
TDP005 Projekt: Objektorienterat
system

Introduktion till Make
Författare

Filip Strömbäck; Dag Jönsson

Höstterminen 2025
Version 1.1

2 december 2025

December 2, 2025 Introduktion till Make Filip Strömbäck

Introduktion
I denna lab kommer vi titta närmare på ett verktyg som gör det enklare att kompilera program skrivna i C
och C++: Make.

För program med bara en handfull filer går det bra att kompilera med hjälp av g++ i terminalen, men så
snart programmet växer utöver det blir det snabbt ohållbart. Antingen kör man g++ *.cc -o program varje
gång, vilket ofta tar onödigt mycket tid, eller så måste man hålla reda på vilka filer man ändrat i och endast
kompilera om dem. Make listar ut vilka filer som ska kompileras om baserat på vilka filer som har ändrats
så att kompileringen går så snabbt som möjligt.

För att se vad Make kan hjälpa oss med kommer vi fortsätta med ert SFML demo från tidigare.

1 Kompilera manuellt
För att bättre se vad verktygen hjälper till med börjar vi med att kompilera ert SFML-demo från tidigare
lab manuellt. Det enklaste sättet att göra detta på är genom att skriva:

g++ -g -std=c++17 -Wall -Wextra main.cc game.cc \
-lsfml-graphics -lsfml-window -lsfml-system -o sfml

Som ni kanske har börjat inse så är det ganska tröttsamt att skriva hela den raden (eller snarare att trycka
uppil tills ni hittar den i historiken). Fundera nu på hur hållbart detta är om ni börjar lägga till fler och
fler filer. Detta arbetssätt har också problemet med att den kompilerar om alla era filer, även om ni inte har
ändrat dem. Detta är kanske inte ett så stort problem just nu, men senare i ert projekt kan detta börja ta
mer och mer tid.

För att avhjälpa det senare problemet skulle det vara bättre om vi kunde kompilera alla filer en gång och sen
bara kompilera om de filer som har ändrats sedan förra kompileringen. För att göra detta kan vi kompilera
vår kod i två steg. Först kompilerar vi alla källkodsfiler (.cc-filer) till objektfiler, sen länkar vi ihop dessa
objektfiler till en körbar fil. För att kompilera ert SFML-demo manuellt på detta vis kan vi göra så här:

g++ -c -g -std=c++17 -Wall -Wextra main.cc
g++ -c -g -std=c++17 -Wall -Wextra game.cc

#Länka ihop alla objektfiler:
g++ -g -std=c++17 -lsfml-graphics -lsfml-window -lsfml-system *.o -o sfml

Först kompilerar vi alla .cc-filer till objektfiler med hjälp av -c-flaggan (som står för compile). Sedan länkar
vi ihop dem till en körbar fil genom att köra g++ som vanligt, men i stället för att ge den .cc-filer ger vi den
.o-filer. Det är även i detta steg vi speciferar att det behöver länkas med externa bibliotek.

Om vi nu skulle ändra i exempelvis filen game.cc behöver vi bara kompilera om game.o och sedan länka
ihop programmet igen. Alla andra filer behöver inte kompileras om, eftersom en kompilerad version av de
filerna redan finns i motsvarande .o-fil. Fördelen med att göra detta är som sagt att det går mycket fortare
att kompilera då man bara ändrat i ett fåtal filer. Däremot är det inte särskilt praktiskt att göra detta
manuellt eftersom det är mycket att hålla reda på och mer än ett kommando som måste köras. Detta skulle
man kunna halvautomatisera med hjälp av en .sh-fil, men det blir snabbt ohållbart det med.

2 Make
Som vi just såg är det inte särskilt praktiskt att göra kompileringen i två steg manuellt. Det är på tok för
mycket att hålla reda på för att det ska vara värt den tidsvinst det innebär. Däremot kan vi låta Make göra
det åt oss. Då kan vi ”lära” make hur vårt program ska byggas en gång och sedan behöver vi inte bry oss

Version 1.1 1 / 6

December 2, 2025 Introduktion till Make Filip Strömbäck

om det längre. Alltså får vi både tidsvinsten från att inte kompilera om alla filer varje gång utan att det blir
svårare att kompilera programmet.

2.1 Regler
När man kör kommandot make så kommer Make läsa instruktioner från en fil som heter Makefile i den
nuvarande mappen för att ta reda på vad som ska göras. Makefile innehåller en uppsättning regler som
beskriver vad som ska byggas och hur det ska byggas. En regel är en beskrivning av hur Make ska producera
ett visst mål. Om Make inser att den behöver skapa filen game.o så kommer Make leta efter en regel som
berättar hur detta ska göras. Vi kan skriva den regeln så här:

game.o:
<tab> g++ -c -g -std=c++17 -Wall -Wextra game.cc

Var noga med formatteringen, Make är ganska petig! <tab> ska vara ett tab-tecken, inte fyra eller åtta
mellanrum. De flesta texteditorer har koll på detta och hjälper till så gott de kan. Syntaxen är alltså: fil som
ska skapas följt av ett kolon, sen alla kommandon som ska köras för att producera filen på nästkommande
rader, indenterade med ett tab-tecken.

Se nu till att ta bort alla .o-filer, så kan vi testa vår regel. Kör sedan make, så försöker Make skapa filen
game.o eftersom det är den första regeln som finns i makefilen (man kan också köra make game.o för att
explicit ange vad make ska skapa). Make kommer då att hitta vår regel och köra det kommandot vi skrev
där. När Make kör kommandon så skriver den som standard ut dem så att vi ser vad Make gör. Om allt gått
rätt bör filen game.o ha skapats. Testa då att köra make igen. Denna gång ser make att filen game.o redan
finns och beslutar därför att inget behöver göras.

2.2 Beroenden
För att uppnå vårt mål vill vi att Make ska bygga om game.o när game.cc har ändrats. Vi kan testa detta
genom att ändra något i game.cc (det räcker att göra touch game.cc) och sedan köra make igen. Tyvärr
kommer Make att svara med: make: `game.o' is up to date, vilket innebär att Make tycker att inget
behöver göras. Detta beror på att vi inte har berättat för Make vilka filer vi använder för att bygga game.o,
så Make antar att inget behöver göras så länge filen finns.

För att berätta för Make att vi skapar game.o baserat på game.cc så vill vi säga åt Make att game.o beror på
game.cc. Det innebär att Make kommer undersöka vilken av game.o och dess beroenden som är modifierad
senast. Om game.o är modifierad senast kommer Make besluta att inget har ändrats sedan sist och inte göra
något, annars kommer Make att besluta att game.o måste byggas om eftersom någon av beroendena har
ändrats sedan förra gången Make kördes. Detta skrivs på följande sätt:

game.o: game.cc
<tab> g++ -c -std=c++17 -g -Wall -Wextra game.cc

Vi kan nu verifiera att det fungerar som vi vill genom att återigen ändra game.cc och köra make igen. Om
allt gått som det ska borde Make nu bygga om game.o, precis som vi ville.

2.3 Variabler
Nu har ni bara 2 filer som ni vill kompilera, men i ert projekt kommer ni ha många fler, och ni kommer
vilja använda samma flaggor på flera olika ställen. För att inte behöva upprepa dessa för varje fil kan vi
spara dessa i en varibel. Detta gör det också lätt att ändra flaggorna om ni inser att ni vill göra det, och er
Makefile blir även lite lättare att läsa.

Version 1.1 2 / 6

December 2, 2025 Introduktion till Make Filip Strömbäck

Alla variabler i Make är strängar. Att skapa en variabel i Make ser ut som en tilldelning i många andra språk,
och det fungerar som en #define i C/C++. För att skapa variabeln för de flaggor vi vill ha till kompilatorn
(den brukar heta CXXFLAGS), kan man göra så här:

CXXFLAGS = -g -std=c++17 -Wall -Wextra

För att sedan använda en variabel skriver man $(variabelnamn). Man kan självklart använda variabler
när man definierar andra variabler, så vi skulle kunna skapa en separat variabel som innehåller alla var-
ningsflaggor och använda denna som en del för CXXFLAGS. Med hjälp av detta kan vår regel förenklas till
följande:

game.o: game.cc
<tab> g++ -c $(CXXFLAGS) game.cc

Det kan också vara vettigt att använda variablerna $@ och $^. $@ innehåller målfilen för regeln, och $^
innehåller alla filer målet beror på.

Nu kan det vara lämpligt att skriva målet för den körbara filen, sfml. Utöver CXXFLAGS brukar också
variabeln LDFLAGS skickas till kompilatorn i detta mål eftersom vissa kompilatorflaggor endast ska skickas
med till kompilatorn under länkningsfasen (exempelvis om vi vill använda några externa bibliotek). Det kan
exempelvis se ut så här:

sfml: game.o main.o
<tab> g++ $(CXXFLAGS) $^ $(LDFLAGS) -o $@

I detta fall kommer alltså $@ innehålla sfml.

Om detta mål läggs först i makefilen bör ert SFML-demo kunna kompileras genom att köra make. Testa även
att ändra i en .cc-fil och kompilera igen. Make bör inse att sfml beror på en objektfil som i sin tur beror
på en .cc-fil och därmed bygga om denna kedja.

2.4 Headerfiler
Testa nu att ändra i en headerfil. Vad händer om vi kör make nu? Vilka filer borde byggas om?

För att fixa detta måste vi uppdatera beroendena för våra objektfiler. Exempelvis game.o beror just nu bara
på game.cc, men egentligen stämmer inte det. Den beror även på game.h. Vi måste alltså lägga till denna
fil som beroenden till vårt mål. Om vi gör detta kan vi inte längre använda $^ för att skicka alla beroenden
till kompilatorn. Eftersom vi bara vill skicka med .cc-filen, vilket borde vara det första beroendet, kan vi
använda $< i stället. Lägg till headerfilen som beroende och testa ändra i headerfilen, och se att game.o
kompileras om när header filen ändras.

Eftersom detta är aningen omständigt att göra manuellt kan man också generera dessa beroenden genom
att låta g++ generera dem med hjälp av flaggan -M. Vi kommer inte titta närmare på detta i den här labben.

2.5 Andra mål
Utöver att bygga programmet brukar en makefil också innehålla ett annat mål: clean. Om vi kör målet
clean med kommandot make clean förväntar vi oss att Make tar bort alla temporära filer som har skapats
under tidigare kompilationer. Detta kan vara bra om man vill bygga om hela programmet från noll, vilket
man ibland vill göra om saker börjar bete sig konstigt eller om man börjar få slut på diskutrymme.

Målet clean ska alltså bara se till att ta bort alla körbara filer och objektfiler. Det kan se ut som följer:

clean:
<tab> rm -f *.o sfml

Version 1.1 3 / 6

December 2, 2025 Introduktion till Make Filip Strömbäck

Detta fungarar bra så länge det inte finns en fil som heter clean. Finns clean så kommer Make, som vi
tidigare såg, konstatera att målet redan är byggt och att inget behöver göras. I detta fall förväntar vi oss
inte att clean är en fil, så vi kan berätta detta för Make genom att märka clean som ett Phony target:

.PHONY: clean
clean:

<tab> rm -f *.o sfml

Ibland är det också användbart att ha ett mål som heter zap som också tar bort eventuella temporärfiler
från Emacs eller liknande. Detta mål kan bero på clean så behöver man inte repetera logiken för det målet
i zap.

3 Slutmål
Make är ett extremt kraftfullt verktyg som är värt att lära sig att använda. I detta fall nöjer vi oss med att
ni har landat i en Makefile som ni känner er bekväma med, och ni vet hur ni lägger till nya filer och kopplar
ihop de olika beroenden ni kommer skapa i ert projekt. Målet är alltså att ni bara ska behöva skapa *.o
målet för varje enskild fil, och lägga till detta mål som beroende för den körbara filen.

4 Ytterligare läsning
Om ni är intresserade av att lära er mer om Make så kan ni börja med att studera den officiella manualen
här: https://www.gnu.org/software/make/manual/make.htm. Den går igenom allt som Make kan göra,
vilket är ganska mycket. För kursens skull behöver ni inte studera denna manual, det som har behandlats i
denna introduktion är tillräckligt.

Version 1.1 4 / 6

https://www.gnu.org/software/make/manual/make.htm

December 2, 2025 Introduktion till Make Filip Strömbäck

5 Överkurs: CMake
Som ni märkt är det tidskrävande att skriva en bra makefil från noll varje gång eftersom Make inte känner
hur C++ fungerar särskilt väl. Eftersom fler har tyckt att detta är omständigt finns CMake.

CMake är ett verktyg för att kompilera C- och C++-kod. Den gör det genom att läsa instruktioner från
filen CMakeLists.txt och generera exempelvis en makefil (eller projektfiler för Visual Studio etc.). Sen kan
vi använda make för att kompilera projektet som tidigare.

Filen CMakeLists.txt ser ut ungefär som följer:

project(sfml)

set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=c++17")

set(SOURCE_FILES
<tab> main.cc
<tab> game.cc
<tab> game.h)

add_executable(sfml ${SOURCE_FILES})

Här säger vi till CMake att vi har ett projekt som heter sfml, sen lägger vi till flaggan -std=c++17 för
C++-kompilatorn. Sen skapar vi en lista med alla filer vi vill kompilera (som vi kallar för SOURCE_FILES)
och säger åt CMake att den ska producera en körbar fil som heter sfml av dem.

För att kompilera projektet, kör nu cmake . för att generera en makefil. Kör sedan make för att bygga ert
SFML-demo. Det räcker med att köra cmake då ni ändrat i CMakeLists.txt (exempelvis då ni lagt till en
fil). Så i normala fall räcker make för att kompilera programmet. I detta fallet kommer det inte riktigt funka
då CMake har inte fått förklarat för sig att den behöver länka in SFML också.

5.1 Använda bibliotek i CMake
När man använder ett bibliotek i C++ måste man berätta det för kompilatorn, så att den kan länka
programmet korrekt. Kompilerar man sitt program via kommandoraden så gör man det genom att använda
flaggan -l när man länkar programmet. Vill man exempelvis använda biblioteket libpng (för att avkoda
PNG-filer) lägger man till flaggan -lpng.

För att göra motsvarande i CMake kan man lägga till kommandot target_link_libraries efter add_executable
på följande sätt:

... samma som förut
add_executable(calc ${SOURCE_FILES})
target_link_libraries(sfml png)

Det här enkla sättet fungerar bra för bibliotek som är installerade globalt i systemet. Ibland räcker inte det
enkla sättet eftersom man kanske har flera versioner av ett bibliotek installerat, eller så kanske man inte kan
(eller vill) installera ett visst bibliotek i hela systemet. Det är fallet med SFML på skolans Linux-datorer, där
det finns en ”vanlig” version av SFML och en version som är kompilerad för GCC 6.1.0. I dessa fall behöver
man instruera CMake om att leta efter biblioteken på egen hand. För SFML görs det på följande sätt:

cmake_minimum_required(VERSION 3.10)
project(sfml)

Använd C++ 17.

Version 1.1 5 / 6

December 2, 2025 Introduktion till Make Filip Strömbäck

set(CMAKE_CXX_STANDARD 17)

Välj vilka delar av SFML som ska användas.
set(SFML_MODULES network graphics window system)

Lägg till lämpliga bibliotek till kompileringen. Man kan använda 'find_package ',
men det kräver att SFML är installerat på ett annat sätt.
foreach(i ${SFML_MODULES})

list(APPEND SFML_LIBRARIES "sfml-${i}")
endforeach(i)

Ange källfiler , lägg till de filer som ni behöver!
set(SOURCE_FILES main.cpp)

Säg till CMake att skapa en körbar fil som heter 'sfml'.
add_executable(sfml ${SOURCE_FILES})

Länka med biblioteken som vi hittade tidigare.
target_link_libraries(sfml ${SFML_LIBRARIES} ${SFML_DEPENDENCIES})

Raden som anger SOURCE_FILES är densamma som tidigare.

Version 1.1 6 / 6

	Kompilera manuellt
	Make
	Regler
	Beroenden
	Variabler
	Headerfiler
	Andra mål

	Slutmål
	Ytterligare läsning
	Överkurs: CMake
	Använda bibliotek i CMake

