
TDIU11 – Föreläsning 4
Minneshantering (Memory management)

Filip Strömbäck



TDIU11 – Föreläsning 4 Filip Strömbäck 1

Planering
Vecka Föreläsning Seminarie

4 Processer och trådar —
5 Filsystem och lagring Utmaning 1: Schemaläggning
6 Minneshantering Rapport 1: Filsystem I
7 Virtuellt minne Utmaning 2: Filsystem
8 Säkerhet Utmaning 3: Virtuellt minne
9 Repetition/utblickar Rapport 2: Filsystem II

10 — Utmaning 4: Säkerhet
11 Tentaförberedelse Utmaning 5: Repetition (tisdag)
12 (omtenta-p) Rapport: Uppsamling



1 Repetition: Inoder
2 Repetition: Kataloger
3 Minneshantering
4 Strategier: Kontinuerlig
5 Strategier: Segmentering
6 Strategier: Paging
7 Alternativ lagraing av page table
8 Nästa vecka



TDIU11 – Föreläsning 4 Filip Strömbäck 3

Hur vet vi vad som är ledigt?

Bitmap:
• 1 bit/logiskt block
• Blir snabbt stor

Länkad:
• Länka lediga block
• Svårt att hitta sekventiella block

Länkad med räknare:
• Räkna sekventiella lediga block
• Fortfarande dyr att traversera

Indexerad:
• Lagra en ”inod” med alla lediga

block
• Kan enkelt plocka indexblock till

ny fil



TDIU11 – Föreläsning 4 Filip Strömbäck 4

Abstraktion för inoder

Möjligt gränssnitt:
int inode_size(int id);

int inode_read(int id, int offset, byte *data, int size);

int inode_write(int id, int offset, const byte *data, int size);

Hur kan OS veta vad som borde laddas in i RAM?



TDIU11 – Föreläsning 4 Filip Strömbäck 5

Datastrukturer i kernel
User Kernel

P1

P2

Per-process OFT

Pos SW
0: 32 0
1: 51 2
2: 0 0

Pos SW
0: 32 2
1: 0 3
2: – –

Open Buffer Inod
0: 2 58
1: 0 – –
2: 2 4
3: 1 42

System-wide OFT



TDIU11 – Föreläsning 4 Filip Strömbäck 6

Smidigare abstraktion för inoder

Idé: Vi kräver att man öppnar en inod först!
int inode_open(int inode_id);
void inode_close(int fd);

int inode_size(int fd);
void inode_seek(int fd, int pos);
int inode_read(int fd, byte *data, int size);
int inode_write(int fd, const byte *data, int size);

Hur namnger vi inoder?



1 Repetition: Inoder
2 Repetition: Kataloger
3 Minneshantering
4 Strategier: Kontinuerlig
5 Strategier: Segmentering
6 Strategier: Paging
7 Alternativ lagraing av page table
8 Nästa vecka



TDIU11 – Föreläsning 4 Filip Strömbäck 8

Hur namnger vi filer?

Idé: Lagra namn + id i inoder,
vi kallar dem katalog-inoder
Tabell med:
• Namn
• Inod

Inod innehåller:
• Om katalog/fil
• Rättigheter

Typ: katalog
Namn Inod
bin 12
home 5

0:
Rot

Typ: katalog
Namn Inod
emacs 38
g++ 8

12:

Typ: katalog
Namn Inod
a.txt 53
prog.c 15

5: Typ: Fil
textfil

53:

Typ: Fil
int main()

15:



TDIU11 – Föreläsning 4 Filip Strömbäck 9

Länkar i systemet
Idé: Tillåt flera referenser till
samma fil
• Hårda länkar
• Symboliska länkar

I inod:
• Antal referenser

Varför inte hård länk till
katalog?

Katalog 1
Namn Inod
a.txt 58

Fil 1
innehåll

58:

Sym-länk 1
a.txt

48:



TDIU11 – Föreläsning 4 Filip Strömbäck 9

Länkar i systemet
Idé: Tillåt flera referenser till
samma fil
• Hårda länkar
• Symboliska länkar

I inod:
• Antal referenser

Varför inte hård länk till
katalog?

Katalog 1
Namn Inod
a.txt 58
hard 58

Fil 2
innehåll

58:

Sym-länk 1
a.txt

48:



TDIU11 – Föreläsning 4 Filip Strömbäck 9

Länkar i systemet
Idé: Tillåt flera referenser till
samma fil
• Hårda länkar
• Symboliska länkar

I inod:
• Antal referenser

Varför inte hård länk till
katalog?

Katalog 1
Namn Inod
a.txt 58
hard 58
sym 48

Fil 2
innehåll

58:

Sym-länk 1
a.txt

48:



TDIU11 – Föreläsning 4 Filip Strömbäck 10

Abstraktion för filer

Nu kan vi använda filnamn och sökvägar!
int open(const char *name);
void close(int fd);

int size(int fd);
void seek(int fd, int pos);
int read(int fd, byte *data, int size);
int write(int fd, const byte *data, int size);



TDIU11 – Föreläsning 4 Filip Strömbäck 11

Abstraktion för filer (forts.)

Nu kan vi använda filnamn och sökvägar!
DIR *opendir(const char *name);
void closedir(DIR *dir);
dirent *readdir(DIR *dir);

void unlink(const char *name);
void rename(const char *old, const char *new);



TDIU11 – Föreläsning 4 Filip Strömbäck 12

Virtuellt filsystem

Många system har ett virtuellt
filsystem:
• Program ser ett filsystem
• Finns egentligen olika

filsystem

/

home bin tmp

prog.c emacs abc.tmp

tmpfsSeparat disk



1 Repetition: Inoder
2 Repetition: Kataloger
3 Minneshantering
4 Strategier: Kontinuerlig
5 Strategier: Segmentering
6 Strategier: Paging
7 Alternativ lagraing av page table
8 Nästa vecka



TDIU11 – Föreläsning 4 Filip Strömbäck 14

Mål

Process 1

0x00A0: 32
0x00A1: 92
0x00A2: 11
0x00A3: 62

Process 2

0x00A0: 81
0x00A1: 53
0x00A2: 33
0x00A3: 91

Hur går detta ihop?

RAM
0x10A0: 32
0x10A1: 92
0x10A2: 11
0x10A3: 62

0x20A0: 81
0x20A1: 53
0x20A2: 33
0x20A3: 91

Logisk/virtuell adress Logisk/virtuell adress

Fysisk adress



TDIU11 – Föreläsning 4 Filip Strömbäck 14

Mål

Process 1

0x00A0: 32
0x00A1: 92
0x00A2: 11
0x00A3: 62

Process 2

0x00A0: 81
0x00A1: 53
0x00A2: 33
0x00A3: 91

RAM

0x10A0: 32
0x10A1: 92
0x10A2: 11
0x10A3: 62

0x20A0: 81
0x20A1: 53
0x20A2: 33
0x20A3: 91

Logisk/virtuell adress Logisk/virtuell adress

Fysisk adress



TDIU11 – Föreläsning 4 Filip Strömbäck 14

Mål

Process 1

0x00A0: 32
0x00A1: 92
0x00A2: 11
0x00A3: 62

Process 2

0x00A0: 81
0x00A1: 53
0x00A2: 33
0x00A3: 91

RAM
0x10A0: 32
0x10A1: 92
0x10A2: 11
0x10A3: 62

0x20A0: 81
0x20A1: 53
0x20A2: 33
0x20A3: 91

Logisk/virtuell adress Logisk/virtuell adress

Fysisk adress



TDIU11 – Föreläsning 4 Filip Strömbäck 14

Mål

Process 1

0x00A0: 32
0x00A1: 92
0x00A2: 11
0x00A3: 62

Process 2

0x00A0: 81
0x00A1: 53
0x00A2: 33
0x00A3: 91

RAM
0x10A0: 32
0x10A1: 92
0x10A2: 11
0x10A3: 62

0x20A0: 81
0x20A1: 53
0x20A2: 33
0x20A3: 91

Logisk/virtuell adress Logisk/virtuell adress

Fysisk adress



TDIU11 – Föreläsning 4 Filip Strömbäck 14

Mål

Process 1

0x00A0: 32
0x00A1: 92
0x00A2: 11
0x00A3: 62

Process 2

0x00A0: 81
0x00A1: 53
0x00A2: 33
0x00A3: 91

RAM
0x10A0: 32
0x10A1: 92
0x10A2: 11
0x10A3: 62

0x20A0: 81
0x20A1: 53
0x20A2: 33
0x20A3: 91

Logisk/virtuell adress Logisk/virtuell adress

Fysisk adress



TDIU11 – Föreläsning 4 Filip Strömbäck 15

Hur löser vi detta?

CPU

RAM

Adress

Data

MMU
Logisk adress Fysisk adress

Notera: logisk och fysisk adress kan vara olika stora!



TDIU11 – Föreläsning 4 Filip Strömbäck 15

Hur löser vi detta?

CPU

RAM

Data

MMU
Logisk adress Fysisk adress

Notera: logisk och fysisk adress kan vara olika stora!



1 Repetition: Inoder
2 Repetition: Kataloger
3 Minneshantering
4 Strategier: Kontinuerlig
5 Strategier: Segmentering
6 Strategier: Paging
7 Alternativ lagraing av page table
8 Nästa vecka



TDIU11 – Föreläsning 4 Filip Strömbäck 17

Kontinuerlig (Continuous allocation)

MMU

0x00100000Base:

0x00200000Limit:

Logisk adress Fysisk adress

Notera: Varje process har olika MMU-inställningar!



TDIU11 – Föreläsning 4 Filip Strömbäck 18

Kontinuerlig (Continuous allocation)
RAM

0xFFFFFFFF

0x00000000

Process 1

Process 2

Base: 0x90000000
Limit: 0xB0000000

Base: 0x70000000
Limit: 0x80000000

Intern fragmentering Extern fragmentering



TDIU11 – Föreläsning 4 Filip Strömbäck 18

Kontinuerlig (Continuous allocation)
RAM

0xFFFFFFFF

0x00000000

Process 1

Process 2

Base: 0x90000000
Limit: 0xB0000000

Base: 0x70000000
Limit: 0x80000000

Intern fragmentering Extern fragmentering



1 Repetition: Inoder
2 Repetition: Kataloger
3 Minneshantering
4 Strategier: Kontinuerlig
5 Strategier: Segmentering
6 Strategier: Paging
7 Alternativ lagraing av page table
8 Nästa vecka



TDIU11 – Föreläsning 4 Filip Strömbäck 20

Segmentering
MMU

0x00000100Seg. table:
Segmentnummer

Logisk adress
Fysisk adress

Seg Base Limit
0 0x00100000 0x00180000
1 0x00200000 0x00280000
2 0x00180000 0x001A0000

Mindre block ⇒ Mindre problem med fragmentering
Notera: Varje process har olika segmenttabeller!



TDIU11 – Föreläsning 4 Filip Strömbäck 21

Segmentering
RAM

0xFFFFFFFF

0x00000000

Stack Seg.
Data Seg.
Code Seg.

Code Seg.
Data Seg.
Stack Seg.

Process 1

Process 2



TDIU11 – Föreläsning 4 Filip Strömbäck 22

Segmentering: Hur ser logiska adresser ut?
Alternativ 1: Segmentregister (t.ex. Protected Mode i Intel x86)

1DS:mov ds:[0x00F1], 0x4F

0x0001 0x00F1Logisk adress:

Seg Base Limit
0 0x00100000 0x00108000
1 0x00200000 0x00208000
2 0x00180000 0x0018A000
.. ... ...

+ < 0x002000F1
Fysisk adress:

Segmentation fault

eller



TDIU11 – Föreläsning 4 Filip Strömbäck 23

Segmentering: Hur ser logiska adresser ut?
Alternativ 2: Mest signifikanta bitar i logisk adress
mov [0x000100F1], 0x4F

0x0001 00F1Logisk adress:

Seg Base Limit
0 0x00100000 0x00108000
1 0x00200000 0x00208000
2 0x00180000 0x0018A000
.. ... ...

+ < 0x002000F1
Fysisk adress:

Segmentation fault

eller



1 Repetition: Inoder
2 Repetition: Kataloger
3 Minneshantering
4 Strategier: Kontinuerlig
5 Strategier: Segmentering
6 Strategier: Paging
7 Alternativ lagraing av page table
8 Nästa vecka



TDIU11 – Föreläsning 4 Filip Strömbäck 25

Paging
• Vi vill undvika extrern

fragmentering
• Idé: Vi delar upp den virtuella

adressrymden i pages
• Alla pages har samma storlek

⇒ Vi kan lagra en page var som helst
i RAM (i vilken frame som helst)

⇒ Bara intern fragmentering kvar!
• Hur stor ska en page vara?

RAM (frames)Process 1 (pages)

Process 2 (pages)



TDIU11 – Föreläsning 4 Filip Strömbäck 26

Paging

MMU

0x00010000Page table:
Logisk adress Fysisk adress

Rad Frame
0 0x00100000
1 0x00200000
2 0x00180000
... ...

Olika page tables för olika processer!



TDIU11 – Föreläsning 4 Filip Strömbäck 27

Paging: Hur stor blir page-table?

• 32-bit logiska adresser
• 32-bit fysiska adresser
• 4 KiB page och frame
• Page-table får inte plats i

en page ⇒
Fragmentering!

• Kan vi välja en bra
page-size?

0x00203 8F0
Logisk adress

...
0x10200xxx
0x30205xxx
0x20900xxx

...

0x
20
3

20 + ? bitar ⇒ 22 = 4 bytes

220 element:
4 MiB

0x30205 8F0
Fysisk adress



TDIU11 – Föreläsning 4 Filip Strömbäck 27

Paging: Hur stor blir page-table?

• 32-bit logiska adresser
• 48-bit fysiska adresser
• 4 KiB page och frame
• Page-table får inte plats i

en page ⇒
Fragmentering!

• Kan vi välja en bra
page-size?

0x00203 8F0
Logisk adress

...
0x000010200xxx
0x000030205xxx
0x000020900xxx

...

0x
20
3

36 + ? bitar ⇒ 23 = 8 bytes

220 element:
8 MiB

0x000030205 8F0
Fysisk adress



TDIU11 – Föreläsning 4 Filip Strömbäck 27

Paging: Hur stor blir page-table?

• 48-bit logiska adresser
• 32-bit fysiska adresser
• 4 KiB page och frame
• Page-table får inte plats i

en page ⇒
Fragmentering!

• Kan vi välja en bra
page-size?

0x000000203 8F0
Logisk adress

...
0x10200xxx
0x30205xxx
0x20900xxx

...

0x
20
3

20 + ? bitar ⇒ 22 = 4 bytes

236 element:
256 GiB

0x30205 8F0
Fysisk adress



TDIU11 – Föreläsning 4 Filip Strömbäck 28

Hierarkisk Page-table
Idé: Vi lagrar page-table i flera nivåer!

0x3F 38 7080
Logisk adress

...
0x7A8DBxxx
0x0A8DExxx
0x8E950xxx

...

...
0x3A88Bxxx
0x10A8Exxx
0x5A9A1xxx

...

0x10A8E 708
Fysisk adress

0x
0F
C

0x
03
8

+

·4



TDIU11 – Föreläsning 4 Filip Strömbäck 29

Kostnad av paging

Med 2 nivåer paging:
• Kostar 2 läsningar att slå upp

adress
• Varje minnesaccess kostar som 3
• RAM är förhållandevis långsamt...

Lösning:
• TLB (Translation Lookaside

Buffer)
• Cache för MMU-beräkningar

(64–1024 element)
• Undviker minnesåtkomst om

elementet finns



TDIU11 – Föreläsning 4 Filip Strömbäck 30

Kostnad av paging

Effective Access Time:
Antag:
• α = hit-ratio, i %
• t = RAM-access
• ε = uppslagning i TLB

Litet i förhållande till t

EAT = (t+ ε)α+ (3t+ ε)(1− α)

• α = 80%, t = 100 ns ger EAT = 120 ns
• α = 99%, t = 100 ns ger EAT = 101 ns



1 Repetition: Inoder
2 Repetition: Kataloger
3 Minneshantering
4 Strategier: Kontinuerlig
5 Strategier: Segmentering
6 Strategier: Paging
7 Alternativ lagraing av page table
8 Nästa vecka



TDIU11 – Föreläsning 4 Filip Strömbäck 32

Hashad Page-table

0x12345 678
Logisk adress

0x10A00 678
Fysisk adress

Hashfunktion 0x58300 ⇒ 0x15823

0x12345 ⇒ 0x10A00



TDIU11 – Föreläsning 4 Filip Strömbäck 33

Inverterad Page-table

0x12345 678
Logisk adress

0x0007A 678
Fysisk adress

10PID:

PID Page
... ...
21 0x5182E
10 0x12345
10 0x12050
91 0x12050
... ...

sökning
Index 0x0007A

PT har ett element per frame. Svårt att dela minne mellan processer.



TDIU11 – Föreläsning 4 Filip Strömbäck 34

Segmentering + Paging (Intel x86)

Segmentering
0x00000100

Segment
Logisk adress

Seg Base Limit
0 0x00100000 0x00180000
1 0x00200000 0x00280000
2 0x00180000 0x001A0000

Paging
Linjär
adress

0x00010000
Fysisk adress

Rad Frame
0 0x00100000
1 0x00200000
2 0x00180000
... ...



1 Repetition: Inoder
2 Repetition: Kataloger
3 Minneshantering
4 Strategier: Kontinuerlig
5 Strategier: Segmentering
6 Strategier: Paging
7 Alternativ lagraing av page table
8 Nästa vecka



TDIU11 – Föreläsning 4 Filip Strömbäck 36

Nästa vecka

På 64-bitarssystem har vi 256 TiB logisk adressrymd, men mycket mindre
RAM.
• Varför är det användbart?
• Hur kan vi använda mer minne än vad som finns tillgängligt?



Filip Strömbäck

www.liu.se

www.liu.se

	Repetition: Inoder
	Repetition: Kataloger
	Minneshantering
	Strategier: Kontinuerlig
	Strategier: Segmentering
	Strategier: Paging
	Alternativ lagraing av page table
	Nästa vecka

