ES6)

• More or less complete support in all modern browsers

• JavaScript runs only in one thread (generally speaking)

• Object-oriented programming is supported but costs more memory as each 

object defines its own functions



Most important additions in ES6

• arrow functions

• let + const

• iterators + for .. of

• promises

• template strings

• classes

• modules



JavaScript Syntax
// Declare a global variable
let foo = "Hello";

// Define a function
function helloWorld(repeat) {

// Declare a local variable
let bar = "World!";

// Output log to console
console.log(foo);

let greeting = "";
// for-loop
for (let i = 0; i < repeat; i++) {

// Merge the strings and add to greeting
greeting += foo + " " + bar;

}
return greeting;

}

// function call
helloWorld(12);



Callback functions

• An important concept in JavaScript

• A function passed as an argument to other functions

• Hands over responsibility for capturing data and events to the called function

• Makes up a large part of JavaScript and the interaction with third-party libraries

• “O c  you   v  dow lo d d t   i    , do t i  ...”

• We will go into more detail about callbacks and asynchronous calls later



Assignment and Scope

• different ways to declare variables

• var (ES5)

• let (ES6)

• const (ES6)

• Differences

• var, has a scope defined by the nearest function

• let, const, have a scope defined by the nearest block

• Example

• https://jsfiddle.net/08frseu1/43/



Node.js





Server side

• Static file server

• files are never updated

• more options for dynamic web server

• PHP

• Python

• Java

• Node.js
Programs



Classical model vs. Node.js

• Classical model

• A new thread for each 

incoming call

• overhead per request

• Node.js

• only one thread where all 

requests end up in one 

event-loop



Node.js

• An environment for running JavaScript on the server

• Built on Chrome V8 JavaScript engine

• JavaScript’   v  t  tructur  wit  c llb ck  i  wid ly u  d i  Nod .j 

• Open source and available via github

• https://github.com/nodejs/node

https://github.com/nodejs/node
https://github.com/nodejs/node


Node.js

• Can be used to set up an HTTP server

• The server can receive data sent with POST, GET, DELETE, etc. 

and return, e.g., JSON

• Node.js can also communicate with a database

• write data to, or read data from a database



Node.js with JavaScript ES6

• Node.js supports almost everything from ES6

• Import or export modules requires definition of the type in 

package.json file



Node.js with JavaScript ES6

• Node.js only runs on the server side

• Various frameworks can be used for the front-end and back-end for 

the development

• Keep it in mind when you look for resources!

• Installation in different ways (apt install), otherwise nvm

(recommended)

• curl -o- https://raw.githubusercontent.com/nvm-
sh/nvm/v0.40.1/install.sh | bash



Start a new Node.js project

# create folder and index.js
mkdir my-app
cd my-app
touch index.js
# Initiate a project
npm init -y
# Install nodemon (so we don't have to restart node)
npm install nodemon
# Add start instruction to package.json under "script""
"start": “nodemon index.js”



Code Example



Callback and 
asynchronous calls 



Event-loop

• Node.js only uses on thread and all requests are executed in this 

thread

• If Node.js waits for each line of the code to execute before continuing, 

it means that everyone who made calls to the server need to wait

If we have such a function call above, the response can be very slow

• Node.js uses Promises to handle asynchronous operations

// a function that needs longer running time
let data = ProcessNeedsLongerRunning()



Asynchronous calls

• Run a function without pausing

• Utilize callbacks or Promises

• Asynchronous functions are marked with async, and return promises

• To wait on an async function use await

• wait for a resolved promise, inside an async function

• can be used to make asynchronous calls behave serially

async function doSomething(){
// e.g., time consuming processing
return "Hello World"

}

async function main() {
let a = await doSomething();
console.log(a);

}



Asynchronous calls - Promise

• Obj ct r  r    ti     “ ro i  ”

• Acts as a placeholder for a result to be available at some point

• 3 states

• pending: initial state

• fulfilled: the operation succeeded

• rejected: the operation failed

• Such an object is created using “new Promise()” constructor

• the constructor takes an argument, i.e., an executor function with 2 
arguments
• resolve: a function to call if the operation succeeds

• reject: a function to call if the operation fails



Asynchronous calls - Promise

• .then(...)

• this block handles successful resolutions

• .catch(...)

• this block handles rejections that occurred in the promise or any of 

the .then blocks

• multiple .then(...) can be defined for the same Promise



Asynchronous calls - Promise

function loadData(){

return [

{'title': 'Gone in 60 seconds', 'year': 2000},

{'title': 'Pulp Fiction', 'year': 1994}

]

}

let p = new Promise((resolve, reject) => {

let data = loadData()

if(data !== null){

resolve(data)

} else {

reject('Failed to load data')

}

})

p.then((x) => {

// ‘then’ is called if we succeed

console.log('Data loaded successfully:')

console.log(JSON.stringify(x, null, 2))

}).catch((msg) => {

// 'catch' is called if we fail

console.log(`Something went wrong: ${msg}`)

})



What are callbacks?

• Functions as arguments to functions

• Hands over the responsibility for capturing data and events to the 

called function

• In JavaScript and third-party libraries

• “I  I  iv  you  y      ort, could you  ick u  t     ck    I ord r d, 

l  v  it out id   y door   d t    c ll   ?”



Code Example



Express.js



What is Express.js

• A web application framework for Node.js

• Facilitates and speeds up the development of Node.js back-ends

• Easy to get started

import express from 'express'
const app = express()
app.get('/', function (req, res) {

res.send('Hello World!')
});
let server = app.listen(3000, () => {

let host = server.address().address
let port = server.address().port
console.log(`Lyssnar på http://${host}:${port}`)

})

mkdir app
cd app
npm init
npm install express



Frameworks built on Express.js

• Feathers: Build prototypes in minutes and production ready real-time apps in days.

• ItemsAPI: Search backend for web and mobile applications built on Express and Elasticsearch.

• KeystoneJS: Website and API Application Framework / CMS with an auto-generated React.js Admin UI.

• Kraken: Secure and scalable layer that extends Express by providing structure and convention.

• LEAN-STACK: The Pure JavaScript Stack.

• LoopBack: Highly-extensible, open-source Node.js framework for quickly creating dynamic end-toend REST APIs.

• MEAN: Opinionated fullstack JavaScript framework that simplifies and accelerates web application development.

• Sails: MVC framework for Node.js for building practical, production-ready apps.

• Bottr: Framework that simplifies building chatbot applications.

• Hydra-Express: Hydra-Express is a light-weight library which facilitates building Node.js Microservices using ExpressJS.

• Blueprint: Highly-configurable MVC framework for composing production-ready services from reusable components

• Locomotive: Powerful MVC web framework for Node.js from the maker of Passport.js



Code Example



MongoDB



MongoDB

• Data Model: Document stores

• Store data as documents

• a dictionary of key/value pairs
• keys are unique

• values are documents for instance



MongoDB



MongoDB

• Queries:

• querying in terms of conditions on document content

const cursor = db.collection(User').find({ twitter: {$ne : null} }); 



Lab 1



Lab 1

• Build a Web server using Node.js, Express.js, MongoDB

• Test your code and code coverage with Mocha framework, Istanbul/Istanbul nyc

• Register in pairs on webreg, deadline tomorrow (September 3rd)

• Scheduled sessions on September 3rd, 5th, 10th and demonstration on 12th

• Code submission deadline is September 12th 23:59 CEST (send an email with you gitlab repo to lab 

assistant)

• More information on: 

• https://www.ida.liu.se/~TDP013/laborationer/lab1.25.sv.shtml




	Slide 1: TDP013 – Web Programming and Interactivity  Lecture 1: JavaScript, Node.js, Express, MongoDB
	Slide 2
	Slide 3: Web applications
	Slide 4: Develop a Web application
	Slide 5: The nature of a web server
	Slide 6: HTTP communication
	Slide 7: HTTP overview
	Slide 8: HTTP overview
	Slide 9: HTTP overview
	Slide 10: HTTP overview
	Slide 11: HTTP overview
	Slide 12: How do we call a server
	Slide 13
	Slide 14: JavaScript (ES6)
	Slide 15: Most important additions in ES6
	Slide 16: JavaScript Syntax
	Slide 17: Callback functions
	Slide 18: Assignment and Scope
	Slide 19
	Slide 20
	Slide 21: Server side
	Slide 22: Classical model vs. Node.js
	Slide 23: Node.js
	Slide 24: Node.js
	Slide 25: Node.js with JavaScript ES6
	Slide 26: Node.js with JavaScript ES6
	Slide 27: Start a new Node.js project
	Slide 28
	Slide 29
	Slide 30: Event-loop
	Slide 31: Asynchronous calls
	Slide 32: Asynchronous calls - Promise
	Slide 33: Asynchronous calls - Promise
	Slide 34: Asynchronous calls - Promise
	Slide 35: What are callbacks?
	Slide 36: Code Example
	Slide 37
	Slide 38: What is Express.js
	Slide 39: Frameworks built on Express.js
	Slide 40
	Slide 41
	Slide 42: MongoDB
	Slide 43: MongoDB
	Slide 44: MongoDB
	Slide 45
	Slide 46: Lab 1
	Slide 47

