Inheritance

Inheritance allows usto use a previous class as a model for
anew class. All functionality in the original classwill be
kept (without additional code), and we are allowed to add
new functionality.

The classwe use asa moddl is called the “base class’ and
the new class we create from thisiscalled “derived class’
or “subclass’.

Inheritance can be done in many levels. One class may be
derived from some class, and at the same time base classto
an other class.

Publicinheritance

Thisrulesapply for the normal public inheritance:

- private members of the base classwill not be accessible
in the subclass, nor to anyone else

- protected membersin the base class become protected
also in the subclass, and behave as private to anyone else

- public membersin the base classwill be publicin the
derived class

Inheritance exist in other flavours. The only differenceis
what part of the base classbecomeavailablein the subclass.
Thetable outlinewhat protection a member receive with
various inheritance mode:

basecl ass i nheritance subcl ass
public + public => public
protected + public => protected
private + public => not accessible
public + protected => protected
protected + protected => protected
private + protected => not accessible
public + private => private
protected + private => private
private + private => not accessible

We will only use public inheritancein the cour se, outlined
initalic.

Inheritance syntax

Thefollowing syntax is used to create a subclass:

cl ass <sub-class> : public <base-class>

{
<sub-cl ass>(<paraneter-1ist>);
<menber - decl ar ati ons>

}s

It iscommon for the constructor of thederived classto call
the constructor of thebase class. Thismust be donewith an
initialization list:

<sub-cl ass>:: <sub- cl ass>(<param|i st >)
. <base-cl ass>(<argunent-list>)
<menber - name>(<ar gunent >)

{
}

<const ruct or - code>

Initiating member variableswith initialization list replace
the corresponding assignment i the constructor.

I nheritance example (classes)

cl ass person
{
public:
person(string const& n) : name(n) {}
string get_nane() { return name; }
prot ect ed:
string nane

}s

class parent : public person
{
public:
parent(string const& n, int c)
person(n), children(c) {}

int get_children() { return children; }
private:
int children;

b
class senior : public parent
{
public:
senior(string const& n, int c, int gc)

parent(n, c), grand_children(gc) {}

int get_of fspring()

{
return get_children() + grand_chidren
}
private:

int grand_children;

}s

Inheritance example (main)

int main()

person author(“Jerry Scott”);
person illustrator(“Ji mBorgnman“);
parent pa(“Walt Duncan“, 2);

/* Children: Chad and Jereny */
seni or ol dtiner(“Rupert®, 3, 9);

cout << “Zits are witten by
<< aut hor. get _nane()

<< “ and illustrated by *
<< illustrator.get_nane()
<< endl;

cout << pa.get_nane() << “ have “
<< pa.get_children() << “ children.”
<< endl;

cout << ol dtiner.get_nane()
<< “ is not a Zits character,*“
<< “ but he has “
<< ol dtiner.get_of fspring()
<< “ decendants.*
<< endl;

Enabling polymor phism

A pointer (or reference) may refer to a object of the pointer
(or reference) type, or to an object of any subclass (sincea
subclassisalso the base class), or sub-sub-class etc.

This enables shifting behaviour, as the behavior will be
determined by theactual classreferred to. When amember
function is called the base class will appear to shift its
behavior according to the actual classthe pointer (or
reference) refer to.

The shifting behaviour isonly visible when using a pointer
(or reference) of a base class. The behaviour isdetermined
at runtime.

No shifting behavior will take place when a function is
called on an actual object, since the object can only be

itself. It do not refer to some subclasswith other behaviour.

It isasuper set of its base class(es), but that do not enable
different behaviour, since the most specific member
function (closest to the actual class) will always be used,
and it isalwaysthe same. The behaviour is determined at
compiletime.

Polymorphism

When we in addition to inheritance use polymor phism
(poly = many, morph = shifting) we can modify or
customize the behavior of the base class. Thuswe can have
one classwith behaviour that differ depending on which
subclassit actually is.

The exact behaviour isnot determined when compiling the
program, but when the program runs (at runtime).

To enable polymor phism the base class must declare the
mor phing member functionsasvi rt ual .

Polymor phism vs. Inheritance

|

Inheritance

Polymorphism

' ' ' '

Polymor phism example (classes)

cl ass enpl oyee : public person

{
public:
enpl oyee(string nane, int salary);
virtual int get_salary() { return salary; }
protect ed:
int salary;
I

cl ass manager : public enployee

public:
manager (string nanme, int salary, int bonus);

int get_salary() { return salary + bonus; }
protected:

int bonus;
I
class consultant : public enpl oyee

{
public:
consultant(string nane, int salary, int mssions);

int get_salary() { return salary * mssions; }
protected:

int mssions;

I

Further topics

Abstract classes
cl ass shape

{
public:
shape();

/* menber function exist only in subclasses */
virtual int get_area() = 0; /* abstract */

I

Casting
/* cast derived class to base class
* cast base class to pol ynorph-specific
*
/
dynani c_cast < new_type >(expression)
/* cast pointer to other pointer
bi nary copy, no verification */
rei nterpret_cast< new_type >(expression)

/* cast fundanmental types */
static_cast< new_type >(expression)

/* cast to or fromconst of sane type */
const _cast< new_type >(expression)

RTTI (Run Time Type | dentification)
#i ncl ude <typeinfo>

typei d(expressi on)

/* find type-nane of actual class */
cout << typeid(worker[i]).name() << endl;

Polymor phism example (main)

/* some details are left out */
int main()

enpl oyee* worker[10];
int pos = 0;

while (cin >> type)

{
switch (type)
{
case EMPLOYEE:
wor ker [pos] = read_enpl oyee(cin);
br eak;
case MANACER:
wor ker [pos] = read_manager (cin);
br eak;
case CONSULTANT:
wor ker [pos] = read_consul tant(cin);
br eak;
}
pos = pos + 1;
}
for (int i =0; i <pos; i =i + 1)
{
/* get_name() is inherited */
cout << worker[i]->get_name() << “ have “
/* get_salary() is polynorph */
<< worker[i]->get_salary()
<< “SEK salary.“ << endl;
}

