TDPO005

Make, CMake och Git
Eric Ekstrom

Institutionen fér datavetenskap

II LINKOPING
o UNIVERSITY

1 Kompilera stora system

II LINKOPING
o UNIVERSITY

Mappstruktur i storre system

/ My_Game
/ include
/ source
/ build
Makefile

2/40

II LINKOPING
@ UNIVERSITY

3/40

Kompilering och inkludering

*
Endast kompilering, ingen lankning

II LINKOPING
[UNIVERSITY

Kompilering och inkludering

*
Endast kompilering, ingen lankning

® -0
Byter namn pa den resulterande filen

3/40

II LINKOPING
[UNIVERSITY

Kompilering och inkludering

*
Endast kompilering, ingen lankning

® -0
Byter namn pa den resulterande filen

e -I
Lagg till en sdkvag

3/40

LINKOPING
II.“ UNIVERSITY

3/40

Kompilering och inkludering

*
Endast kompilering, ingen lankning

® -0
Byter namn pa den resulterande filen

e -I
Lagg till en sdkvag
o -1

For att 1agga till ett bibliotek

LINKOPING
II.“ UNIVERSITY

2 Make

II LINKOPING
o UNIVERSITY

5/40

Kompilera stora projekt

* Mycket att halla koll pa
* Vilka flaggor ska anvandas?
* Vilka filer finns?
* Vilka berodende har varije fil?
® Ska flera exekverbara filer skapas?

¢ Lang kompileringstid om all filer ska kompileras om

LINKOPING
II.“ UNIVERSITY

6/40

Kompilera stora projekt

$ g++ -c Time.cc

$ g++ -c test.cc

$ g++ -c test_main.cc

$ g++ Time.o test.o test_main.o

Time.cc test.cc test_main.cc
Time.o test.o test_main.o

I

II LINKOPING
@ UNIVERSITY

Make

® Ett verktyg dar vi specifierar hur kompilering ska ske
® Sparas i en fil som heter Makefile
* Innehaller regler for hur varje fil ska kompileras
® Kdrs genom kommandot make i terminalen

* Make haller koll pa vilka filer som har uppdaterats och
behdver kompileras om

7/40

LINKOPING
II.“ UNIVERSITY

Make - Exempel

a.out: Time.o test.o test_main.o
g++ Time.o test.o test_main.o

Time.o:
g++

test.o:

Time.cc Time.h
-c Time.cc

test.cc

g++ -C test.cc

test_main.o: test_main.cc
g++ -c test_main.cc

8/40

LINKOPING
UNIVERSITY

8/40

Make - Exempel

[a.outl: Time.o test.o test_main.o ® Mal: Den filen som ska skapas
g++ Time.o test.o test_main.o a.out

Time.o: Time.cc Time.h
g++ -c Time.cc

test.o: test.cc
g++ -C test.cc

test_main.o: test_main.cc
g++ -c test_main.cc

II LINKOPING
[UNIVERSITY

Make - Exempel

a.out: Time.o test.o test_main.o
g++ Time.o test.o test_main.o

Time.o:|Time.cc Time.h

g++ -c Time.cc

test.o:

test.cc

g++ -C test.cc

test_main.o: test_main.cc
g++ -c test_main.cc

8/40

* Beroenden: “Om dessa filer
uppdaterats behdver vi kompilera
om.”

Time.cc Time.h

LINKOPING
UNIVERSITY

8/40

Make - Exempel

a.out: Time.o test.o test_main.o
g++ Time.o test.o test_main.o

Time.o: Time.cc Time.h
g++ -c Time.cc

test.o: test.cc .
* Kommando: Hur skapas malet?
g++ -C test.cc

test_main.o: test_main.cc
g++ -c test_main.cc

II LINKOPING
[UNIVERSITY

8/40

Make - Exempel

a.out: Time.o test.o test_main.o
g++ Time.o test.o test_main.o

Time.o: Time.cc Time.h
g++ -c Time.cc

test.o: test.cc
g++ -C test.cc

* Regel: Alla bitar tillsammans ar en
regel.

II LINKOPING
[UNIVERSITY

Make - Exempel

[a.out]: Time.o test.o test_main.o
g++ Time.o test.o test_main.o

Time.o:|Time.cc Time.h

g++ -c Time.cc

test.o: test.cc

8/40

Mal: Den filen som ska skapas
a.out

Beroenden: “Om dessa filer
uppdaterats behdver vi kompilera
om.”

Time.cc Time.h

Kommando: Hur skapas malet?
g++ -C test.cc

Regel: Alla bitar tillsammans ar en
regel.

LINKOPING
UNIVERSITY

Make - Stort exempel

FLAGS = -std=c++17 -Wall -Wextra
LIBS = -1lsfml-window -1lsfml-graphics -1lsfml-system
OBJS = player.o enemy.o main.o

$(var) ger vardet
$@ refererar till
game: $(OBJS)

g++ $(FLAGS) -o

% ar en wildcard,
%.0: %.cc %.h
g++ $(FLAGS) -c

detta dr en regel
.PHONY: clean
clean:

rm *.o0 game

av variabeln
malet och $* till beroenden

$@ $» $(LIBS)
$< refererar till forsta beroendet
$<

som inte skapar en fil

9/40

LINKOPING
UNIVERSITY

3 CMake

II LINKOPING
o UNIVERSITY

11/40

CMake

Ett verktyg for att skapa Makefiler. Skivs i en fil som heter
CMakeLists.txt.

cmake_minimum_required (VERSION 3.15)

project (MyProject)

add_executable (myexample simple.cpp)

Cmake anvands for att bygga en Makefile som sedan kompilerar
programmet.

$ cd build
$ cmake ..
$ make

$./a.out

II LINKOPING
@ UNIVERSITY

CMake

cmake_minimum_required (VERSION 3.10)

project(game
VERSION 0.1
DESCRIPTION "A game. Its fun."
LANGUAGES CXX)

set (CMAKE_RUNTIME_OUTPUT_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR})

add_executable (game
src/Player.cc
src/Game.cc
src/main.cc
src/Enemy.cc)
target_include_directories(game PRIVATE
src)
target_link_libraries(game
sfml -graphics
sfml -window
sfml -system
${SFML_DEPENDENCIES})

12/40

LINKOPING
UNIVERSITY

4 Git

II LINKOPING
o UNIVERSITY

14/40
Git
® Ett s& kallat versionshanteringssystem
® Sparar var kod i dgonblicksbilder
® Vikan spara andringar
* Vi kan ga tillbaka i tiden
* Vikan aterskapa arbete om olyckan ar framme
* Git I= Github/Gitlab

e Git ar i forsta hand ett satt att versionshantera

® Gar att koppla till en server sa att flera kan samarbeta,
men ej nédvandigt

® https://learngitbranching. js.org/

LINKOPING
II.“ UNIVERSITY

https://learngitbranching.js.org/

Git

Grundanvéndning av git

$ git init
$ git status
On branch main

No commits yet

nothing to commit

II LINKOPING
@ UNIVERSITY

Git

Grundanvéndning av git

$ echo "En strdang" > fil.txt
$ git status
On branch main

No commits yet

Untracked files:

16/40

(use "git add <file>..." to include what will be committed)
fil. txt
II LINKOPING
[) UNIVERSITY

Git

Grundanvéndning av git

$ git add fil.txt
$ git status
On branch main

No commits yet

Changes to be committed:
new file: fil.txt

II LINKOPING
[UNIVERSITY

Git

Grundanvéndning av git

$ git add fil.txt
$ git status
On branch main

No commits yet

Changes to be committed:
new file: fil.txt
$ git commit -m "Min foérsta commit!"
$ git status
On branch main
nothing to commit, working tree clean

II LINKOPING
[UNIVERSITY

18/40

Git

Grundanvéndning av git

$ echo "en ny strdang" > fil.txt

$ echo "till en annan fil" > annan.cc
$ git diff

fil.txt

ee -1 +1 @@

-en strang

+en ny strang

II LINKOPING
[UNIVERSITY

Git

Grundanvéndning av git

$ echo "en ny strdang" > fil.txt

$ echo "till en annan fil" > annan.cc
$ git diff

fil.txt

ee -1 +1 @@

-en strang

+en ny strang

$ git add
$ git status
On branch main

No commits yet

Changes to be committed:
new file: annan.cc
modified: fil.txt
$ git commit -m "Min andra commit"

18/40

LINKOPING
UNIVERSITY

Git

Grundanvéndning av git

$ git log
(HEAD -> main)
Author: Eric Ekstrom
Min andra commit

Author: Eric Ekstroém
Min forsta commit!

II LINKOPING
@ UNIVERSITY

20/40
Git
Remote repos

¢ Vikan koppla vart lokala repo till en remote, och pa sa satt
dela kod med varandra.
git remote add origin <address>

* Git skoter (oftast) att sla ihop kod fran flera anvandare sa att
vi kan jobba parallellt.

® git push for att ladda upp commits till en remote.

® git pull for att ladda ner commits fran en remote.

LINKOPING
II.“ UNIVERSITY

Git

Branches

git commit

II LINKOPING
[UNIVERSITY

Git

Branches

git commit
git branch bar

21/40

II LINKOPING
[UNIVERSITY

Git

Branches

git commit
git branch bar
git checkout bar

21/40

II LINKOPING
[UNIVERSITY

Git

Branches

git commit

git branch bar

git checkout bar

git commit; git commit

II LINKOPING
[UNIVERSITY

21/40

Git

Branches

git commit

git branch bar

git checkout bar

git commit; git commit

git checkout main; git commit

II LINKOPING
[UNIVERSITY

Git

Branches

git
git
git
git
git
git

commit

branch bar

checkout bar

commit; git commit
checkout main; git commit
merge bar

21/40

LINKOPING
UNIVERSITY

Git

Branches

git
git
git
git
git
git
git

commit

branch bar

checkout bar

commit; git commit
checkout main; git commit
merge bar

branch -d bar

21/40

LINKOPING
UNIVERSITY

Git
Viktiga commandon
Skapa ett git-repo:
® init - skapa ett nytt tomt repo i en befintlig katalog
® clone <address> - kopiera ett repo fran en remote
Halla koll pa sitt git-repo:

® status - visar relevant information
(Tips: Kér alltid status mellan varje operation!)

e diff - visar nuvarande &ndringar jamfért med senast commit

® log - visar listan med tidigare commits

22/40

LINKOPING
II.“ UNIVERSITY

23/40
Git
Viktiga commandon
Gora nya commits:
® add <file> - registrerar &ndringar till ndsta commit.
® commit -m "message" - skapa en ny commit
Prata med en remote:

* push - synkronisera server med de commit du har lokalt

® pull - syknronisera ditt lokala repo med det som finns pa
servern

II LINKOPING
@ UNIVERSITY

Git
Viktiga commandon
Hantera branches:
® branch <namn> - skapa en branch
® branch -d <namn> - ta bort en branch

® checkout <namn> - byt branch

® merge <namn> - tilldmpa en branch till nuvarande

24/40

II LINKOPING
@ UNIVERSITY

Git

Tips: Lyssna pa vad git séger!

$ git push
fatal: No configured push destination.
Either specify the URL from the command-line or configure a
remote repository using
git remote add <name> <url>

and then push using the remote name

git push <name>

II LINKOPING
@ UNIVERSITY

26/40
Git
Tips: Git config

Vi kan anpassa det mesta i git.

Satt anvadndarnamn och mailadress
git config --global user.name eriek23
git config --global user.email eric.ekstrom@liu.se

Vdlj vilken editor som ska anvandas
git config --global core.editor emacs

Skapa ett alias ’'git ci’ for ’git commit’
git config --global alias.ci commit

Se till att satta upp namn och mailadress!
Annars kan assistenten inte se vem det ar som skrivit kod.

II LINKOPING
@ UNIVERSITY

Git

Merge Conflict

$ git merge bar
Auto-merging Time.cc
CONFLICT (content):
Automatic merge fail
commit the result.

Merge conflict in Time.cc
ed; fix conflicts and then

int main()
{
<<<<<<<<< HEAD
cout << "Bar" << e

Foo" << e

cout <<
>>>>>>>>> bar

}

ndl;

ndl;

27/40

II LINKOPING
@ UNIVERSITY

28/40
Git
Merge Conflict

Vi fixar konflikten

int main()
{
cout << "Bar" << endl;

}

och kor sedan

$ git add Time.cc
$ git commit -m "Fixed merge conflict"

II LINKOPING
@ UNIVERSITY

Git

Ovrigt om git
® .gitignore - fér filer som inte ska versionshanteras

® git stash - Vad gér man om man har arbete som inte ar
redo att bli en commit?

® ssh-nycklar - for att slippa skriva in |6senord vid varje push
och pull.

LINKOPING
II.“ UNIVERSITY

5 Giti storre projekt

II LINKOPING
o UNIVERSITY

31/40

GitLab — Issues

GitLab har inbyggt stdd for issues. Kan anvandas for att halla koll
pa vad som ska goéras harnast, buggar, etc.

| ett commit-meddelande kan man skriva:
fixes #13

Da sténgs automatiskt issue #13, och en referens till den commit
som stédngde den laggs till.

LINKOPING
II.“ UNIVERSITY

32/40

Git — Hur organiseras koden i stérre projekt?

* Merge

* Rebase

* Feature Branch
* Gitflow

II LINKOPING
@ UNIVERSITY

33/40

Git — Centralt repository

Repository

BN
J O U

II LINKOPING
@ UNIVERSITY

34/40

Git — Merge

git commit

git push
origin/main

Ci

main

II LINKOPING
() UNIVERSITY

34/40

Git — Merge

git commit
git commit

LINKOPING
Ilo“ UNIVERSITY

34/40

Git — Merge

<remote work...>
git fetch

(co}——{C1 —c2)—(c3)

main

LINKOPING
Ilo“ UNIVERSITY

34/40

Git — Merge

git merge origin/main

LINKOPING
II.“ UNIVERSITY

34/40

Git — Merge

git push

origin/main

(CoF——{Ct)<{c2) >@\
c8
:

II LINKOPING
@ UNIVERSITY

35/40

Git — Rebase

git commit

git push
origin/main

Ci

main

II LINKOPING
() UNIVERSITY

35/40

Git — Rebase

git commit
git commit

LINKOPING
Ilo“ UNIVERSITY

35/40

Git — Rebase

<remote work...>
git fetch

(T A

main

LINKOPING
II.“ UNIVERSITY

35/40

Git — Rebase

git rebase origin/main

|

LINKOPING
II.“ UNIVERSITY

35/40

Git — Rebase

git push
& @\@ G —(FT—(F2)

LINKOPING
II.“ UNIVERSITY

35/40

Git — Rebase

{F1’ »F2)

g

LINKOPING
II.“ UNIVERSITY

36/40

Git — Merge och Rebase

Enklaste sattet att samarbeta

® Fungerar bra i mindre projekt

* Kan inte samarbeta pa funktionalitet som ej ar klar

Risk att main inte fungerar, problem fér andra

Stor feature, stora merge-konflikter

LINKOPING
II.“ UNIVERSITY

37/40

Git — Feature Branch

git branch feature-c
git checkout feature-c

Cfeaturers)

C

feature-c

II LINKOPING
@ UNIVERSITY

Git — Feature Branch

git commit x3

feature-c

37/40

II LINKOPING
@ UNIVERSITY

37/40

Git — Feature Branch

git checkout -b feature-f main
git commit x3

feature-c

Coan) (G —

(F——{F2——(F3)

LINKOPING
II.“ UNIVERSITY

37/40

Git — Feature Branch

git checkout main
git merge feature-c

co 1)
(F1——(F2 3(F3)

LINKOPING
II.“ UNIVERSITY

37/40

Git — Feature Branch

git merge feature-f

(T —(c2—

VTR
Co M1

(F1) Y F2 % F3

LINKOPING
II.“ UNIVERSITY

38/40

Git — Feature Branch

® Samarbete/backup pa ej klar funktionalitet

Tydligt var kodgranskning gors

* main fungerar alltid = Continuous Integration

Lite mer arbete an tidigare

Risk for att funktionalitet "tappas bort”

Risk for stora merges = lite funktionalitet i taget

LINKOPING
II.“ UNIVERSITY

39/40

Git — Gitflow

LINKOPING
II.“ UNIVERSITY

39/40

Git — Gitflow

{D2)
g G

LINKOPING
II.“ UNIVERSITY

39/40

Git — Gitflow

release-0.2

» D2
\

LINKOPING
II.“ UNIVERSITY

39/40

Git — Gitflow

/
{02)

g G

LINKOPING
II.“ UNIVERSITY

39/40

Git — Gitflow

/

7 D2 7 D3
S

LINKOPING
II.“ UNIVERSITY

39/40

Git — Gitflow

v0.1
(co—{ct /
/‘
DO 7 D2 7 D3
-

LINKOPING
II.“ UNIVERSITY

39/40

Git — Gitflow

v0.1

(co—{ct

DO » D2 7 D3 7 D4

e

LINKOPING
II.“ UNIVERSITY

40/40

Git — Gitflow

* Release kan testas och fardigstéllas parallellt med utveckling
av ny funktionalitet

* main visar tydligt alla versioner

* Enkelt och tydligt att géra hotfix

e Annu mer att halla reda p&, namngivning &r viktig!

LINKOPING
II.“ UNIVERSITY

II LINKOPING
o UNIVERSITY

www.ida.liu.se/~TDP005/

	Kompilera stora system
	Make
	CMake
	Git
	Git i större projekt

