
Lösningsförslag till tentamen i TDIU11 2025-03-28

Filip Strömbäck

1. Se sista sidan.

2. Vi har 62 bitar logiska adresser och 4 bitars page-table-entry. Vi vill också ha maximal
32 KiB pagestorlek.

(a) För att undvika fragmentering vill vi att alla pagetabeller utnyttjas till fullo. För att
hitta den största möjliga pagestorleken kan vi helt enkelt testa 32 KiB och successivt
gå nedåt.

Vi börjar med att testa 32 KiB, dvs. 215 bytes. I och med att varje page-table-entry
är 4 bytes stort så kan varje page-table innehålla 215

22 = 213 element. Varje nivå kan
därmed ”täcka” 13 bitar. Av de 62 bitarna logisk adress så används 15 bitar för offset,
så finns 47 bitar kvar. Eftersom 47 inte är delbart med 13 så kommer vi inte kunna
använda alla pagetabeller fullt ut. Ett exempel är 8 + 13 + 13 + 13. Det illustrerar
problemet med en pagestorlek på 32 KiB.

Vi testar i stället med 16 KiB, dvs. 214 bytes. Då kan varje page innehålla 214

22 = 212

element. Av de 62 bitar logisk adress som finns så används då 14 bitar till offset.
Kvarvarande 48 bitar passar då perfekt till 4 nivåer paging med 12 bitar i varje nivå.
En logisk adress är alltså uppdaterad som 12 + 12 + 12 + 12 + 14.

(b) Varje element i pagetabell innehåller 32 bitar. Enligt uppgiften så behövs 2 bitar i
varje element till annat. Det finns alltså 30 bitar kvar för frame-nummer. Med en
pagestorlek på 214 bitar får vi maximalt 30 + 14 = 44 bitar fysisk adressrymd.

(c) Givet att vi har 4 nivåer paging så får vi:

α = 0.9

tram = 10 ns

tgood = tram = 10 ns

tbad = 5 · tram = 50 ns

EAT = α · tgood + (1− α) · tbad
= 0.9 · 10 + 0.1 · 50 = 9 + 5 = 14 ns

1



3. (a) Den virtuella adressen 0xA31 översätts till en fysisk adress på följande sätt: Först
extraheras pagenumret, i detta fall de första 4 bitarna, dvs. 0xA. Vi tittar sedan
på rad 0xA i respektive tabell. För process 1 är valid-biten inte satt, så process 1
får pagefault. För process 2 är valid-biten satt, och frame är 0xB7. Frame-numret
kombineras sedan med offset från originaladressen (0x31), vilket blir 0xB731.

(b) Processerna delar frames 0xD3 (page 0x3 resp. 0x0). Man kan tänka att de även delar
frame 0x93 (page 0xF resp. 0x8), men valid är 0 i process 1, så detta är inte delat i
praktiken.

Virtuella adresser för frame 0xD3 är 0x300–0x3FF i process 1 och 0x000–0x0FF.

(c) Frame 0xB7 finns tillgänglig både som page 0x3 och 0xA. Detta gör att adresser 0x300–
0x3FF är samma som 0xA00–0xAFF.

4. Vi har en disk som är 4 TiB (= 242 bytes) stor, och fysiska block som är 512 bytes stora.

(a) Vi vill ha maximalt 232 block. Detta ger att minimal blockstorlek blir: 242

232 = 210,
alltså 1 KiB.

(b) Givet 1 KiB block och 32-bitars pekare så kan vi lagra 210

22 = 28 pekare i varje
indexblock. Med två nivåer indexering får vi alltså: 28 · 28 · 210 = 226 bytes, vilket är
64 MiB.

(c) i. För länkad allokering behöver vi totalt 100 accesser, i och med att vi behöver läsa
block 1–99 för att hitta och läsa det 100:e blocket. Totalt 100 ·10 ms = 1000 ms =
1 s.

ii. För 2 nivåers indexerad allokering räcker 3 läsningar, 2 läsningar av indexblock
och 1 läsning av datablock. Alltså: 3 · 10 ms = 30 ms.

(d) SSTF väljer den sektor som är närmast läsarmens nuvarande position. Alltså kommer
den behöva flytta läshuvudet i följande sekvens: 620 → 600 → 650 → 670 → 880 →
360 → 160. Totalt: 1020

5. (a)
Efter steg 2:

a
b
s

Typ: katalog

text1
Typ: fil

text2
Typ: fil

a
Typ: länk

1FD:

Efter steg 6:

a
s

Typ: katalog

newcontents
Typ: fil

text2
Typ: fil

a
Typ: länk

(b) Det går att öppna s. Enligt bilden till höger ovan så är s en symbolisk länk som
refererar till filen a. Så om ett program öppnar s så kommer systemet att öppna filen
a i stället. Filen a innehåller i sin tur text2.

(c) Inoden som till en början hette a tas bort i steg 6. Man kan tro att det sker i steg 3,
men eftersom filen är öppen så kan inoden inte tas bort då. Det sker först när filen
sedan stängs i steg 6.

2



6. Vi vill skapa filer under /handins som motsvarar studenters inlämningar.

(a) Detta går exempelvis att lösa med vanliga filrättigheter:

Vi behöver en grupp teachers, som alla lärare är medlemmar i.

Vi låter /handins ägas av användaren root och gruppen teachers. Rättigheterna får
vara rwxrwxrw-. Dvs. ”others” får läsa och skriva, men inte se innehållet i katalogen,
medan lärare får göra vad de vill.

Programmet submit behöver då bara kopiera filen som ska lämnas in till /handins/<student-id>,
sätta filens grupp till teachers, och se till att rättigheterna är rw-rw----. Program-
met submit kan exempelvis ägas av root och ha rättigheterna rwx-r-xr-x.

Programmet grade ska ägas av root och gruppen teachers. För att se till att bara
lärare kan köra det sätts filrättigheterna till rwxr-x---. Programmet kan då helt
enkelt titta i /handins och läsa de inlämningar som finns där.

(b) Om en student kopierar sin inlämning till /handins/ själv så kommer den inte att
få korrekt grupp och korrekta filrättigheter. Typiskt sett ägs filen av gruppen med
samma namn som användaren och har antingen rw-rw-r-- eller rw-r--r--. Detta
gör att läraren och alla andra studenter kan läsa inlämningen (åtminstone om de kan
gissa filnamnet).

(c) I och med att studenter inte har x på /handins så kommer de inte kunna se vilka
filer som finns där (dvs. rm /handins/* kommer inte fungera rakt av). De kommer
däremot kunna ta bort filer som de kan namnet på (student-id:n är inte så svåra att
gissa).

3




