LINKOPINGS UNIVERSITET

TDP005 Projekt: Objektorienterat
system

Introduktion till SFML

Forfattare

Filip Strombéck; Dag Jonsson

[
‘; Hostterminen 2025
Version 1.1

IN P::JR 29 november 2025



November 29, 2025 Introduktion till SFML Filip Strombéck

Introduktion

SFML é&r ett bibliotek for att enkelt hantera diverse in- och utmatning utéver det som standardbiblioteket
tillhandahaller. SFML innehaller moduler for fonsterhantering, grafik, ljud och nétverk. Fonsterhanterings-
modulen hanterar de fénster pa skdrmen som kan ta emot indata fran anvindaren och déir programmet kan
rita saker med hjilp av grafikmodulen. Ljud- och nédtverksmodulen kan ocksa anvindas for att spela upp
ljud och musik, respektive natverkskommunikation. I denna introduktion kommer vi huvudsakligen titta pa
grafikmodulen och de delar av fonsterhanteringen som krévs for att hantera mus- och tangentbordsinmatning
samt grafik.

Dokumentationen for grafikmodulen finns pa http://www.sfml-dev.org/documentation/2.5.1/group_
_graphics.php. Labben kraver att ni har dokumentationen tillgédnglig, eftersom vi inte kommer forklara
alla klasser och funktioner ingédende hér. Vi visar snarare vad som finns och vad som &r intressant att kika
pa.

For att installera SEFML pa Ubuntu baserade distros, kor sudo apt-get install libsfml-dev. P& IDA:s
system finns SFML installerat.

Notera att IDA:s system har SFML 2.5.1 installerat. Era system kan eventuellt installera senare versioner.
Se till att ni minst har version 2.5.1, och hogst 2.6.2. Undvik att anvinda funktioner som introducerades i
senare versioner.

1 Skapa fonster

For att komma igang med SEFML boérjar vi med ett enkelt program som skapar ett fonster som visas pa skér-
men. I och med detta ser vi till att vi kan kompilera program som anvinder SFML korrekt, och introducerar
ett par grundlidggande klasser och koncept i SEML.

Borja med att skapa en kéllkodsfil med en main-funktion i som vanligt. I main vill vi skapa en instans av klas-
sen sf: :RenderWindow. Anvénd konstruktorn som tar en sf::VideoMode och en sf::String som paramet-
rar, se dokumentationen hér: http://www.sfml-dev.org/documentation/2.5.1/classsf_1_1RenderWindow.
php

Om vi inte gor ndgot mer sd kommer programmet forst skapa ett fonster och sedan direkt avsluta, vilket
forstor fonstret igen. Om vi inte gér ndgot annat kommer vi alltsa inte se nagot eftersom fonstret forstors sa
snabbt. For att kunna se nagot ldgger vi in ett anrop till sf: :sleep for att véinta i ett par sekunder.

I slutdndan bor filen innehalla féljande kod:
#include <SFML/Graphics.hpp>

int main() {
sf::RenderWindow window{sf::VideoMode (1024, 768), "Hello World!"};

// Vanta i 5 sekunder, s& att vi hinner se fdénstret.
sf::sleep(sf::seconds(5));

return O;

}

For kunna kompilera programmet maste vi se till att linka med SFML. For att gora det, ldgg till flaggorna -
1lsfml-graphics -lsfml-window -lsfml-system. Det ldnkar med modulerna system, window och system.
I detta dokument klarar vi oss med dessa tre. Se till att lagga ldnkningsflaggorna efter alla kéllkodsfiler,
annars far man lankningsfel. Alltsa: (\ innebér att kommandot fortsétter pa nista rad)

Version 1.1 1/5


http://www.sfml-dev.org/documentation/2.5.1/group__graphics.php
http://www.sfml-dev.org/documentation/2.5.1/group__graphics.php
http://www.sfml-dev.org/documentation/2.5.1/classsf_1_1RenderWindow.php
http://www.sfml-dev.org/documentation/2.5.1/classsf_1_1RenderWindow.php

November 29, 2025 Introduktion till SFML Filip Strombéck

g++ -std=c++17 -g -Wall -Wextra sfml.cc \
-lsfml-graphics -1lsfml-window -lsfml-system -o sfml

2 Huvudloop

Varje fonster i SFML har en ko av hdndelser (eng. event). Varje gang anviandaren interagerar med vart
fonster pd ndgot sitt (exempelvis trycker pa en tangent, flyttar pd musen etc.) sa ligger SFML till en
héindelse i fonstrets ko. For att hantera dessa handelser sé anvinds ldmpligen en sd kallad hindelseloop (eng.
eventloop). Héndelseloopen har till uppgift att regelbundet kontrollera om det finns nagra hindelser i kon
och hantera dem. Nar alla hdndelser dr hanterade sa kan hindelseloopen fortsdtta att hantera det som ska
hénda kontinuerligt (exempelvis animationer, vi kikar mer pa det senare). Handelseloopen implementeras
ofta sa har:

while (!closed) {
Event event{};
while (window.pollEvent(event)) {
processEvent (event)
}
update (...)
}

Funktionen pollEvent finns i SFML och férsoker hdmta en hiandelse fran handelsekén och spara den i event.
Om héndelsekdn ar tom sa returnerar den false, annars returnerar den true. Se http://www.sfml-dev.
org/documentation/2.5.1/classsf_1_1Window.php.

processEvent &r en funktion som vi implementerar. Den har till uppgift att undersoka event och att agera
pa det om det beh6vs. Se http://www.sfml-dev.org/documentation/2.5.1/classsf_1_1Event.php for
att se vilka typer av handelser som finns i SFML.

update dr ocksa en funktion som vi implementerar. Har kommer vi lagga logik for att rita om skdrmen, upp-
datera animationer och liknande. For att gora detta behéver vi tillgdng till exempelvis vart RenderWindow,
sa lampliga parametrar behover laggas till.

Med hjalp av detta kan vi nu modifiera vart program sa att det vintar pa att anvindaren stdnger fonstret
innan det avslutas. Kika pa héndelsen sf: :Event: :Closed.

3 Rita till skarmen

Hittills har vi bara skapat ett fonster. Eftersom vi inte har ritat nagot i det sa ser det ut som om det &r
transparent. Darfor ska vi nu kika pa hur man ritar till ett fonster i SEML.

SFML fungerar likt hur manga andra grafikbibliotek fungerar. Néar ett fonster skapas sa skapar SFML tva
buffrar i minnet, en som innehaller den bild som visas pa skidrmen for niarvarande (front buffer) och en som
innehéller den bild som vi héller pa att rita till for ndrvarande (back buffer), och kopieras till den buffern
som visas pa skidrmen nar vi dr klara med att rita. Detta kallas for dubbelbuffring och anviands for att
elliminera flimmer. Skulle man rita direkt till skdrmen sa skulle man ibland se delvis fardigritade bilder
eftersom skédrmen ritas om lite nér den vill, och generellt inte synkroniserad med ditt program.

I ett spel vill vi typiskt rita om skdrmen sa ofta vi kan (i alla fall ndstan), sd att rita om skérmen ar nigot
vi vill gora i update-steget i huvudloopen ovan. Att rita till fonstret foljer foljande procedur:

o clear - fyll buffern vi ritar till med en solid firg (med svart som standard).

e rita med draw

Version 1.1 2/5


http://www.sfml-dev.org/documentation/2.5.1/classsf_1_1Window.php
http://www.sfml-dev.org/documentation/2.5.1/classsf_1_1Window.php
http://www.sfml-dev.org/documentation/2.5.1/classsf_1_1Event.php

November 29, 2025 Introduktion till SFML Filip Strombéck

o display - kopiera det vi ritade till skdrmen.

Kika pa http://www.sfml-dev.org/documentation/2.5.1/classsf_1_1RenderTarget.php for att se den
relevanta dokumentationen.

Nar vi gjort detta bor vart fonster bli svart i stéllet for att innehélla gammalt skrap fran skdrmen.

4 Grafik

Nu nér vi har fatt igdng strukturen for att rita till skdrmen &r det dags att rita nagot mer intressant &n en
tom skdrm. I SFML gér man detta genom att skapa en figur (eng. shapes) och sedan rita ut dem. En figur
innehaller information om vad som ska ritas, sdsom vilken kontur som ska ritas, var pa skdrmen den ska ritas,
och vilken farg och textur den ska ha. I SFML finns det fardiga implementationer av cirklar, rektanglar och
text, men det gar ocksa att skapa egna om man vill. Kika pd http://www.sfml-dev.org/documentation/
2.5.1/group__graphics.php for att se detaljer.

I allménhet ar det bra att skapa de figurer som ska anviandas en gang och sedan ateranvinda dem s& ldnge
som mojligt. Skapa alltsa inte alla figurer varje gang de ska ritas ut, eftersom det ofta kostar prestanda
att skapa dem. Nar en figur har skapats kan man flytta pa dem med hjilp av setPosition. Det ar ocksa
vart att titta pa setOrigin for att bestdmma var i figuren origo ska vara, vilket kan gora det smidigare att
anvinda setPosition senare.

For att i slutédndan rita upp en figur anvinds medlemmen draw pa det fonster man vill rita i.

5 Inmatning

Nu nér vi kan rita objekt p& skdrmen &ar det dags att titta ndrmare pa hur man kan skéta inmatning fran
tangentbordet for att exempelvis styra den figur vi just ritat upp.

Som tidigare ndmnts kommer indata fran anvdndaren som héndelser. Dessa hanterar vi i motsvarigheten
till processEvent i var kod. Ett problem som ofta uppkommer i spel &r man ofta &r intresserad av om en
tangent pa tangentbordet dr nedtryckt snarare d&n nir tangenterna trycks ner och slapps upp. Déarfor brukar
det vara smidigt att gora pa foljande vis:

bool upPressed{false}l};
while (!'closed) {
Event event{};
while (window.pollEvent(event)) {
if (/* upp-tangenten trycktes ner */) {

upPressed = true;
} else if (/* upp-tangenten slépptes */) {
upPressed = false;

}
}

if (upPressed)
// flytta figuren ett par pixlar uppat

// Rita upp allt.
}

Kika pa héndelserna sf::Event::KeyPressed, sf::Event::KeyReleased och sf::Keyboard pa http:
//wuw.sfml-dev.org/documentation/2.5.1/classsf_1_1Event.php for detaljer. Lat sedan anvindaren
styra figuren pa skdrmen med tangentbordet.

Version 1.1 3/5


http://www.sfml-dev.org/documentation/2.5.1/classsf_1_1RenderTarget.php
http://www.sfml-dev.org/documentation/2.5.1/group__graphics.php
http://www.sfml-dev.org/documentation/2.5.1/group__graphics.php
http://www.sfml-dev.org/documentation/2.5.1/classsf_1_1Event.php
http://www.sfml-dev.org/documentation/2.5.1/classsf_1_1Event.php

November 29, 2025 Introduktion till SFML Filip Strombéck

6 Animation

Det som kan hdnda om man anvinder ovanstaende i 16sning i ett storre program ar att figuren kan réra sig
i ojamn hastighet. Det som hénder ar att varje iteration i den yttre loopen tar olika tid pa grund av att
olika mycket arbete behover utforas i olika iterationer. I och med detta sa tar det olika lang tid mellan att
figuren flyttas och ddrmed kan hastigheten variera.

For att 16sa detta finns tva saker man kan gora: dels att anvinda vertical synchronization eller vsync, och
dels kan man méta hur lang tid som har passerat mellan varje bildruta som har ritats upp.

Vsync innebér att anropet till display vintar pa att skdrmen ritas om. Detta sker
ungefir 60 ganger per sekund. Att sidtta pa vsync innebér alltsa att huvudloopen
blir begransad till 60 iterationer per sekund, alltsa ca 16 millisekunder per iteration
oavsett hur snabbt koden i loopen kérs. Om det ibland tar mer &n 16 millisekunder att
rita en bildruta s& kommer saklart animationer bli ojimna, men det &r ofta enklare
att halla exekeveringstiden under 16 millisekunder dn att hélla exekeveringstiden
jamn. Att anvdnda vsync har ytterligare en fordel: det forhindrar sa kallad tearing.
Om man inte anvinder vsync sa kan kopieringen av den nyligen ritade bildrutan
till skdrmen ske under tiden som skdrmen ritas om. Eftersom detta sker uppifran
och nedat sa kan det bli sa att 6vre delen av skdrmen visar den gamla bildrutan
medan nedre halvan har hunnit f& néasta nya bildruta. Detta syns ibland som ett
horisontellt streckpa skdrmen, speciellt nér objekt ror sig horisontellt pa skdarmen. For
att aktivera vsync i SFML, anropa medlemsfunktionen setVerticalSyncEnabled pa
Window-objektet.

Tearing av en cirkel
som ror sig at hoger.

Utover vsync, kan vi lata animationernas bero pa den tid som forflutit i stillet f6r att bero pa antalet
bildrutor som har ritats upp. For att adstakomma detta kan man anvinda sf::Timer, se http://www.
sfml-dev.org/documentation/2.5.1/classsf_1_1Clock.php. Titta specifikt pa restart-funktionen. For
att lata animationen bero pa forfluten tid, kan man gora foljande:

sf::Clock clock;
float speed{250.0f};
float x{07};

while (!closed) {
while (event = window.pollEvent()) {
//
}

sf::Time delta{clock.restart()};
x += delta.milliseconds() * speed / 1000.0f;
// rita ut nagot pd position x som tidigare.

}

Hér kan vi se att x 6kar med speed pixlar per sekund i stéllet for ett fix antal pixlar per bildruta. Detta gor
ocksa att animationerna sker med samma hastighet pa olika snabba datorer.

Implementera detta i ditt exempelprogram sa att figuren som styrs med tangentbordet ror sig med en fix
hastighet oberoende av antalet bildrutor per sekund.

7 Ytterligare lasning

Med SFML ér det enkelt att ladda bildfiler fran fil och visa dem pa skidrmen med hjélp av sf: : Texture (http:
//www.sfml-dev.org/documentation/2.5.1/classsf_1_1Texture.php). Denna textur kan appliceras pa

Version 1.1 4/5


http://www.sfml-dev.org/documentation/2.5.1/classsf_1_1Clock.php
http://www.sfml-dev.org/documentation/2.5.1/classsf_1_1Clock.php
http://www.sfml-dev.org/documentation/2.5.1/classsf_1_1Texture.php
http://www.sfml-dev.org/documentation/2.5.1/classsf_1_1Texture.php

November 29, 2025 Introduktion till SFML Filip Strombéck

figurer med hjélp av setTexture. Tank bara pa att se till att inte skapa fler &4n ett Texture-objekt fér en
textur. Foredra alltsd att ladda en textur en gang och 1at alla figurer som ska anvénda texturen dela pa
samma textur.

8 Slutmal

Vid detta ldge bor ni ha en figur som ni kan flytta runt i ert fonster. Er main funktion bor vid detta lage borja
bli ganska lang, och ni har eventuellt tillstand (state) som skickas runt i parametrar eller sparats globalt,
som eventuellt gor det lite knepigt att fa en bra 6versikt Gver vad som hénder. For att hjdlpa med detta ska
ni nu bryta ut allt till en egen klass.

Gor detta enligt konstens alla regler, skapa en klass som haller i sjdlva fonstret, och eventuellt tillstand,
kalla den Game, skapa en header och en implementationsfil. Er klass bor bli likt nedan exempel. Ni vill eller
behover modifiera exemplet sa att det passar er 16sning. Uppdatera main sa att den endast skapar en instans
av Game och anropar run().

Slutmaélet for denna lab &r alltsd att ni ska ha en figur som gar att flytta runt i fonstret. Ni ska ocksa ha en
overgripande klass som har koll pa speletstillstand som skapas i main-funktionen.

class Game {
public:
Game () ;

/* Run the main game loop */
void run();

private:
sf::RenderWindow window;

/* Process events */
void processEvent(sf::Event const& e);

/* Updates the games state */
void update();

/* Draw the updated state x/
void draw();

Version 1.1 5/5



	Skapa fönster
	Huvudloop
	Rita till skärmen
	Grafik
	Inmatning
	Animation
	Ytterligare läsning
	Slutmål

