
Formatted input example (4 pages)

// our program
string name;
float weight;
int age;
cin >> age >> weight >> name;

The above picture represent the situation at the start of the
program. The blue arrow is the position where cin will
start reading next time. Characters behind the bar are not
available to cin yet, cin will stop and wait when reaching
the bar. Now the user enters “ 8 40.5 “:

Nothing happen since cin is still blocked by the red bar.
Now the user press Enter, followed by a space “ “.

C++ input buffer:

C++ input buffer:

‘ ’ ‘8’ ‘ ’ ‘4’ ‘0’ ‘.’ ‘5’ ‘ ’

C++ input buffer:

‘ ’ ‘8’ ‘ ’ ‘4’ ‘0’ ‘.’ ‘5’ ‘ ’ ‘\n’ ‘ ’

(Buffer from last page repeated here for convenience.)

The blocking bar is moved to just after the newline
character. cin will now start reading from the buffer. The
characters read are removed from the buffer. The first
thing to read is an integer (age). Since formatted input (>>)
is used all blank characters before the integer will be
removed first. Meanwhile the user enters “c”:

It is now time to interpret the next characters as integers.
the 8 will be read, but as the following space is not valid in a
integer the reading will stop. 8 is stored in age.

There is still unblocked characters available in the buffer,
cin will continue to read the next value (weight), that
should be interpreted as float. Since formatted input (>>) is
used all leading blank characters is removed first.

C++ input buffer:

‘ ’ ‘8’ ‘ ’ ‘4’ ‘0’ ‘.’ ‘5’ ‘ ’ ‘\n’ ‘ ’

C++ input buffer:

‘8’ ‘ ’ ‘4’ ‘0’ ‘.’ ‘5’ ‘ ’ ‘\n’ ‘ ’ ‘c’

C++ input buffer:

‘ ’ ‘4’ ‘0’ ‘.’ ‘5’ ‘ ’ ‘\n’ ‘ ’ ‘c’

The buffer picture after the leading blanks is removed:

A floating point value can contain digits and a single dot.
All matching characters are read and interpreted. 40.5 is
stored in weight.

Characters are still available. The next thing to read is a
string. When formatted input (>>) is used all leading blank
characters will be skipped. It will then read the next word.
A word is every character until the next blank character. In
this case the newline character is read. But then no more
characters are available.

The user enters “alvin “ and press enter.

C++ input buffer:

‘4’ ‘0’ ‘.’ ‘5’ ‘ ’ ‘\n’ ‘ ’ ‘c’

C++ input buffer:

‘\n’ ‘ ’ ‘c’

C++ input buffer:

‘ ’ ‘c’

C++ input buffer:

‘ ’ ‘c’ ‘a’ ‘l’ ‘v’ ‘i’ ‘n’ ‘ ’ ‘\n’

(Buffer from last page repeated here for convenience.)

cin will continue removing leading blanks.

Then “calvin” is read stored to the name variable. cin
will stop at the first blank character.

Now cin is done with all requested input. The characters
still in the buffer will remain and be read when cin is used
again.
N.B! The remaining characters may come as a surprise to
you the next time you try to read something.

C++ input buffer:

‘ ’ ‘c’ ‘a’ ‘l’ ‘v’ ‘i’ ‘n’ ‘ ’ ‘\n’

C++ input buffer:

‘c’ ‘a’ ‘l’ ‘v’ ‘i’ ‘n’ ‘ ’ ‘\n’

C++ input buffer:

‘ ’ ‘\n’


