
TDP005
Make, CMake och Git

Eric Ekström

Institutionen för datavetenskap

1 Kompilera stora system
2 Make
3 CMake
4 Git
5 Git i större projekt

2 / 40

Mappstruktur i större system

/ My_Game

/ include

/ source

/ build

Makefile

3 / 40

Kompilering och inkludering

‚ -c
Endast kompilering, ingen länkning

‚ -o
Byter namn på den resulterande filen

‚ -I
Lägg till en sökväg

‚ -l
För att lägga till ett bibliotek

3 / 40

Kompilering och inkludering

‚ -c
Endast kompilering, ingen länkning

‚ -o
Byter namn på den resulterande filen

‚ -I
Lägg till en sökväg

‚ -l
För att lägga till ett bibliotek

3 / 40

Kompilering och inkludering

‚ -c
Endast kompilering, ingen länkning

‚ -o
Byter namn på den resulterande filen

‚ -I
Lägg till en sökväg

‚ -l
För att lägga till ett bibliotek

3 / 40

Kompilering och inkludering

‚ -c
Endast kompilering, ingen länkning

‚ -o
Byter namn på den resulterande filen

‚ -I
Lägg till en sökväg

‚ -l
För att lägga till ett bibliotek

1 Kompilera stora system
2 Make
3 CMake
4 Git
5 Git i större projekt

5 / 40

Kompilera stora projekt

‚ Mycket att hålla koll på

‚ Vilka flaggor ska användas?

‚ Vilka filer finns?

‚ Vilka berodende har varje fil?

‚ Ska flera exekverbara filer skapas?

‚ Lång kompileringstid om all filer ska kompileras om

6 / 40

Kompilera stora projekt

$ g++ -c Time.cc
$ g++ -c test.cc
$ g++ -c test_main.cc
$ g++ Time.o test.o test_main.o

Time.cc test.cc test_main.cc

Time.o test.o test_main.o

a.out

7 / 40

Make

‚ Ett verktyg där vi specifierar hur kompilering ska ske

‚ Sparas i en fil som heter Makefile

‚ Innehåller regler för hur varje fil ska kompileras

‚ Körs genom kommandot make i terminalen

‚ Make håller koll på vilka filer som har uppdaterats och
behöver kompileras om

8 / 40

Make - Exempel

a.out: Time.o test.o test_main.o
g++ Time.o test.o test_main.o

Time.o: Time.cc Time.h
g++ -c Time.cc

test.o: test.cc
g++ -c test.cc

test_main.o: test_main.cc
g++ -c test_main.cc

‚ Mål: Den filen som ska skapas
a.out

‚ Beroenden: “Om dessa filer
uppdaterats behöver vi kompilera
om.”
Time.cc Time.h

‚ Kommando: Hur skapas målet?
g++ -c test.cc

‚ Regel: Alla bitar tillsammans är en
regel.
test_main.o: test_main.cc
g++ -c test_main.cc

8 / 40

Make - Exempel

a.out: Time.o test.o test_main.o
g++ Time.o test.o test_main.o

Time.o: Time.cc Time.h
g++ -c Time.cc

test.o: test.cc
g++ -c test.cc

test_main.o: test_main.cc
g++ -c test_main.cc

‚ Mål: Den filen som ska skapas
a.out

‚ Beroenden: “Om dessa filer
uppdaterats behöver vi kompilera
om.”
Time.cc Time.h

‚ Kommando: Hur skapas målet?
g++ -c test.cc

‚ Regel: Alla bitar tillsammans är en
regel.
test_main.o: test_main.cc
g++ -c test_main.cc

8 / 40

Make - Exempel

a.out: Time.o test.o test_main.o
g++ Time.o test.o test_main.o

Time.o: Time.cc Time.h
g++ -c Time.cc

test.o: test.cc
g++ -c test.cc

test_main.o: test_main.cc
g++ -c test_main.cc

‚ Mål: Den filen som ska skapas
a.out

‚ Beroenden: “Om dessa filer
uppdaterats behöver vi kompilera
om.”
Time.cc Time.h

‚ Kommando: Hur skapas målet?
g++ -c test.cc

‚ Regel: Alla bitar tillsammans är en
regel.
test_main.o: test_main.cc
g++ -c test_main.cc

8 / 40

Make - Exempel

a.out: Time.o test.o test_main.o
g++ Time.o test.o test_main.o

Time.o: Time.cc Time.h
g++ -c Time.cc

test.o: test.cc
g++ -c test.cc

test_main.o: test_main.cc
g++ -c test_main.cc

‚ Mål: Den filen som ska skapas
a.out

‚ Beroenden: “Om dessa filer
uppdaterats behöver vi kompilera
om.”
Time.cc Time.h

‚ Kommando: Hur skapas målet?
g++ -c test.cc

‚ Regel: Alla bitar tillsammans är en
regel.
test_main.o: test_main.cc
g++ -c test_main.cc

8 / 40

Make - Exempel

a.out: Time.o test.o test_main.o
g++ Time.o test.o test_main.o

Time.o: Time.cc Time.h
g++ -c Time.cc

test.o: test.cc
g++ -c test.cc

test_main.o: test_main.cc
g++ -c test_main.cc

‚ Mål: Den filen som ska skapas
a.out

‚ Beroenden: “Om dessa filer
uppdaterats behöver vi kompilera
om.”
Time.cc Time.h

‚ Kommando: Hur skapas målet?
g++ -c test.cc

‚ Regel: Alla bitar tillsammans är en
regel.
test_main.o: test_main.cc
g++ -c test_main.cc

8 / 40

Make - Exempel

a.out: Time.o test.o test_main.o
g++ Time.o test.o test_main.o

Time.o: Time.cc Time.h
g++ -c Time.cc

test.o: test.cc
g++ -c test.cc

test_main.o: test_main.cc
g++ -c test_main.cc

‚ Mål: Den filen som ska skapas
a.out

‚ Beroenden: “Om dessa filer
uppdaterats behöver vi kompilera
om.”
Time.cc Time.h

‚ Kommando: Hur skapas målet?
g++ -c test.cc

‚ Regel: Alla bitar tillsammans är en
regel.
test_main.o: test_main.cc
g++ -c test_main.cc

9 / 40

Make - Stort exempel

FLAGS = -std=c++17 -Wall -Wextra
LIBS = -lsfml-window -lsfml-graphics -lsfml-system
OBJS = player.o enemy.o main.o

$(var) ger värdet av variabeln
$@ refererar till målet och $^ till beroenden
game: $(OBJS)

g++ $(FLAGS) -o $@ $^ $(LIBS)

% är en wildcard , $< refererar till första beroendet
%.o: %.cc %.h

g++ $(FLAGS) -c $<

detta är en regel som inte skapar en fil
.PHONY: clean
clean:

rm *.o game

1 Kompilera stora system
2 Make
3 CMake
4 Git
5 Git i större projekt

11 / 40

CMake

Ett verktyg för att skapa Makefiler. Skivs i en fil som heter
CMakeLists.txt.

cmake_minimum_required(VERSION 3.15)

project(MyProject)

add_executable(myexample simple.cpp)

Cmake används för att bygga en Makefile som sedan kompilerar
programmet.

$ cd build
$ cmake ..
$ make
$./a.out

12 / 40

CMake

cmake_minimum_required(VERSION 3.10)

project(game
VERSION 0.1
DESCRIPTION "A game. Its fun."
LANGUAGES CXX)

set(CMAKE_RUNTIME_OUTPUT_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR})

add_executable(game
src/Player.cc
src/Game.cc
src/main.cc
src/Enemy.cc)

target_include_directories(game PRIVATE
src)

target_link_libraries(game
sfml-graphics
sfml-window
sfml-system
${SFML_DEPENDENCIES})

1 Kompilera stora system
2 Make
3 CMake
4 Git
5 Git i större projekt

14 / 40

Git

‚ Ett så kallat versionshanteringssystem

‚ Sparar vår kod i ögonblicksbilder

‚ Vi kan spåra ändringar

‚ Vi kan gå tillbaka i tiden

‚ Vi kan återskapa arbete om olyckan är framme

‚ Git != Github/Gitlab

‚ Git är i första hand ett sätt att versionshantera

‚ Går att koppla till en server så att flera kan samarbeta,
men ej nödvändigt

‚ https://learngitbranching.js.org/

https://learngitbranching.js.org/

15 / 40

Git
Grundanvändning av git

$ git init
$ git status
On branch main

No commits yet

nothing to commit

16 / 40

Git
Grundanvändning av git

$ echo "En sträng" > fil.txt
$ git status
On branch main

No commits yet

Untracked files:
(use "git add <file >..." to include what will be committed)

fil.txt

17 / 40

Git
Grundanvändning av git

$ git add fil.txt
$ git status
On branch main

No commits yet

Changes to be committed:
new file: fil.txt

$ git commit -m "Min första commit!"
$ git status
On branch main
nothing to commit, working tree clean

17 / 40

Git
Grundanvändning av git

$ git add fil.txt
$ git status
On branch main

No commits yet

Changes to be committed:
new file: fil.txt

$ git commit -m "Min första commit!"
$ git status
On branch main
nothing to commit, working tree clean

18 / 40

Git
Grundanvändning av git

$ echo "en ny sträng" > fil.txt
$ echo "till en annan fil" > annan.cc
$ git diff
fil.txt
@@ -1 +1 @@
-en sträng
+en ny sträng

$ git add .
$ git status
On branch main

No commits yet

Changes to be committed:
new file: annan.cc
modified: fil.txt

$ git commit -m "Min andra commit"

18 / 40

Git
Grundanvändning av git

$ echo "en ny sträng" > fil.txt
$ echo "till en annan fil" > annan.cc
$ git diff
fil.txt
@@ -1 +1 @@
-en sträng
+en ny sträng

$ git add .
$ git status
On branch main

No commits yet

Changes to be committed:
new file: annan.cc
modified: fil.txt

$ git commit -m "Min andra commit"

19 / 40

Git
Grundanvändning av git

$ git log
commit 50e6a8 (HEAD -> main)
Author: Eric Ekström

Min andra commit

commit bd07e4
Author: Eric Ekström

Min första commit!

20 / 40

Git
Remote repos

‚ Vi kan koppla vårt lokala repo till en remote, och på så sätt
dela kod med varandra.
git remote add origin <address>

‚ Git sköter (oftast) att slå ihop kod från flera användare så att
vi kan jobba parallellt.

‚ git push för att ladda upp commits till en remote.

‚ git pull för att ladda ner commits från en remote.

21 / 40

Git
Branches

git commit C0 main*

21 / 40

Git
Branches

git commit
git branch bar

C0 main*bar

21 / 40

Git
Branches

git commit
git branch bar
git checkout bar

C0 mainbar*

21 / 40

Git
Branches

git commit
git branch bar
git checkout bar
git commit; git commit

C0 main

B1

B2bar*

21 / 40

Git
Branches

git commit
git branch bar
git checkout bar
git commit; git commit
git checkout main; git commit

C0

B1

B2

C1 main*

bar

21 / 40

Git
Branches

git commit
git branch bar
git checkout bar
git commit; git commit
git checkout main; git commit
git merge bar

C0

B1

B2

C1

bar

C2 main*

21 / 40

Git
Branches

git commit
git branch bar
git checkout bar
git commit; git commit
git checkout main; git commit
git merge bar
git branch -d bar

C0

B1

B2

C1

C2 main*

22 / 40

Git
Viktiga commandon

Skapa ett git-repo:

‚ init - skapa ett nytt tomt repo i en befintlig katalog

‚ clone <address> - kopiera ett repo från en remote

Hålla koll på sitt git-repo:

‚ status - visar relevant information
(Tips: Kör alltid status mellan varje operation!)

‚ diff - visar nuvarande ändringar jämfört med senast commit

‚ log - visar listan med tidigare commits

23 / 40

Git
Viktiga commandon

Göra nya commits:

‚ add <file> - registrerar ändringar till nästa commit.

‚ commit -m "message" - skapa en ny commit

Prata med en remote:

‚ push - synkronisera server med de commit du har lokalt

‚ pull - syknronisera ditt lokala repo med det som finns på
servern

24 / 40

Git
Viktiga commandon

Hantera branches:

‚ branch <namn> - skapa en branch

‚ branch -d <namn> - ta bort en branch

‚ checkout <namn> - byt branch

‚ merge <namn> - tillämpa en branch till nuvarande

25 / 40

Git
Tips: Lyssna på vad git säger!

$ git push
fatal: No configured push destination.
Either specify the URL from the command-line or configure a
remote repository using

git remote add <name> <url>

and then push using the remote name

git push <name>

26 / 40

Git
Tips: Git config

Vi kan anpassa det mesta i git.

Sätt användarnamn och mailadress
git config --global user.name eriek23
git config --global user.email eric.ekstrom@liu.se

Välj vilken editor som ska användas
git config --global core.editor emacs

Skapa ett alias ’git ci’ för ’git commit’
git config --global alias.ci commit

Se till att sätta upp namn och mailadress!
Annars kan assistenten inte se vem det är som skrivit kod.

27 / 40

Git
Merge Conflict

$ git merge bar
Auto-merging Time.cc
CONFLICT (content): Merge conflict in Time.cc
Automatic merge failed; fix conflicts and then
commit the result.

int main()
{
<<<<<<<<< HEAD
cout << "Bar" << endl;

=========
cout << "Foo" << endl;

>>>>>>>>> bar
}

28 / 40

Git
Merge Conflict

Vi fixar konflikten

int main()
{
cout << "Bar" << endl;

}

och kör sedan

$ git add Time.cc
$ git commit -m "Fixed merge conflict"

29 / 40

Git

Övrigt om git

‚ .gitignore - för filer som inte ska versionshanteras

‚ git stash - Vad gör man om man har arbete som inte är
redo att bli en commit?

‚ ssh-nycklar - för att slippa skriva in lösenord vid varje push
och pull.

1 Kompilera stora system
2 Make
3 CMake
4 Git
5 Git i större projekt

31 / 40

GitLab – Issues

GitLab har inbyggt stöd för issues. Kan användas för att hålla koll
på vad som ska göras härnäst, buggar, etc.

I ett commit-meddelande kan man skriva:
fixes #13

Då stängs automatiskt issue #13, och en referens till den commit
som stängde den läggs till.

32 / 40

Git – Hur organiseras koden i större projekt?

‚ Merge

‚ Rebase

‚ Feature Branch

‚ Gitflow

33 / 40

Git – Centralt repository

Repository

34 / 40

Git – Merge

git commit
git push

C0 C1

origin/main

main

34 / 40

Git – Merge

git commit
git commit

C0 C1

origin/main

F1 F2

main

34 / 40

Git – Merge

<remote work...>
git fetch

C0 C1

F1 F2

main

C2 C3

origin/main

34 / 40

Git – Merge

git merge origin/main

C0 C1

F1 F2

C2 C3

origin/main

C4

main

34 / 40

Git – Merge

git push

C0 C1

F1 F2

C2 C3

C4

main

origin/main

35 / 40

Git – Rebase

git commit
git push

C0 C1

origin/main

main

35 / 40

Git – Rebase

git commit
git commit

C0 C1

origin/main

F1 F2

main

35 / 40

Git – Rebase

<remote work...>
git fetch

C0 C1

F1 F2

main

C2 C3

origin/main

35 / 40

Git – Rebase

git rebase origin/main

C0 C1

F1 F2

C2 C3

origin/main

F1’ F2’

mainRebase

35 / 40

Git – Rebase

git push

C0 C1

F1 F2

C2 C3 F1’ F2’

main

origin/main

35 / 40

Git – Rebase

C0 C1 C2 C3 F1’ F2’

main

origin/main

36 / 40

Git – Merge och Rebase

‚ Enklaste sättet att samarbeta

‚ Fungerar bra i mindre projekt

‚ Kan inte samarbeta på funktionalitet som ej är klar

‚ Risk att main inte fungerar, problem för andra

‚ Stor feature, stora merge-konflikter

37 / 40

Git – Feature Branch
git branch feature-c
git checkout feature-c

C0

main

feature-c

37 / 40

Git – Feature Branch
git commit x3

C0

main C1 C2 C3

feature-c

37 / 40

Git – Feature Branch
git checkout -b feature-f main
git commit x3

C0

main C1 C2 C3

feature-c

F1 F2 F3

feature-f

37 / 40

Git – Feature Branch
git checkout main
git merge feature-c

C0

C1 C2 C3

feature-c

F1 F2 F3

feature-f

M1

main

37 / 40

Git – Feature Branch

git merge feature-f

C0

C1 C2 C3

feature-c

F1 F2 F3

feature-f

M1 M2

main

38 / 40

Git – Feature Branch

‚ Samarbete/backup på ej klar funktionalitet

‚ Tydligt var kodgranskning görs

‚ main fungerar alltid ñ Continuous Integration

‚ Lite mer arbete än tidigare

‚ Risk för att funktionalitet ”tappas bort”

‚ Risk för stora merges ñ lite funktionalitet i taget

39 / 40

Git – Gitflow

C0 C1

v0.1
main

39 / 40

Git – Gitflow

C0 C1

v0.1
main

D0

D1

D2

feature

develop

39 / 40

Git – Gitflow

C0 C1

v0.1
main

D0

D1

D2

feature

develop

release-0.2

39 / 40

Git – Gitflow

C0 C1

v0.1
main

D0

D1

D2

feature

develop

R0 R1 release-0.2

39 / 40

Git – Gitflow

C0 C1

v0.1
main

D0

D1

D2

feature

R0 R1 release-0.2

D3

develop

39 / 40

Git – Gitflow

C0 C1

v0.1

D0

D1

D2

feature

R0 R1 release-0.2

D3

develop

C2

v0.2
main

39 / 40

Git – Gitflow

C0 C1

v0.1

D0

D1

D2

feature

R0 R1 release-0.2

D3

C2

v0.2
main

D4

develop

40 / 40

Git – Gitflow

‚ Release kan testas och färdigställas parallellt med utveckling
av ny funktionalitet

‚ main visar tydligt alla versioner

‚ Enkelt och tydligt att göra hotfix

‚ Ännu mer att hålla reda på, namngivning är viktig!

www.ida.liu.se/~TDP005/

www.ida.liu.se/~TDP005/

	Kompilera stora system
	Make
	CMake
	Git
	Git i större projekt

