LINKOPINGS UNIVERSITET

TDP005 Projekt: Objektorienterat
system

Introduktion till Make

Forfattare

Filip Strombéck; Dag Jonsson

[
‘; Hostterminen 2025
Version 1.1

4] P::JR 2 december 2025

December 2, 2025 Introduktion till Make Filip Strombéck

Introduktion

I denna lab kommer vi titta ndrmare pa ett verktyg som gor det enklare att kompilera program skrivna i C
och C++: Make.

For program med bara en handfull filer gar det bra att kompilera med hjilp av g++ i terminalen, men sa
snart programmet vixer utéver det blir det snabbt ohallbart. Antingen kér man g++ *.cc -o program varje
gang, vilket ofta tar onddigt mycket tid, eller s& maste man halla reda pa vilka filer man &ndrat i och endast
kompilera om dem. Make listar ut vilka filer som ska kompileras om baserat pa vilka filer som har dndrats
s& att kompileringen gar sa snabbt som maojligt.

For att se vad Make kan hjélpa oss med kommer vi fortsitta med ert SFML demo fran tidigare.

1 Kompilera manuellt

For att béttre se vad verktygen hjdlper till med boérjar vi med att kompilera ert SFML-demo fran tidigare
lab manuellt. Det enklaste sittet att gora detta pa ar genom att skriva:

g++ -g -std=c++17 -Wall -Wextra main.cc game.cc \
-1lsfml-graphics -1lsfml-window -lsfml-system -o sfml

Som ni kanske har borjat inse sa ar det ganska trottsamt att skriva hela den raden (eller snarare att trycka
uppil tills ni hittar den i historiken). Fundera nu pa hur hallbart detta 4r om ni borjar lagga till fler och
fler filer. Detta arbetssétt har ocksa problemet med att den kompilerar om alla era filer, &ven om ni inte har
dndrat dem. Detta ar kanske inte ett sa stort problem just nu, men senare i ert projekt kan detta borja ta
mer och mer tid.

For att avhjilpa det senare problemet skulle det vara battre om vi kunde kompilera alla filer en gang och sen
bara kompilera om de filer som har dndrats sedan férra kompileringen. For att gora detta kan vi kompilera
var kod 1 tva steg. Forst kompilerar vi alla kéllkodsfiler (.cc-filer) till objektfiler, sen lgnkar vi ithop dessa
objektfiler till en koérbar fil. For att kompilera ert SFML-demo manuellt pa detta vis kan vi gora sa hér:

g++ -c —-g -std=c++17 -Wall -Wextra main.cc
g++ -c -g -std=c++17 -Wall -Wextra game.cc

#L&nka ihop alla objektfiler:
g++ -g -std=c++17 -1lsfml-graphics -1lsfml-window -lsfml-system *.o -o sfml

Forst kompilerar vi alla . cc-filer till objektfiler med hjélp av -c-flaggan (som star fér compile). Sedan ldnkar
vi ihop dem till en kérbar fil genom att kora g++ som vanligt, men i stéllet for att ge den .cc-filer ger vi den
.o-filer. Det &r &ven i detta steg vi speciferar att det behdver ldnkas med externa bibliotek.

Om vi nu skulle édndra i exempelvis filen game.cc behdver vi bara kompilera om game.o och sedan ldnka
ihop programmet igen. Alla andra filer behover inte kompileras om, eftersom en kompilerad version av de
filerna redan finns i motsvarande .o-fil. Férdelen med att gora detta dr som sagt att det gar mycket fortare
att kompilera da man bara dndrat i ett fatal filer. Déaremot &r det inte sérskilt praktiskt att gora detta
manuellt eftersom det dr mycket att halla reda pa och mer &n ett kommando som maste koras. Detta skulle
man kunna halvautomatisera med hjilp av en .sh-fil, men det blir snabbt ohallbart det med.

2 Make

Som vi just sag ar det inte sdrskilt praktiskt att gora kompileringen i tva steg manuellt. Det dr pa tok for
mycket att hélla reda pa for att det ska vara vart den tidsvinst det innebédr. Daremot kan vi lata Make gora
det &t oss. Da kan vi "ldra” make hur vart program ska byggas en gang och sedan behéver vi inte bry oss

Version 1.1 1/6

December 2, 2025 Introduktion till Make Filip Strombéck

om det langre. Alltsa far vi bade tidsvinsten fran att inte kompilera om alla filer varje gang utan att det blir
svarare att kompilera programmet.

2.1 Regler

Nér man kér kommandot make s& kommer Make ldsa instruktioner fran en fil som heter Makefile i den
nuvarande mappen for att ta reda pa vad som ska goras. Makefile innehaller en uppséittning regler som
beskriver vad som ska byggas och hur det ska byggas. En regel dr en beskrivning av hur Make ska producera
ett visst mal. Om Make inser att den behover skapa filen game.o sd kommer Make leta efter en regel som
berdttar hur detta ska goras. Vi kan skriva den regeln sa héar:

game.o:
<tab> g++ -c -g -std=c++17 -Wall -Wextra game.cc

Var noga med formatteringen, Make &r ganska petig! <tab> ska vara ett tab-tecken, inte fyra eller atta
mellanrum. De flesta texteditorer har koll pa detta och hjalper till sa gott de kan. Syntaxen ar alltsa: £il som
ska skapas foljt av ett kolon, sen alla kommandon som ska koras for att producera filen pa ndstkommande
rader, indenterade med ett tab-tecken.

Se nu till att ta bort alla .o-filer, s& kan vi testa var regel. Koér sedan make, sa forsoker Make skapa filen
game .o eftersom det dr den forsta regeln som finns i makefilen (man kan ocksé kora make game.o for att
explicit ange vad make ska skapa). Make kommer da att hitta var regel och kora det kommandot vi skrev
dér. Nar Make kor kommandon sé skriver den som standard ut dem sé att vi ser vad Make gér. Om allt gatt
rétt bor filen game.o ha skapats. Testa da att kora make igen. Denna gang ser make att filen game.o redan
finns och beslutar darfor att inget behover goras.

2.2 Beroenden

For att uppna vart mal vill vi att Make ska bygga om game.o nir game.cc har dndrats. Vi kan testa detta
genom att dndra nagot i game.cc (det riacker att gora touch game.cc) och sedan kora make igen. Tyvérr
kommer Make att svara med: make: “game.o' is up to date, vilket innebar att Make tycker att inget
behéver goras. Detta beror pa att vi inte har berdttat for Make vilka filer vi anvinder for att bygga game. o,
sa Make antar att inget behover goras sa ldnge filen finns.

For att beratta for Make att vi skapar game . o baserat pa game. cc sa vill vi siga 4t Make att game.o beror pd
game . cc. Det innebér att Make kommer undersoka vilken av game.o och dess beroenden som ar modifierad
senast. Om game. o dr modifierad senast kommer Make besluta att inget har dndrats sedan sist och inte gora
nagot, annars kommer Make att besluta att game.o maste byggas om eftersom nagon av beroendena har
dndrats sedan forra gangen Make kordes. Detta skrivs pa foljande sétt:

game.o: game.cc

<tab> g++ -c -std=c++17 -g -Wall -Wextra game.cc

Vi kan nu verifiera att det fungerar som vi vill genom att aterigen &ndra game.cc och kéra make igen. Om
allt gatt som det ska borde Make nu bygga om game. o, precis som vi ville.

2.3 Variabler

Nu har ni bara 2 filer som ni vill kompilera, men i ert projekt kommer ni ha manga fler, och ni kommer
vilja anvinda samma flaggor pa flera olika stédllen. For att inte behova upprepa dessa for varje fil kan vi
spara dessa i en varibel. Detta gor det ocksa latt att &ndra flaggorna om ni inser att ni vill géra det, och er
Makefile blir dven lite lattare att lésa.

Version 1.1 2/6

December 2, 2025 Introduktion till Make Filip Strombéck

Alla variabler i Make ar strangar. Att skapa en variabel i Make ser ut som en tilldelning i manga andra sprak,
och det fungerar som en #define i C/C++. For att skapa variabeln for de flaggor vi vill ha till kompilatorn
(den brukar heta CXXFLAGS), kan man gora sa hér:

CXXFLAGS = -g -std=c++17 -Wall -Wextra

For att sedan anvinda en variabel skriver man $(variabelnamn). Man kan sjalvklart anvidnda variabler
nir man definierar andra variabler, s vi skulle kunna skapa en separat variabel som innehéaller alla var-
ningsflaggor och anvinda denna som en del for CXXFLAGS. Med hjélp av detta kan var regel férenklas till
foljande:

game.o: game.cc
<tab> g++ -c $(CXXFLAGS) game.cc

Det kan ocksa vara vettigt att anvdnda variablerna $@ och $~. $@ innehaller mélfilen for regeln, och $~
innehaller alla filer malet beror pa.

Nu kan det vara lampligt att skriva malet for den korbara filen, sfml. Utéver CXXFLAGS brukar ockséa
variabeln LDFLAGS skickas till kompilatorn i detta mal eftersom vissa kompilatorflaggor endast ska skickas
med till kompilatorn under lankningsfasen (exempelvis om vi vill anvinda nagra externa bibliotek). Det kan
exempelvis se ut sa héar:

sfml: game.o main.o
<tab> g++ $(CXXFLAGS) $~ $(LDFLAGS) -o $@

I detta fall kommer alltsa $@ innehalla sfml.

Om detta mal laggs forst i makefilen bor ert SFML-demo kunna kompileras genom att kéra make. Testa dven
att dndra i en .cc-fil och kompilera igen. Make bor inse att sfml beror pa en objektfil som i sin tur beror
pé en .cc-fil och ddrmed bygga om denna kedja.

2.4 Headerfiler

Testa nu att dndra i en headerfil. Vad héander om vi kér make nu? Vilka filer borde byggas om?

For att fixa detta maste vi uppdatera beroendena fér vara objektfiler. Exempelvis game. o beror just nu bara
pa game.cc, men egentligen stdmmer inte det. Den beror d&ven pa game.h. Vi maste alltsa ldgga till denna
fil som beroenden till vart mal. Om vi gor detta kan vi inte lingre anvinda $~ for att skicka alla beroenden
till kompilatorn. Eftersom vi bara vill skicka med .cc-filen, vilket borde vara det forsta beroendet, kan vi
anvinda $< i stéllet. Lagg till headerfilen som beroende och testa dndra i headerfilen, och se att game.o
kompileras om nér header filen &ndras.

Eftersom detta dr aningen omstédndigt att gora manuellt kan man ocksa generera dessa beroenden genom
att lata g++ generera dem med hjélp av flaggan -M. Vi kommer inte titta ndrmare pa detta i den hér labben.

2.5 Andra mal

Utover att bygga programmet brukar en makefil ocksa innehélla ett annat mal: clean. Om vi kér malet
clean med kommandot make clean forviantar vi oss att Make tar bort alla temporéra filer som har skapats
under tidigare kompilationer. Detta kan vara bra om man vill bygga om hela programmet fran noll, vilket
man ibland vill géra om saker borjar bete sig konstigt eller om man bérjar fa slut pa diskutrymme.

Malet clean ska alltsd bara se till att ta bort alla kérbara filer och objektfiler. Det kan se ut som foljer:

clean:
<tab> rm -f *.0 sfml

Version 1.1 3/6

December 2, 2025 Introduktion till Make Filip Strombéck

Detta fungarar bra sa linge det inte finns en fil som heter clean. Finns clean sa kommer Make, som vi
tidigare sag, konstatera att malet redan ar byggt och att inget behover goras. I detta fall férvantar vi oss
inte att clean &r en fil, sa vi kan berétta detta for Make genom att mérka clean som ett Phony target:

.PHONY: clean
clean:
<tab> rm -f *.0 sfml

Ibland &r det ocksa anvdndbart att ha ett mal som heter zap som ocksa tar bort eventuella temporérfiler
fran Emacs eller liknande. Detta mal kan bero pé clean si behdver man inte repetera logiken for det malet
i zap.

3 Slutmal

Make ar ett extremt kraftfullt verktyg som &r virt att lara sig att anvinda. I detta fall ndjer vi oss med att
ni har landat i en Makefile som ni kinner er bekvima med, och ni vet hur ni ligger till nya filer och kopplar
ihop de olika beroenden ni kommer skapa i ert projekt. Malet ar alltsa att ni bara ska behova skapa *.o
maélet for varje enskild fil, och ldgga till detta mal som beroende for den korbara filen.

4 Ytterligare lasning

Om ni &r intresserade av att ldra er mer om Make s& kan ni bérja med att studera den officiella manualen
hér: https://www.gnu.org/software/make/manual/make.htm. Den gar igenom allt som Make kan gora,
vilket ar ganska mycket. For kursens skull behover ni inte studera denna manual, det som har behandlats i
denna introduktion &r tillrdckligt.

Version 1.1 4/6

https://www.gnu.org/software/make/manual/make.htm

December 2, 2025 Introduktion till Make Filip Strombéck

5 Overkurs: CMake

Som ni mérkt ar det tidskrdvande att skriva en bra makefil fran noll varje gang eftersom Make inte kdnner
hur C++ fungerar sarskilt vél. Eftersom fler har tyckt att detta ar omsténdigt finns CMake.

CMake dr ett verktyg for att kompilera C- och C++-kod. Den gor det genom att ldsa instruktioner fran
filen CMakeLists.txt och generera exempelvis en makefil (eller projektfiler for Visual Studio etc.). Sen kan
vi anvanda make for att kompilera projektet som tidigare.

Filen CMakeLists.txt ser ut ungefir som foljer:

project (sfml)
set (CMAKE_CXX_FLAGS "${CMAKE CXX_FLAGS} -std=c++17")

set (SOURCE_FILES
<tab> main.cc
<tab> game.cc
<tab> game.h)

add_executable(sfml ${SOURCE_FILES})

Har séger vi till CMake att vi har ett projekt som heter sfml, sen ldgger vi till flaggan -std=c++17 for
C++-kompilatorn. Sen skapar vi en lista med alla filer vi vill kompilera (som vi kallar {6r SOURCE_FILES)
och siger at CMake att den ska producera en kérbar fil som heter sfml av dem.

For att kompilera projektet, kor nu cmake . for att generera en makefil. Kér sedan make for att bygga ert
SFML-demo. Det ricker med att kora cmake d& ni dndrat i CMakeLists.txt (exempelvis da ni lagt till en
fil). S& i normala fall ricker make for att kompilera programmet. I detta fallet kommer det inte riktigt funka
da CMake har inte fatt forklarat for sig att den behéver lanka in SEML ocksa.

5.1 Anvanda bibliotek i CMake

Néar man anvinder ett bibliotek i C++ maste man beritta det fér kompilatorn, sd att den kan ldnka
programmet korrekt. Kompilerar man sitt program via kommandoraden sa gor man det genom att anvinda
flaggan -1 nir man ldnkar programmet. Vill man exempelvis anvinda biblioteket 1ibpng (for att avkoda
PNG-filer) ligger man till flaggan -1png.

For att gora motsvarande i CMake kan man ligga till kommandot target_link_libraries efter add_executable
pa foljande sétt:

... samma som fdrut
add_executable (calc ${SOURCE_FILES})
target_link_libraries(sfml png)

Det héar enkla sittet fungerar bra for bibliotek som ar installerade globalt i systemet. Ibland récker inte det
enkla sdttet eftersom man kanske har flera versioner av ett bibliotek installerat, eller sa kanske man inte kan
(eller vill) installera ett visst bibliotek i hela systemet. Det ér fallet med SFML pé skolans Linux-datorer, dar
det finns en "vanlig” version av SFML och en version som &r kompilerad for GCC 6.1.0. I dessa fall behover
man instruera CMake om att leta efter biblioteken pa egen hand. Fér SFML gors det pa foljande sétt:

cmake_minimum_required (VERSION 3.10)
project (sfml)

Anvand C++ 17.

Version 1.1 5/6

December 2, 2025 Introduktion till Make Filip Strombéck

set (CMAKE_CXX_STANDARD 17)

Valj vilka delar av SFML som ska anvéndas.
set (SFML_MODULES network graphics window system)

Lagg till la&mpliga bibliotek till kompileringen. Man kan anvanda 'find_package',
men det krdver att SFML &r installerat pd ett annat séatt.
foreach(i ${SFML_MODULES})
list (APPEND SFML_LIBRARIES "sfml-${il}")
endforeach (i)

Ange kallfiler, lagg till de filer som ni behéver!
set (SOURCE_FILES main.cpp)

Sag till CMake att skapa en koérbar fil som heter 'sfml'.
add_executable (sfml ${SOURCE_FILES})

Lanka med biblioteken som vi hittade tidigare.
target_link_libraries(sfml ${SFML_LIBRARIES} ${SFML_DEPENDENCIES})

Raden som anger SOURCE_FILES &r densamma som tidigare.

Version 1.1 6/6

	Kompilera manuellt
	Make
	Regler
	Beroenden
	Variabler
	Headerfiler
	Andra mål

	Slutmål
	Ytterligare läsning
	Överkurs: CMake
	Använda bibliotek i CMake

