
TDP007 - Tenta

2024-03-21

Regler
• All kod efterrättas på denna tenta

• Vid toalettbesök ska vakt informeras.

• All form av kontakt mellan studenter under tentamens gång är strängt förbjuden.

• Böcker och anteckningssidor kan komma att granskas av assistent, vakt eller examinator
under tentamens gång.

• Frågor om specifika uppgifter eller om tentamen i stort ska ställas via tentasystemets
kommunikationsklient.

• Systemfrågor kan ställas till jourhavande genom att räcka upp handen

• Endast uppgifter inskickade före tentamenstidens slut rättas.

Hjälpmedel En Rubybok (exempelvis the pickaxe)
Ett A4-ark med egna anteckningar
Tillgång till webresurser: ruby-docs, rubular och
tidig version av kursboken

i



Information
Betygssättning vid tentamen
Tentamen består av ett antal uppgifter på varierande nivå. Uppgifter som uppfyller specifika-
tionen samt följer god sed och konventioner krävs för maxpoäng på en uppgift. Avvikelser från
ovanstående ger avdrag.

Tentan består av uppgifter (några indelade i deluppgifter) som totalt kan ge 50 poäng.

Ruby-docs
På tentan har du tillgång till referenssidorna på https://ruby-doc.org/ (både core och std-lib
finns tillgänglig) via webbläsaren.

Rubular
På tentan har du tillgång till sidan https://rubular.com/.

Givna filer
Eventuella givna filer finns länkade från kurssidan.

Avslutning
När du skickat in alla uppgifter och känner dig färdig kan du stänga tetaklienten och logga
ut.



TDP007 - ordinarie tentamen 2024-03-21 14:00 - 18:00

Uppgift 1 - Teori och Regex (10p)
Uppgift 1a (5p)
I figurspelet Warhammer bygger varje spelare sin egen samling av figurer och sedan när man
spelar så använder varje spelare en delmängd av sin samling för att utkämpa strider. För att
saker och ting ska vara rättvist kostar olika figurer olika många poäng och tillhör tre olika
kategorier (hjältar, grund och special). Man kommer överens med sin motståndare om hur
många poäng totalt som man ska använda under striden och det finns också en begränsning
av hur stor andel av poängen som får komma från olika kategorier. Exempelvis kan jag och en
motståndare kommit överens om följande:

• Max 2000 poäng

• Max 50 procent får vara av typen hjältar

• Minst 25 procent måste vara av typen grund

• Max 50 procent får vara av typen special

Förklara hur du med hjälp av denna problemlösare amb_test.rb kan ge förslag på godkända
delmängder av en spelares samling. Du behöver förklara vad för databehållare du behöver sätta
upp, hur kombinationer som ska testas genereras och hur kontrollen av en godkänd kombination
utförs. Du ska inte skapa en implementation i denna. Förklara med pseudokod och vanlig text
som enkelt går att följa för att göra implementationen.

Uppgift 1b (5p)
Implementera ett regex som motsvarar följande automat:

Uppgift 1c (5p)
Implementera ett regex som motsvarar följande automat:



TDP007 - ordinarie tentamen 2024-03-21 14:00 - 18:00

Uppgift 2 - SAX-Parsning av XML (XXXXXXXXXXXXp)
I den givna filen dnd.xml finns xml-element som representerar monster och föremål man kan
använda när man spelar Dungeons and Dragons. Pontus som DM får många frågor ifrån sina
spelare som undrar över föremåls vikter men problemet är att det existerar en stor mängd
föremål. För att underlätta detta problemet ska du nu skriva ett program som med hjälp av en
SAX-parser hämtar ut alla föremål väger mindre än 0.03 ifrån den givna filen dnd.xml.

De föremål du filtrerar ut ska sparas i form av en Array av Hashar där varje Hash innehåller
föremålets namn, typ och vikt. Du hittar ett exempel på hur man kan arbeta med en sax_parser
i sax_example.rb.

Körexempel:
[{:name=>"Copper (cp)", :type=>"$", :weight=>"0.02"},

{:name=>"Electrum (ep)", :type=>"$", :weight=>"0.02"},
{:name=>"Gold (gp)", :type=>"$", :weight=>"0.02"},
{:name=>"Platinum (pp)", :type=>"$", :weight=>"0.02"},
{:name=>"Silver (sp)", :type=>"$", :weight=>"0.02"},
{:name=>"Blowgun Needle of Slaying", :type=>"A", :weight=>"0.02"},
{:name=>"Blowgun Needles", :type=>"A", :weight=>"0.02"},
{:name=>"Blowgun Needles +1", :type=>"A", :weight=>"0.02"},
{:name=>"Blowgun Needles +2", :type=>"A", :weight=>"0.02"},
{:name=>"Blowgun Needles +3", :type=>"A", :weight=>"0.02"},
{:name=>"Walloping Blowgun Needle", :type=>"A", :weight=>"0.02"},
{:name=>"Ball Bearings", :type=>"G", :weight=>"0.002"},
{:name=>"Sling +1", :type=>"R", :weight=>"0"},
{:name=>"Sling +2", :type=>"R", :weight=>"0"},
{:name=>"Sling +3", :type=>"R", :weight=>"0"},
{:name=>"Sling of Warning", :type=>"R", :weight=>"0"},
{:name=>"Vicious Sling", :type=>"R", :weight=>"0"}]

Tips: XML elementet weight finns även bland monstren i filen så man måste se till att man är
på rätt ställe och hämtar ut informationen.

Krav: Kriteriet för vikten ska kunna sättas genom konstruktorn i parserklassen.

Krav: Programmet ska skriva ut resultatet, det behöver inte vara exakt samma representation
men informationen ska stämma överens med körexemplet.



TDP007 - ordinarie tentamen 2024-03-21 14:00 - 18:00

Uppgift 3 - DOM-Parsning av XML(XXXXXXXXXXXp)
I den givna filen dnd.xml finns xml-element som representerar monster och föremål man kan
använda när man spelar Dungeons and Dragons. Filen har de officiella föremålen i spelet och
har även uttökats med några hemmaknåpade föremål. De har frånskiljts med ett attribut i
filen. Din uppgift är nu att skriva ett program som med hjälp av en DOM-parser hämtar ut alla
föremål som uppfyller följande kriterier. Föremålet ska ha attributet tier satt till homebrew
och sällsyntheten ska ha texten common eller rare.

Körexempel:
[{:name=>"Arrows",

:rarity=>"common",
:text=>

"Ammunition: You can use a weapon that has the ammunition property to
make a ranged attack only if you have ammunition to fire from the
weapon. Each time you attack with the weapon, you expend one piece of
ammunition. Drawing the ammunition from a quiver, case, or other
container is part of the attack. At the end of the battle, you can
recover half your expended ammunition by taking a minute to search the
battlefield. Source: Player's Handbook p. 150"},

{:name=>"Arrows +2",
:rarity=>"rare",
:text=>
"You have a +2 bonus to attack and damage rolls made with this piece of
magic ammunition. Once it hits a target, the ammunition is no longer
magical. Source: Dungeon Master's Guide p. 150"}]

Tips: Sällsyntheten på ett förmål anges som en sträng i xml elementet detail i det givna dnd.xml
dokumentet.

Tips: Det kan förekomma flera text element i XML filen för ett föremål. Din lösning får endast
spara en sträng per föremål.

Krav: De föremål du filtrerar ut i funktionen ska returneras i form av en Array av Hashar där
varje Hash innehåller föremålets namn, sällsynthet och text.

Krav: Programmet ska skriva ut resultatet, det behöver inte vara exakt samma representationen
men informationen ska stämma.



TDP007 - ordinarie tentamen 2024-03-21 14:00 - 18:00

Uppgift 4 - Parser(11p)
I filen rdparse.rb finns den parser som vi arbetat med i kursen, ditt jobb i denna uppgift är
att utöka/ändra denna parser så att det givna språket nedan fungerar enligt beskrivningen. Det
här är ett domänspecifikt språk för att skapa listor av enheter i figurspelet Warhammer the
Old World, men det behöver vi inte veta mycket om. Det viktiga att veta är att det finns olika
enheter och att man sätter ihop en lista av dessa enheter innan man spelar spelet. I den givna
filen warhammerlist.txt finns ett program skrivet i språket. Det finns 3 typer av rader i denna
fil som parsern på ett rimligt generellt sätt ska kunna hantera:

• De första 6 raderna kod är tilldelning av enhetsbeskrivningar till en variabel. Formatet av
denna typ av rad är: variabelnamn, likhetstecken, enhetens namn inom citattecken, antalet
modeller i enheten, antalet poäng enheten kostar (uttryckt som helttal följt av bokstäverna
pts) och tillsist enhetens kategori. Resultatet av att köra denna rad i parsern är att en
variabel som innehåller denna information ska representeras med lämplig databehållare.

• De följande 10 raderna med kod är insättning av den data som en variabel innehåller i
spelarens lista. Listan innehåller alltså 10 enheter.

• Den sista raden i programmet skriver ut listan som skapats. För full poäng ska listan av
enheter skrivas ut en gång, formateringen behöver inte se ut precis som körexemplet, men
informationen där ska framgå.

Tips: Grammatiken för detta program kan bli mycket enkel om delar av arbetet görs i lexern.
Tips: Tänk på att vi i lexern kan skapa instanser av egna klasser och använda dessa klassers
typ för att styra grammatiken.



TDP007 - ordinarie tentamen 2024-03-21 14:00 - 18:00

Uppgift 5 - dsl (10p)
I den givna filen dsl.rb finns ett givet program skrivet i ett domänspecifikt språk, programmet
är gjort för att lättare skapa armélistor i figurspelet Warhammer. I den givna filen dsl_reader.rb
finns en påbörjad dsl-läsare med method missing. Ditt jobb är att implementera en läsare för
det givna programmet.

Det givna programmet innehåller i 2 typer av rader. En typ rad associerar data med ett namn,
detta är de första 4 raderna i programmet i dsl.rb. Först skrivs namnet på variabeln, efter
det följer 3 komma-separerade data: beskrivning, enhetstyp och poängkostnad. Denna del av
problemet ska lösas med method missing, det skall alltså gå att ha godtyckliga variabelnamn
och godtyckliga enhetstyper (dessa följer dock Rubys regler för vad ett variabelnamn är). Vid
deklaration skall de tre datapunkterna sparas undan och associeras med variabelnamnet.

Den andra typen av rad är sådana som inleds med add. Dessa rader lägger till den datan som
finns associerad med det som står efter add på raden i en lämplig databehållare. add kan läggas
som en separat medlemsfunktion i läsaren, men namnet på datan som ska läggas till behöver
fortfarande hanteras av method missing på lämpligt sätt.

Lägg till en lämplig print-funktion i din dsl-läsare och tillhörande anrop i huvudprogrammet
så programmet skriver ut resultatet med lämpligt format (formateringen behöver inte följa
körexemplet).

Körexempel:
[["1 High Elf prince on mount", "lord", 515],
["20 High Elf Lothern Seaguard", "core", 200],
["20 High Elf Lothern Seaguard", "core", 200],
["20 High Elf Lothern Seaguard", "core", 200],
["20 High Elf Phoenix Guard", "special", 300],
["20 High Elf Phoenix Guard", "special", 300],
["1 Frost Phoenix", "rare", 250]]

Två av dessa uppgifter relaterar till andra uppgifter på tentan. Vi rekommenderar att du först
löser den praktiska uppgiften och sedan svarar på motsvarande teorifråga.



TDP007 - ordinarie tentamen 2024-03-21 14:00 - 18:00

Uppgift 2 - Sax-parsning av XML (9p)
I den givna filen bgg.xml finns xml-element som representerar en spelares samling av brädspel.
Pontus letar nu efter ett riktigt bra spel att spela med sina sex kompisar, problemet är att
han har så många spel i sin samling att det är svårt att välja. Ditt jobb är att med SAX-
parsning plocka ut namnet, betyget och maximala spelarantalet på alla spel som uppfyller
följande kriterier:

• Minst 7 spelare som maximalt spelarantal

• Minst 9 i betyget som Pontus satt på spelet

Spelen du filtrerar ut ska sparas i form av en Array av Hashar, där varje Hash innehåller namn,
max spelare och betyg för ett spel. Du hittar ett exempel på hur man kan arbeta med en
sax_parser i sax_example.rb.

Körexempel:
[{:name=>"One Night Ultimate Werewolf", :maxplayers=>10, "rating"=>9},
{:name=>"Race Royale", "rating"=>10, :maxplayers=>10},
{:name=>"Team Kill", :maxplayers=>36, "rating"=>10},
{:name=>"Tempel des Schreckens", :maxplayers=>10, "rating"=>9}]

Krav: Kriterierna för spelarantal och betyg ska gå att sätta genom konstruktorn för implemen-
tationen av din strömparser.
Krav: Ett betyg som inte är satt (N/A) räknas som betyg 0.
Krav: Du kan anta att de intressanta elementen existerar men inte ordningen de förekommer
i.

Tips: Max spelarantal hittar du i elementet stats
Tips: Betyget Pontus satt på ett spel hittar du i elementet rating



TDP007 - ordinarie tentamen 2024-03-21 14:00 - 18:00

Uppgift 3 - Dom-parsning av XML(8p)
I den givna filen bgg.xml finns ett utdrag av alla spel som finns i en användares samling från
boardgamegeek. Titta igenom den filen och sätt dig in i strukturen. Filen är hämtad genom
deras xml-api.

Den här användaren har ett problem som du måste lösa. Användaren pratade nyligen med en
kompis om ett spel som de spelat tillsammans men de kan inte komma ihåg vilket spel det var.
Användaren vet följande saker om spelet:

• Spelet släpptes mellan 1997 och 1999 (inklusive på båda årtalen)

• Användaren har tidigare ägt spelet

Ditt jobb är att skriva en funktion previously_owned_in_span som tar 3 parametrar, ett
xmldocument, ett minimum år och ett maximum år. Funktionen ska sedan returnera en Array
som innehåller Hash, varje Hash representerar ett spel. Där varje Hash innehåller namnet på ett
spel och året detta släpptes. Den Array som returneras ska innehålla alla spel som uppfyller
kriterierna. Lägg till ett anrop till funktionen och en utskrift av returvärdet.

Körexempel:
{:name=>"For Sale", :year=>1997}
{:name=>"Metro", :year=>1997}
{:name=>"Mysteriet På Greveholm", :year=>1999}
{:name=>"Paths of Glory", :year=>1999}
{:name=>"ThinkBlot", :year=>1997}

Tips: Publiceringsåret finns i elementet yearpublished
Tips: Om spelet tidigare ägts finns i elementet status

Krav: Problemet ska lösas med Dom-parsning



TDP007 - ordinarie tentamen 2024-03-21 14:00 - 18:00

Uppgift 4 - Parser(11p)
I filen rdparse.rb finns den parser som vi arbetat med i kursen, ditt jobb i denna uppgift är
att utöka/ändra denna parser så att det givna språket nedan fungerar enligt beskrivningen.
Detta språk är ett mycket enkelt programspråk där användaren kan mata in ett godtyckligt
antal heltal, operatorer, tecknet p eller tecknet d, dessa separeras med blanksteg(mellanslag).
Dessa saker tolkas sedan en och en från vänster till höger. Listan nedan beskriver vad som ska
hända när varje symbol hanteras. I princip så bygger vi här en stackmaskin. Denna stackmaskin
består av en behållare som representerar stacken. I stacken läggs ett antal heltal på hög och
sedan finns det matematiska operationer som verkar på talen i stacken. Du vill lämpligen ha en
Array som representerar stacken av heltal.

• HELTAL Pusha heltalet till stacken

• p Poppa 1 heltal från stacken, skriv ut talet med puts, returnera sedan heltalet. Returen
spelar ingen roll, men rdparse hanterar returvärden av typen nil på ett speciellt sätt, så
vi behöver returnera något annat för att komma runt det vanliga returnvärdet av puts.

• d Poppa 1 heltal från stacken. Pusha det heltalet 2 gånger till stacken.

• + Poppa 2 heltal från stacken. Pusha ett nytt heltal som är summan av de två talen till
stacken.

• - Poppa 2 heltal från stacken. Pusha ett nytt heltal som är differensen av de två talen till
stacken. Tänk på ordningen eller absolutbelopp (se körexemplet).

• * Poppa 2 heltal från stacken. Pusha ett nytt heltal som är produkten av de två talen till
stacken.

• / Poppa 2 heltal från stacken. Pusha ett nytt heltal som är kvoten av de två talen till
stacken. Tänk på ordningen (se körexemplet), talet som ligger överst på stacken ska vara
täljaren och det andra talet ska vara nämnaren.

Följande strängar bör ge följande output vid körning
parser.parse_string("1 d + p") => 2
parser.parse_string("1 2 + p") => 3
parser.parse_string("2 1 - p") => 1
parser.parse_string("1 2 + 3 * p") => 9
parser.parse_string("2 3 4 + * p") => 14
parser.parse_string("1 2 + 3 * 3 / p") => 3

Tips: Tänk på att parsern i detta fall blir väldigt lättviktig eftersom varje token kan tolkas helt
separat
Tips: Försök inte att sätta ihop regler i stil med e := e + t för att hantera addition
Tips: Det är i uppgiften odefinierat vad som händer om det exempelvis inte skulle finnas
tillräckligt med tal på stacken för att utföra en operation. Det är helt ok.



TDP007 - ordinarie tentamen 2024-03-21 14:00 - 18:00

Uppgift 5 - DSL (9p)
I den givna filen dsl.rb finns en fil som specificerar ett contraintnätverk genom ett dsl. Ditt
jobb är att implementera detta domänspecifika språk med hjälp av method_missing i ruby. I
den givna filen dsl_reader.rb finns lite given kod som du kan utgå ifrån. I filen dsl.rb finns
det två olika typer av rader som din implementation ska klara av.

Den första och fjärde raden sätter upp nya binära constraints. De första 2 bokstäverna är
connectors som är indatan och den tredje bokstaven är connectorn som är utdatan, sist kommer
en sträng med operatorn. När en ny constraint sätts upp ska denna lagras i en hash där ut-
connectorn associeras med in-connectors och operatorn (se körexemplet).

De andra raderna sätter en connector till ett heltal. När en sådan rad läses in ska connectorn
associeras med heltalet.

Båda dessa Hashar ska gå att plocka ut efter inläsningen är klar, se körexempelet.

Körexempel:
constraint_network = ConstraintParser.parse("dsl.rb")
puts constraint_network.connectors()
puts constraint_network.constraints()

{:x=>5, :y=>4, :r=>6}
{

:z=>{:in_a=>:x, :in_b=>:y, :operator=>:+},
:s=>{:in_a=>:z, :in_b=>:r, :operator=>:*}

}

• Formateringen av utskrift spelar ingen roll, men datatyperna och hur de associeras med
varandra spelar roll

• Du behöver inte hantera annat än binära connectors i denna uppgift

• Du kan konvertera en sträng till en symbol med #String.to_sym

• Du kan kontrollera datatypen på ett object med #Object.is_a? Integer (för att kon-
trollera om ett object är av typen Integer)

• Din implementation ska fungera för godtyckliga operatorer (alla strängar anses vara ope-
ratorer i denna uppgift), godtyckliga namn på connectors (text som följer reglerna för ett
funktionsnamn anses vara en connector i denna uppgift).


