Losningsforslag till tentamen i TDIU11 2025-03-28

Filip Strombéck

1. Se sista sidan.

2. Vi har 62 bitar logiska adresser och 4 bitars page-table-entry. Vi vill ocksd ha maximal
32 KiB pagestorlek.

(a)

(b)

()

For att undvika fragmentering vill vi att alla pagetabeller utnyttjas till fullo. For att
hitta den storsta mojliga pagestorleken kan vi helt enkelt testa 32 KiB och successivt
ga nedat.

Vi borjar med att testa 32 KiB, dvs. 2! bytes. I och med att varje page-table-entry
ar 4 bytes stort sa kan varje page-table innehalla 22%0 = 213 element. Varje niva kan
déarmed "téacka” 13 bitar. Av de 62 bitarna logisk adress sa anvinds 15 bitar for offset,
sa finns 47 bitar kvar. Eftersom 47 inte dr delbart med 13 s& kommer vi inte kunna
anvianda alla pagetabeller fullt ut. Ett exempel ar 8 + 13 + 13 + 13. Det illustrerar
problemet med en pagestorlek pa 32 KiB.

Vi testar i stillet med 16 KiB, dvs. 24 bytes. D4 kan varje page innehélla 22%,4 = 212
element. Av de 62 bitar logisk adress som finns s anvinds da 14 bitar till offset.
Kvarvarande 48 bitar passar d& perfekt till 4 nivier paging med 12 bitar i varje niva.
En logisk adress ar alltsd uppdaterad som 12 + 12 + 12 + 12 + 14.

Varje element i pagetabell innehéller 32 bitar. Enligt uppgiften s& behovs 2 bitar i
varje element till annat. Det finns alltsd 30 bitar kvar for frame-nummer. Med en
pagestorlek pa 2! bitar far vi maximalt 30 + 14 = 44 bitar fysisk adressrymd.

Givet att vi har 4 nivaer paging sa far vi:

a=0.9
tram = 10 ns
tgo0d = tram = 10 ns
tbad = D * tram = 50 ns
FEAT = - tgooqa + (1 — @) - tpad
=09-10+0.1-50=9+5=14ns

3. (a)

(c)

Den virtuella adressen 0xA31 Oversétts till en fysisk adress pa foljande sétt: Forst
extraheras pagenumret, i detta fall de forsta 4 bitarna, dvs. OxA. Vi tittar sedan
pa rad OxA i respektive tabell. Fér process 1 &r valid-biten inte satt, sd process 1
far pagefault. For process 2 ar valid-biten satt, och frame &r 0xB7. Frame-numret
kombineras sedan med offset fran originaladressen (0x31), vilket blir 0xB731.

Processerna delar frames 0xD3 (page 0x3 resp. 0x0). Man kan tédnka att de dven delar
frame 0x93 (page OxF resp. 0x8), men valid dr 0 i process 1, sd detta dr inte delat i
praktiken.

Virtuella adresser for frame 0xD3 &r 0x300-0x3FF i process 1 och 0x000—0xOFF.

Frame 0xB7 finns tillgénglig bade som page 0x3 och 0xA. Detta gor att adresser 0x300—
0x3FF ar samma som 0xA00-OxAFF.

4. Vi har en disk som dr 4 TiB (= 2*2 bytes) stor, och fysiska block som &r 512 bytes stora.

(a)

(b)

Vi vill ha maximalt 232 block. Detta ger att minimal blockstorlek blir: % = 210
alltsa 1 KiB.

)

Givet 1 KiB block och 32-bitars pekare sa kan vi lagra 22%0 = 28 pekare i varje
indexblock. Med tva nivier indexering far vi alltsd: 28 - 28 - 210 = 226 hytes, vilket ir
64 MiB.

i. For lankad allokering behéver vi totalt 100 accesser, i och med att vi behover lasa
block 1-99 for att hitta och ldsa det 100:e blocket. Totalt 100-10 ms = 1000 ms =
1s.

ii. For 2 nivaers indexerad allokering récker 3 ldsningar, 2 ldsningar av indexblock

och 1 ldsning av datablock. Alltsa: 3 - 10 ms = 30 ms.

SSTF véljer den sektor som &ar ndrmast ldsarmens nuvarande position. Alltsa kommer
den behova flytta lashuvudet i féljande sekvens: 620 — 600 — 650 — 670 — 880 —
360 — 160. Totalt: 1020

Efter steg 2: Efter steg 6:
FD- < > Typ: fil fil
textl conte
Typ: katal Typ: fil Typ: fil
yp: katalog P Typ: katalog P

& — text2 3 text?2

s T T T - Typ: link s] Typ: lank

a a

Det gar att oppna s. Enligt bilden till hoger ovan sd &r s en symbolisk lank som
refererar till filen a. S& om ett program 6ppnar s s& kommer systemet att 6ppna filen
a i stéllet. Filen a innehéller i sin tur text2.

Inoden som till en borjan hette a tas bort i steg 6. Man kan tro att det sker i steg 3,
men eftersom filen dr 6ppen sa kan inoden inte tas bort da. Det sker forst néar filen
sedan stings i steg 6.

6. Vi vill skapa filer under /handins som motsvarar studenters inlamningar.
(a) Detta gar exempelvis att 16sa med vanliga filrdttigheter:
Vi behéver en grupp teachers, som alla larare 4r medlemmar i.

Vi later /handins dgas av anvindaren root och gruppen teachers. Réttigheterna far
vara rwxrwxrw-. Dvs. “others” far lidsa och skriva, men inte se innehallet i katalogen,
medan larare far gora vad de vill.

Programmet submit behover d& bara kopiera filen som ska ldmnas in till /handins/<student-id>,
sétta filens grupp till teachers, och se till att rattigheterna ar rw-rw----. Program-
met submit kan exempelvis dgas av root och ha rittigheterna rwx-r-xr-x.

Programmet grade ska dgas av root och gruppen teachers. For att se till att bara
larare kan kora det sétts filrdttigheterna till rwxr-x---. Programmet kan da helt
enkelt titta i /handins och ldsa de inldmningar som finns dér.

(b) Om en student kopierar sin inldmning till /handins/ sjéilv sa kommer den inte att
fa korrekt grupp och korrekta filrdttigheter. Typiskt sett &gs filen av gruppen med
samma namn som anvandaren och har antingen rw-rw-r-- eller rw-r--r--. Detta
gor att lararen och alla andra studenter kan 1dsa inldmningen (dtminstone om de kan
gissa filnamnet).

(c¢) I och med att studenter inte har x pad /handins s kommer de inte kunna se vilka
filer som finns dér (dvs. rm /handins/* kommer inte fungera rakt av). De kommer
ddremot kunna ta bort filer som de kan namnet pa (student-id:n &r inte s& svara att
gissa).

W N
/ N KN
g AN I; (v
N
) - N
~ UG\\?\ < @ 7 _ D L S
“ ~ Pl T ,
| _AA 9 ._ T < K \
v i N I\
— - |
2 -~
¥ T~ " Ny L
- N [
o~ 0 = RN
T — D Q) ~) _ _rl.1
— N
< } M Q) N \
V) N < H \
o~
J R g) D
Ml_ \k ~ N m:k\ /v ’/\M /_. n/,—. WAl
— . ﬂlL > n/hv) Ami _ ~ « _,3 f.(
="
by “ T fse) U | O v ~+ | | _
T e[| C ! _ - = =
_ S — .) |
| “ FoT _ N R R -
T | . q _ N8 . “ “ = _f~ VY \IHJ
b N — bo] g | T] 9
) | X
ST S SRR
— A ~ = = v
//. T ~ll. N\ TN _ N
-0 U = Q

