Important definitions

Memory:

A seguentially numbered (very large) collection of bytes.

Theonly C/C++ data-type with a size equal to one byteis
char. Thus char is sometimes used to represent “just any

byte”, and not necessarily a character.

Address:

Theindex (number) of one specific bytein the memory.

Variable (recollect first lecture):

The name of onelocation in memory, storing a value of one
specific data-type. Data-type deter mine size (number of
bytesthevariable use), and inter pretation of the bitsstored
in those bytes. The name deter minethe address of the bytes
in the memory.

Pointer:

A variablethat store an address.

Pointer type:

Determine the data-type of the value stored at the address
the pointer store. The pointer itself store“just an address’.

Null-pointer

First acommon error: It ispossibleto create a pointer that
do not contain a valid address. Do not do it by mistake:

int* dangerous; // contain undefined address

/1 error, will often at random go undetected
cout << *dangerous; // undetected error!!

If you do not know the address you should explicitly show
thisin the code by using the address 0. The address zero is
reserved to always beinvalid, and are used to distinguish a
valid pointer from an invalid.

int* unused = 0; // pointer point "nowhere”

/1 error, and it will always be detected
/'l generates “safe“ segnentation fault
cout << *unused << endl;

When you storethe address zero in a pointer you create a
null-pointer. It will not point to anything. Always create all
pointersasnull-pointers. Then you can check if apointer is
valid.

if (unused '=0) // is the pointer valid?

{
}

cout << *unused << endl;

Graphical view

int variable = 4711;

int* pointer = &ariable;

int** p_to_p = &pointer;

/1 A 32-byte menory with addresses in red and
/'l three green variables, two of them pointers

vari abl e:
4711

8
poi nt ef:

)3
16 %4z /18 19 |20 21 122 [23

“p_to_p:

24 25 26 27 28 29 30 31

Void pointer

It ispossibleto create pointer swithout knowing the pointer
data-type. It isup to the programmer to know the type of
the data stored at the addressthe pointer contain.

N.B! You will not need todo this. It isboth unnecessary and
unsafe. You will always know the data-type. If you ever
stumble upon avoid* it isgood to know what it is, but you
should never useit your self.

int ny_val ue;
voi d* unknown = &ny_val ue;

/1 error, type stored at adress unknown!
cout << *unknown << endl;

/'l the programer mnust explicitly tell the type
cout << *((int*)unknown) << endl;

Thiswas often used in the C-language to create “ generic”
data structures capable of storing pointersto any data-
type.

Array (1 of 4)

So far we have said that an addressisto ONE bytein the
memory, or a pointer the addressto ONE variable of some
type. But thisisactually not defined in the language.

An addressisjust theaddressto the FIRST byte of along
sequence.

A pointer contain the address of the FIRST variablein a
long sequence.

Thus, if the programmer keep track of exactly HOW
MANY variablesa pointer refer to he/she can usethisto
build arrays of values.

{

const int N=5;

Il create a set of N variables

/'l sequentially allocated in nenory

/1 *array” will be a pointer to the first
int array[N;

/1 initiate each variable i nmediately
int high_five[N = {234,99, 345, 76, 97};

/1 or initiate with code
for (int i =0; i <N i =i +1)
{

array[i] =i * i;

}
} /1 end of block destroy all
/'l variables as usual

Array (3 of 4)

Since an array variableisnothing morethan a pointer toa
sequence of variablesit can betreated asa pointer, and a
pointer can betreated asan array.

Either way the programmer must keep track of the
number of elements pointed to.

Sincethearray already isan addressit always passed asan
address parameter without using & . At this point it should
be clear that address parametersareindeed pointers.

voi d copy_array(int* destination,
int* source, int size);

{
/1 this will not work, what happen?
/! destination = source;
/'l must copy each el enent instead (works)
for (int i =0; i <size;, i =i +1)
destination[i] = source[i];
}
}
int main()

int values[] = {1, 2,3};

int copy[3];
copy_array(copy, values, 3);
1o

Array (2 of 4)
hi gh_five:
A7
o 1 T2 I3 4'.; 6 |7
tgh_five[O]
234

9 10 11 12 13 14 15
hi gh_five[1] hi gh_five[2]
99 345

16 17 18 19 20 21 22 23

hi gh_five[3] high_five[4]

24 25 26 27 28 29 30 31

Array (4 of 4)

Toclearly signal that it isan array a function receives as
parameter we write the address parameter with array
syntax:

/1 clearly show use of array paraneters
void copy_array(int destination[],

int source[],

int size);

Since arrays are always passed by address any changesthe
function do to the elementsin the array will bevisiblein
the argument of the calling function.

If afunction change the arrays passed as parametersit is
important for the programmer that call thefunction to
know so. We use the const keyword to clearly tell that a
parameter will NOT change.

/1 clearly show source will not change

voi d copy_array(int destination[],
const int source[],
int size);

Thiswill also prevent the programmer that writethe
function from doing changes by mistake.

Character array/pointer

Character pointers, or C-strings are somewhat special. You
already know how a C-string are written literally.

const char* c_str = “literal text"®;
Literal strings are always const, and instead of keeping
track of a separate variable for thelength, thefinal
character isthe null-character '\0'.
It isnot valid to access indexes after the null-character.
c _str:
8

0 1 I2.=*3 a4 Is le |7

=

-

| i |t |elr |a]l

16 17 18 19 20 121 22 23

Dynamic memory (1 of 3)

Sometimes the programmer want to create new variables
on demand. Possible situations are:

Theprogram should read and storeall valuesfrom the user
until the user decidesto stop. It isnot known beforehand
how many valuesthe user will enter. We can start with an
array, but when it isfull it can not be extended.

A function that split a sentenceinto an array of words. It is
not known beforehand how large array we need. And even
if we definealarge enough array it is destroyed when the
function returns.

A function that need to insert more data in some dynamic
data structure passed as parameter. A local variable can
not be used sinceit is destroyed when the function returns.

Dynamic memory allows the programmer to allocate
(reserve) new memory for variables at any point in time. It
gives the programmer full control of the memory
requirements over time of the program. This comeswith a
largeresponsibility: thememory allocated must bereleased
again.

Think of thesituation arising if studentswould always
reserve (forever) anew unreserved seat at every lecture, but
no students ever released any reservations.

Pointersand Const

When using the const keyword with pointers one question
iswhat is constant. Isit the pointer variableitself, or isit
the address pointed to that will not change?

/1 normal const value, a will not change
const int a = O;
a =5; // conpile error (line 6)

/1 value at address in x will not change
const int* x;

/1 value at address iny will not change
int const* y;

/1 pointer z will not change

int * const z; // conpile error (line 13)

/'l try to change pointer variable
X = &a;

y = &a;

z = &; // conpile error (line 18)
/1 try to change address pointed to

t
*x = a; // conpile error (line 21)
*y = a; // conpile error (line 22)

*z = a;

gedri x: / home/ kl aar- g++ const.cc

const.cc: In function ‘int main()':

const.cc:6: error: assignnent of read-only variable ‘a’
const.cc:13: error: uninitialized const ‘2z’

const.cc:18: error: assignment of read-only variable ‘2z’
const.cc:18: error: invalid conversion from'const int*’
to ‘int*’

const.cc:21: error: assignment of read-only location
const.cc:22: error: assignment of read-only |ocation

Dynamic memory (2 of 3)

Attempt one:
We create a pointer initiate it with some address:

int* on_demand = 37011; // \VRONG

Error: Wedo not know if that addressisused by some
other variable, program or even by the operating system.

Attempt two:
Aswe know the operating system keep track of programs
and memory we ask the OSto find some free memory:

int main()

{
int* on_demand = new int; // allocate
} /1 V\RONG

Error: The memory we received from OSwill forevermore
be occupied. When we are done with it other programswill
want to useit.

Attempt three:

int main()

{
int* on_demand = new int;// allocate
[/l ... use the new nenory
del ete on_demand; // release or free
/1 ... remainder of program

Dynamic memory (3 of 3)

We can allocate arrays dynamically:

int main()

{
int* array = new int[10];
/1 use the array

del ete[] array;

/1 remai nder of program

}

In this case the above program isidentical to the following
constant allocated array. But note that the above version
can release the allocated memory at any point in time, and
allocate a new larger array. The programmer control when
to release the memory. In constant allocated ver sion below
the compiler takes care of de-allocating. The programmer
has only limited control.

int main()
{
{
int array[10];
/1 use the array

} /1 automatically deleted at end of bl ock

/'l remai nder of program

Pointer operations examples

int ny_int = 5;
int ny_int_array[] = {2, 3, 5 7, 11};

/1 create a pointer to unchangeabl e char
const char* p_to_char;

// set to point to array of characters
p_to_char = "C++";

/] create a pointer to int
int* p_to_int;

// set to point to variable
p_to_int = &y _int;

/] access content (read or wite)

*p_to_int Il preferred way
*(p_to_int + 0)
p_to_int[O0]

/] set to point to same array as ny_int_array
p_to_int = ny_int_array;

/1 calculate address of third item
/1 N. B! automatically junp one variable

// forward, i.e. adds (2 * sizeof(int))
&my_int_array[2] &_to_int[2]
(nmy_int_array + 2) (p_to_int + 2)

/'l access content of third item
/1 N.Bl first itemis at index O
nmy_int_array[2] // preferred way
*(my_int_array + 2)

p_to_int[2] Il preferred way
*(p_to_int + 2)

Pointer operations overview

<> and thetext inside should bereplaced with the data
indicated by the text inside <>.

<data-type>* // pointer declaration
<data-type>& // reference declaration
*<pointer> // content of address
&<variable> // address of variable

/1 access one index in an array
<poi nt er >[<i ndex- expr essi on>]
*(<poi nter> + <index-expressi on>)

/] create variable on demand, will not be
/1 destroyed automatically at end of block
/'l must be destroyed nmanually by calling
/1 delete before the end of the program
/1 the result is a pointer to the variable
new <dat a-t ype>

/'l delete a variable created on demand
/1 may not be used on other variables
/'l must be done exactly once for each
/'l variable created on demand

del et e <on-denand- vari abl e- poi nter>

/1 on demand array (sane rules apply)
new <dat a- t ype>[<si ze- expr essi on>]
del ete[] <on-denand-array-pointer>

/'l next lecture
/| access one nenber in structure pointer
<struct - poi nt er >-><struct - menber - vari abl e>

(*<struct-pointer>).<struct-nmenber-variabl e>

Lecture 4b separator page

Dynamic memory examples

/] set to point to one new variable
/1 created on demand (nust be del eted again)
p_to_int = newint;

/| delete on demand created variable
delete p_to_int;

/1 set to point to new on denmand array
p_to_int = new int[5];

/1 delete on demand created array
del ete[] p_to_int;

// pointer to structure
struct chained_el enent* first = 0;

/] add el ement to chain

first = new struct chai ned_el enent;
/1 ... initiate other nenbers
first->next = 0;

// insert elenent first in chain

struct chai ned_el ement* to_add;

to_add = new struct chai ned_el ement;

/1 ... initiate other nenbers

to_add->next = first;

first = to_add;

/1 to_add is now stored in first

/]l set it to zero to avoid duplicate pointers
/1 to sane menory (can not delete tw ce!)
to_add = O;

Struct: A custom variable container (2 of 2)

When the custom struct-types are defined we areready to
create variables of those types:

Il create variable
struct date tonorrow,

// initiate the different parts (menbers)
tonmorrow. year = 2009;

tonmorrow. nonth = 10;

tonorrow. day = 6;

I/l create and initiate variable
struct complex i = {0, 1};

/1 assign to new variable
struct conmplex j =i;

/'l change j to 4711 + i
j.real = 4711;

/1 do cal cul ations
j =i *j; // ERROR only assignnment defined

/] create pointer
struct date* oct_six = & onorrow,

/1l allocate nenory
struct date* ny_date = new struct date;

/'l rel ease menory
del ete ny_date;

Struct: A custom variable container (1 of 2)

Sometimes we have data that are strongly related, but need
morethan onevariableto store. You have previously seen
the complex number, consisting of two parts. another
exampleisthe date, consisting of three variables; year,
month and day. A third istime, consisting of hours minutes
and seconds. A fourth would be per sons, consisting of first
name, last name, phone number, E-mail and possibly more.

In C/C++ it ispossibleto create a custom data-type to
collect such information in one unit.
N.B! Thisdescribes data-types, it does not create variables!

struct conpl ex
{
int real;
int imaginary;
}; // sem colon here very inportant!!

struct date
{ .
int year;
short int nonth;
short int day_of _nonth;
}; // sem colon here very inportant!!

struct tine_of _day
{
short int hour;
short int minute;
short int second;
}; // semcolon here very inportant!!

Linked structures

By using structurestogether with pointersit ispossible to
create chains of datain memory. Each element (struct)
contain a pointer to one ore more next element(s). Chains,
or linked structures are very flexible when it comesto
adding and removing new elements. You will createasingly
linked list in thelab, by completing the provided code.

struct chai n_el enent

/'l any data nmenbers can be added here
struct chain_el enent* next;

}

struct chain_elenment* first; // and nore code

first:

P next :

next:

next:

Segmentation fault Debugger example (1 of 2)

A segmentation fault will, if you are lucky, show up when #incl ude <iostreanr
you handle some pointer wrong. Sometimesit will be called #i nclude <cstring>
“bus-error” instead. usi ng namespace std;
(If you was not careful to use and check for null-pointers, voi d bar ()
or did not test the program enough thiserror will not show {
until you delivered your program to the customer. Then /1 an invalid pointer to character
he'll demand money back and buy from someone else.) char* invalid = 0;
Thusyou arelucky to get thiserror early. But what to do? /1 calculate the length of the Cstring
cout << strlen(invalid) << endl
First, compileyour program with “debug” (-g): }
/1 this function is just to better
g++ -g my_program cc /1l illustrate how a backtrace may | ook
. void foo()
Then you must start the program in the “ debugger”:
bar ();

gdb a. out

Inside the debugger, start the program: /1l the execution will eventually
/'l reach the error in bar

run int main()
After it received signal 11, segmentation fault, do:) foo();

bt

You will see atrace of which functionswas called and at
which linetheerror occurred.
To exit the debugger again, type:

Debugger example (2 of 2)

In thisexamplethe commandsareoutlined in blue, and less
important program output in smaller font.

gedri x: / hone/ kl aar- g++ -g debug. cc

gedri x: / hone/ kl aar- gdb a. out

G\U gdb 6.5

Copyright (C) 2006 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public
Li cense, and you are

wel cone to change it and/or distribute copies of it under
certain conditions.

Type "show copying" to see the conditions.

There is absolutely no warranty for GDB. Type "show
warranty" for details.

This GDB was configured as "sparc-sun-solaris2.10"...
(gdb) run

Starting program /hone/kl aar/a. out

Program recei ved signal SIGSEGY, Segnentation fault.
0xff0320d0 in strlen () from/lib/libc.so.1

(gdb) bt

#0 O0xff0320d0 in strlen () from/lib/libc.so.1
#1 0x00011368 in bar () at debug.cc:7

#2 0x000113b4 in foo () at debug.cc: 12

#3 0x000113cc in nain () at debug.cc: 17

(gdb) ¢
The programis running. Exit anyway? (y or n) y

Observethat it may look liketheerror isin somelibrary
code (strlen) you never touched. This happen often, do not
let it confuseyou. Theerror isin your code, but it isjust
detected in some code executed later on.

The debugger can do much morethan this, but you must
learn thison your own, type“help” in the debugger.

