
TDP005 Projekt: Objektorienterat
system

Introduktion till SFML
Författare

Filip Strömbäck; Dag Jönsson

Höstterminen 2025
Version 1.1

29 november 2025



November 29, 2025 Introduktion till SFML Filip Strömbäck

Introduktion
SFML är ett bibliotek för att enkelt hantera diverse in- och utmatning utöver det som standardbiblioteket
tillhandahåller. SFML innehåller moduler för fönsterhantering, grafik, ljud och nätverk. Fönsterhanterings-
modulen hanterar de fönster på skärmen som kan ta emot indata från användaren och där programmet kan
rita saker med hjälp av grafikmodulen. Ljud- och nätverksmodulen kan också användas för att spela upp
ljud och musik, respektive nätverkskommunikation. I denna introduktion kommer vi huvudsakligen titta på
grafikmodulen och de delar av fönsterhanteringen som krävs för att hantera mus- och tangentbordsinmatning
samt grafik.

Dokumentationen för grafikmodulen finns på http://www.sfml-dev.org/documentation/2.5.1/group_
_graphics.php. Labben kräver att ni har dokumentationen tillgänglig, eftersom vi inte kommer förklara
alla klasser och funktioner ingående här. Vi visar snarare vad som finns och vad som är intressant att kika
på.

För att installera SFML på Ubuntu baserade distros, kör sudo apt-get install libsfml-dev. På IDA:s
system finns SFML installerat.

Notera att IDA:s system har SFML 2.5.1 installerat. Era system kan eventuellt installera senare versioner.
Se till att ni minst har version 2.5.1, och högst 2.6.2. Undvik att använda funktioner som introducerades i
senare versioner.

1 Skapa fönster
För att komma igång med SFML börjar vi med ett enkelt program som skapar ett fönster som visas på skär-
men. I och med detta ser vi till att vi kan kompilera program som använder SFML korrekt, och introducerar
ett par grundläggande klasser och koncept i SFML.

Börja med att skapa en källkodsfil med en main-funktion i som vanligt. I main vill vi skapa en instans av klas-
sen sf::RenderWindow. Använd konstruktorn som tar en sf::VideoMode och en sf::String som paramet-
rar, se dokumentationen här: http://www.sfml-dev.org/documentation/2.5.1/classsf_1_1RenderWindow.
php

Om vi inte gör något mer så kommer programmet först skapa ett fönster och sedan direkt avsluta, vilket
förstör fönstret igen. Om vi inte gör något annat kommer vi alltså inte se något eftersom fönstret förstörs så
snabbt. För att kunna se något lägger vi in ett anrop till sf::sleep för att vänta i ett par sekunder.

I slutändan bör filen innehålla följande kod:

#include <SFML/Graphics.hpp>

int main() {
sf::RenderWindow window{sf::VideoMode(1024, 768), "Hello World!"};

// Vänta i 5 sekunder , så att vi hinner se fönstret.
sf::sleep(sf::seconds(5));

return 0;
}

För kunna kompilera programmet måste vi se till att länka med SFML. För att göra det, lägg till flaggorna -
lsfml-graphics -lsfml-window -lsfml-system. Det länkar med modulerna system, window och system.
I detta dokument klarar vi oss med dessa tre. Se till att lägga länkningsflaggorna efter alla källkodsfiler,
annars får man länkningsfel. Alltså: (\ innebär att kommandot fortsätter på nästa rad)

Version 1.1 1 / 5

http://www.sfml-dev.org/documentation/2.5.1/group__graphics.php
http://www.sfml-dev.org/documentation/2.5.1/group__graphics.php
http://www.sfml-dev.org/documentation/2.5.1/classsf_1_1RenderWindow.php
http://www.sfml-dev.org/documentation/2.5.1/classsf_1_1RenderWindow.php


November 29, 2025 Introduktion till SFML Filip Strömbäck

g++ -std=c++17 -g -Wall -Wextra sfml.cc \
-lsfml-graphics -lsfml-window -lsfml-system -o sfml

2 Huvudloop
Varje fönster i SFML har en kö av händelser (eng. event). Varje gång användaren interagerar med vårt
fönster på något sätt (exempelvis trycker på en tangent, flyttar på musen etc.) så lägger SFML till en
händelse i fönstrets kö. För att hantera dessa händelser så används lämpligen en så kallad händelseloop (eng.
eventloop). Händelseloopen har till uppgift att regelbundet kontrollera om det finns några händelser i kön
och hantera dem. När alla händelser är hanterade så kan händelseloopen fortsätta att hantera det som ska
hända kontinuerligt (exempelvis animationer, vi kikar mer på det senare). Händelseloopen implementeras
ofta så här:

while (!closed) {
Event event{};
while (window.pollEvent(event)) {

processEvent(event)
}
update(...)

}

Funktionen pollEvent finns i SFML och försöker hämta en händelse från händelsekön och spara den i event.
Om händelsekön är tom så returnerar den false, annars returnerar den true. Se http://www.sfml-dev.
org/documentation/2.5.1/classsf_1_1Window.php.

processEvent är en funktion som vi implementerar. Den har till uppgift att undersöka event och att agera
på det om det behövs. Se http://www.sfml-dev.org/documentation/2.5.1/classsf_1_1Event.php för
att se vilka typer av händelser som finns i SFML.

update är också en funktion som vi implementerar. Här kommer vi lägga logik för att rita om skärmen, upp-
datera animationer och liknande. För att göra detta behöver vi tillgång till exempelvis vårt RenderWindow,
så lämpliga parametrar behöver läggas till.

Med hjälp av detta kan vi nu modifiera vårt program så att det väntar på att användaren stänger fönstret
innan det avslutas. Kika på händelsen sf::Event::Closed.

3 Rita till skärmen
Hittills har vi bara skapat ett fönster. Eftersom vi inte har ritat något i det så ser det ut som om det är
transparent. Därför ska vi nu kika på hur man ritar till ett fönster i SFML.

SFML fungerar likt hur många andra grafikbibliotek fungerar. När ett fönster skapas så skapar SFML två
buffrar i minnet, en som innehåller den bild som visas på skärmen för närvarande (front buffer) och en som
innehåller den bild som vi håller på att rita till för närvarande (back buffer), och kopieras till den buffern
som visas på skärmen när vi är klara med att rita. Detta kallas för dubbelbuffring och används för att
elliminera flimmer. Skulle man rita direkt till skärmen så skulle man ibland se delvis färdigritade bilder
eftersom skärmen ritas om lite när den vill, och generellt inte synkroniserad med ditt program.

I ett spel vill vi typiskt rita om skärmen så ofta vi kan (i alla fall nästan), så att rita om skärmen är något
vi vill göra i update-steget i huvudloopen ovan. Att rita till fönstret följer följande procedur:

• clear - fyll buffern vi ritar till med en solid färg (med svart som standard).

• rita med draw

Version 1.1 2 / 5

http://www.sfml-dev.org/documentation/2.5.1/classsf_1_1Window.php
http://www.sfml-dev.org/documentation/2.5.1/classsf_1_1Window.php
http://www.sfml-dev.org/documentation/2.5.1/classsf_1_1Event.php


November 29, 2025 Introduktion till SFML Filip Strömbäck

• display - kopiera det vi ritade till skärmen.

Kika på http://www.sfml-dev.org/documentation/2.5.1/classsf_1_1RenderTarget.php för att se den
relevanta dokumentationen.

När vi gjort detta bör vårt fönster bli svart i stället för att innehålla gammalt skräp från skärmen.

4 Grafik
Nu när vi har fått igång strukturen för att rita till skärmen är det dags att rita något mer intressant än en
tom skärm. I SFML gör man detta genom att skapa en figur (eng. shapes) och sedan rita ut dem. En figur
innehåller information om vad som ska ritas, såsom vilken kontur som ska ritas, var på skärmen den ska ritas,
och vilken färg och textur den ska ha. I SFML finns det färdiga implementationer av cirklar, rektanglar och
text, men det går också att skapa egna om man vill. Kika på http://www.sfml-dev.org/documentation/
2.5.1/group__graphics.php för att se detaljer.

I allmänhet är det bra att skapa de figurer som ska användas en gång och sedan återanvända dem så länge
som möjligt. Skapa alltså inte alla figurer varje gång de ska ritas ut, eftersom det ofta kostar prestanda
att skapa dem. När en figur har skapats kan man flytta på dem med hjälp av setPosition. Det är också
värt att titta på setOrigin för att bestämma var i figuren origo ska vara, vilket kan göra det smidigare att
använda setPosition senare.

För att i slutändan rita upp en figur används medlemmen draw på det fönster man vill rita i.

5 Inmatning
Nu när vi kan rita objekt på skärmen är det dags att titta närmare på hur man kan sköta inmatning från
tangentbordet för att exempelvis styra den figur vi just ritat upp.

Som tidigare nämnts kommer indata från användaren som händelser. Dessa hanterar vi i motsvarigheten
till processEvent i vår kod. Ett problem som ofta uppkommer i spel är man ofta är intresserad av om en
tangent på tangentbordet är nedtryckt snarare än när tangenterna trycks ner och släpps upp. Därför brukar
det vara smidigt att göra på följande vis:
bool upPressed{false};
while (!closed) {

Event event{};
while (window.pollEvent(event)) {

if (/* upp-tangenten trycktes ner */) {
upPressed = true;

} else if (/* upp-tangenten släpptes */) {
upPressed = false;

}
}

if (upPressed)
// flytta figuren ett par pixlar uppåt

// Rita upp allt.
}

Kika på händelserna sf::Event::KeyPressed, sf::Event::KeyReleased och sf::Keyboard på http:
//www.sfml-dev.org/documentation/2.5.1/classsf_1_1Event.php för detaljer. Låt sedan användaren
styra figuren på skärmen med tangentbordet.

Version 1.1 3 / 5

http://www.sfml-dev.org/documentation/2.5.1/classsf_1_1RenderTarget.php
http://www.sfml-dev.org/documentation/2.5.1/group__graphics.php
http://www.sfml-dev.org/documentation/2.5.1/group__graphics.php
http://www.sfml-dev.org/documentation/2.5.1/classsf_1_1Event.php
http://www.sfml-dev.org/documentation/2.5.1/classsf_1_1Event.php


November 29, 2025 Introduktion till SFML Filip Strömbäck

6 Animation
Det som kan hända om man använder ovanstående i lösning i ett större program är att figuren kan röra sig
i ojämn hastighet. Det som händer är att varje iteration i den yttre loopen tar olika tid på grund av att
olika mycket arbete behöver utföras i olika iterationer. I och med detta så tar det olika lång tid mellan att
figuren flyttas och därmed kan hastigheten variera.

För att lösa detta finns två saker man kan göra: dels att använda vertical synchronization eller vsync, och
dels kan man mäta hur lång tid som har passerat mellan varje bildruta som har ritats upp.

Tearing av en cirkel
som rör sig åt höger.

Vsync innebär att anropet till display väntar på att skärmen ritas om. Detta sker
ungefär 60 gånger per sekund. Att sätta på vsync innebär alltså att huvudloopen
blir begränsad till 60 iterationer per sekund, alltså ca 16 millisekunder per iteration
oavsett hur snabbt koden i loopen körs. Om det ibland tar mer än 16 millisekunder att
rita en bildruta så kommer såklart animationer bli ojämna, men det är ofta enklare
att hålla exekeveringstiden under 16 millisekunder än att hålla exekeveringstiden
jämn. Att använda vsync har ytterligare en fördel: det förhindrar så kallad tearing.
Om man inte använder vsync så kan kopieringen av den nyligen ritade bildrutan
till skärmen ske under tiden som skärmen ritas om. Eftersom detta sker uppifrån
och nedåt så kan det bli så att övre delen av skärmen visar den gamla bildrutan
medan nedre halvan har hunnit få nästa nya bildruta. Detta syns ibland som ett
horisontellt streckpå skärmen, speciellt när objekt rör sig horisontellt på skärmen. För
att aktivera vsync i SFML, anropa medlemsfunktionen setVerticalSyncEnabled på
Window-objektet.

Utöver vsync, kan vi låta animationernas bero på den tid som förflutit i stället för att bero på antalet
bildrutor som har ritats upp. För att ådstakomma detta kan man använda sf::Timer, se http://www.
sfml-dev.org/documentation/2.5.1/classsf_1_1Clock.php. Titta specifikt på restart-funktionen. För
att låta animationen bero på förfluten tid, kan man göra följande:

sf::Clock clock;
float speed{250.0f};
float x{0};

while (!closed) {
while (event = window.pollEvent()) {

// ...
}

sf::Time delta{clock.restart()};
x += delta.milliseconds() * speed / 1000.0f;
// rita ut något på position x som tidigare.

}

Här kan vi se att x ökar med speed pixlar per sekund i stället för ett fix antal pixlar per bildruta. Detta gör
också att animationerna sker med samma hastighet på olika snabba datorer.

Implementera detta i ditt exempelprogram så att figuren som styrs med tangentbordet rör sig med en fix
hastighet oberoende av antalet bildrutor per sekund.

7 Ytterligare läsning
Med SFML är det enkelt att ladda bildfiler från fil och visa dem på skärmen med hjälp av sf::Texture (http:
//www.sfml-dev.org/documentation/2.5.1/classsf_1_1Texture.php). Denna textur kan appliceras på

Version 1.1 4 / 5

http://www.sfml-dev.org/documentation/2.5.1/classsf_1_1Clock.php
http://www.sfml-dev.org/documentation/2.5.1/classsf_1_1Clock.php
http://www.sfml-dev.org/documentation/2.5.1/classsf_1_1Texture.php
http://www.sfml-dev.org/documentation/2.5.1/classsf_1_1Texture.php


November 29, 2025 Introduktion till SFML Filip Strömbäck

figurer med hjälp av setTexture. Tänk bara på att se till att inte skapa fler än ett Texture-objekt för en
textur. Föredra alltså att ladda en textur en gång och låt alla figurer som ska använda texturen dela på
samma textur.

8 Slutmål
Vid detta läge bör ni ha en figur som ni kan flytta runt i ert fönster. Er main funktion bör vid detta läge börja
bli ganska lång, och ni har eventuellt tillstånd (state) som skickas runt i parametrar eller sparats globalt,
som eventuellt gör det lite knepigt att få en bra översikt över vad som händer. För att hjälpa med detta ska
ni nu bryta ut allt till en egen klass.

Gör detta enligt konstens alla regler, skapa en klass som håller i själva fönstret, och eventuellt tillstånd,
kalla den Game, skapa en header och en implementationsfil. Er klass bör bli likt nedan exempel. Ni vill eller
behöver modifiera exemplet så att det passar er lösning. Uppdatera main så att den endast skapar en instans
av Game och anropar run().

Slutmålet för denna lab är alltså att ni ska ha en figur som går att flytta runt i fönstret. Ni ska också ha en
övergripande klass som har koll på speletstillstånd som skapas i main-funktionen.

class Game {
public:

Game();

/* Run the main game loop */
void run();

private:
sf::RenderWindow window;

/* Process events */
void processEvent(sf::Event const& e);

/* Updates the games state */
void update();

/* Draw the updated state */
void draw();

};

Version 1.1 5 / 5


	Skapa fönster
	Huvudloop
	Rita till skärmen
	Grafik
	Inmatning
	Animation
	Ytterligare läsning
	Slutmål

