TDIU11 - Forelasning 4

Minneshantering (Memory management)

Filip Stromback

II LINKOPING
o UNIVERSITY

TDIU11 - Forelasning 4 Filip Stromback

Planering
Vecka Forelasning Seminarie

Processer och trddar —
Filsystem och lagring Utmaning 1: Schemaldggning

6 Minneshantering Rapport 1: Filsystem |

7 Virtuellt minne Utmaning 2: Filsystem

8 Sékerhet Utmaning 3: Virtuellt minne

9 Repetition /utblickar ~ Rapport 2: Filsystem |l

10 — Utmaning 4: Sakerhet

11 | Tentaférberedelse Utmaning 5: Repetition (tisdag)

12 (omtenta-p) Rapport: Uppsamling

LINKOPING
II.“ UNIVERSITY

Repetition: Inoder

Repetition: Kataloger
Minneshantering

Strategier: Kontinuerlig
Strategier: Segmentering
Strategier: Paging

Alternativ lagraing av page table
Nasta vecka

O NOOT P~ WN

LINKOPING
I I.“ UNIVERSITY

TDIU11 - Forelasning 4

Hur vet vi vad som ar ledigt?

Bitmap:
® 1 bit/logiskt block
® Blir snabbt stor
Lankad:
® | dnka lediga block
® Svart att hitta sekventiella block

Filip Stromback

Lankad med raknare:
® Raikna sekventiella lediga block
® Fortfarande dyr att traversera
Indexerad:

® | agra en "inod" med alla lediga
block

® Kan enkelt plocka indexblock till
ny fil

LINKOPING
II.“ UNIVERSITY

TDIU11 - Forelasning 4 Filip Stromback 4

Abstraktion for inoder

Moijligt granssnitt:

int inode_size(int id);
int inode_read(int id, int offset, byte *data, int size);

int inode_write(int id, int offset, const byte *data, int size);

Hur kan OS veta vad som borde laddas in i RAM?

II LINKOPING
@ UNIVERSITY

TDIU11 - Forelasning 4 Filip Stromback

Datastrukturer i kernel

User 3 Kernel
: Per-process OFT System-wide OFT
| | Pos | SW | ! Open | Buffer | Inod
N ! 0: 2 ' 58
P1 - .10 32 0H T 5 — =
Lo L 51 2 -
v 5 0 0 2: 2 . 4
e 1 3: R 42
! Pos | SW || . -
oo 2] 2N 5t
P2 " 1. 0 3V
| Ho2: - -

LINKOPING
II.“ UNIVERSITY

TDIU11 - Forelasning 4 Filip Stromback

Smidigare abstraktion for inoder

Idé: Vi kraver att man éppnar en inod forst!

int inode_open(int inode_id);
void inode_close(int fd);

int inode_size(int fd);

void inode_seek(int fd, int pos);

int inode_read(int fd, byte *data, int size);

int inode_write(int fd, const byte *data, int size);

Hur namnger vi inoder?

II LINKOPING
@ UNIVERSITY

Repetition: Inoder

Repetition: Kataloger
Minneshantering

Strategier: Kontinuerlig
Strategier: Segmentering
Strategier: Paging

Alternativ lagraing av page table
Nasta vecka

O ~NOO1T B~ WDN =

LINKOPING
I I.“ UNIVERSITY

TDIU11 - Forelasning 4

Hur namnger vi filer?

Idé: Lagra namn + id i inoder,
vi kallar dem katalog-inoder

Tabell med:
® Namn
® |nod
Inod innehaller:
® Om katalog/fil
® Rittigheter

Filip Stromback

Rot
Typ: katalog 12: | Typ: katalog
Namn | Inod Namn | Inod
bin 12 44J44> emacs 38
home 45_‘ g+ 5

Y —
Typ: katalog 53: | Typ: :!Il
Namn | Inod j textfi
a.txt 53 '

- | Typ: Fil

prog.c 15 & yp: Fi

int main()

LINKOPING
II.“ UNIVERSITY

TDIU11 - Forelasning 4

Lankar i systemet

Idé: Tillat flera referenser till
samma fil

® Harda lankar

® Symboliska lankar

| inod:

® Antal referenser

Varfor inte hard lank till
katalog?

Filip Stromback

58:

Fil 1

Katalog 1
Namn Inod
a.txt 58

"| inneh&ll

LINKOPING
II.“ UNIVERSITY

TDIU11 - Forelasning 4

Lankar i systemet

Idé: Tillat flera referenser till

samma fil

® Harda lankar

® Symboliska lankar

| inod:

® Antal referenser

Varfor inte hard lank till
katalog?

Filip Stromback

58;

Fil 2

Katalog 1
Namn Inod
a.txt 58
hard 58

innehall

LINKOPING
II.“ UNIVERSITY

TDIU11 - Forelasning 4 Filip Stromback

Lankar i systemet

Idé: Tillat flera referenser till

samma fil
° . 58: Fil 2
® Harda lankar Katalog 1 SETTYS RN
® Symboliska lankar Namn | Inod
a.txt 58
| inod: hard 53
® Antal referenser sym 48 |—— 48;| Sym-lank 1
a.txt

Varfor inte hard lank till
katalog?

LINKOPING
II.“ UNIVERSITY

TDIU11 - Forelasning 4 Filip Stromback

Abstraktion for filer

Nu kan vi anvanda filnamn och sékvagar!

int open(const char *name);
void close(int £fd);

int size(int fd);

void seek(int fd, int pos);

int read(int fd, byte *data, int size);

int write(int fd, const byte *data, int size);

10

LINKOPING
UNIVERSITY

TDIU11 - Forelasning 4

Abstraktion for filer (forts.)

Filip Stromback

Nu kan vi anvanda filnamn och sokvagar!

DIR #*opendir (const char #*name);

void closedir (DIR *dir);
dirent *readdir (DIR *dir);

void unlink(const char *name);

void rename(const char *o0ld,

const char *new);

11

II LINKOPING
@ UNIVERSITY

TDIU11 - Forelasning 4

Virtuellt filsystem

Ménga system har ett virtuellt
filsystem:

® Program ser ett filsystem

® Finns egentligen olika
filsystem

Filip Stromback

Separat disk

12

LINKOPING
II.“ UNIVERSITY

Repetition: Inoder

Repetition: Kataloger
Minneshantering

Strategier: Kontinuerlig
Strategier: Segmentering
Strategier: Paging

Alternativ lagraing av page table
Nasta vecka

O ~NO O s WD =

LINKOPING
I I.“ UNIVERSITY

TDIU11 -

Mal

Forelasning 4

Filip Stromback

14

Process 1 Process 2
0x00A0: 32 0x00AO: 81
0x00A1: 92 o . 0x00A1: 53
Hur gar detta ihop?
0x00A2: 11 & P 0x00A2: 33
0x00A3: 62 0x00A3: 91
[T RS

TDIU11 -

Forelasning 4

Filip Stromback

14

Mal
RAM
Process 1 Process 2
0x00A0: 32 0x00AO: 81
0x00A1: 92 0x00A1: 53
0x00A2: 11 0x00A2: 33
0x00A3: 62 0x00A3: 91
[T RS

TDIU11 - Forelasning 4 Filip Stromback

Mal
RAM
0x10A0: 32
Process 1 0%x10A1: 92 Process 2
0x00A0: 32 0x10A2: 11 0x00A0: 81
0x00A1: 92 0x1043: 62 0x00A1: 53
0x00A2: 11 0x00A2: 33
0x00A3: 62 0x00A3: 91

LINKOPING
II.“ UNIVERSITY

TDIU11 - Forelasning 4 Filip Stromback

Mal
RAM

0x10A0: 32
Process 1 0%x10A1: 92 Process 2
0x00A0: 32 0x10A2: 11 0x00A0: 81
0x00A1: 92 0x1043: 62 0x00A1: 53
0x00A2: 11 %200+ 81 0x00A2: 33
0x00A3: 62 Ox20A1. 53 0x00A3: 91

0x20A2: 33

0x20A3: 91

LINKOPING
II.“ UNIVERSITY

TDIU11 - Forelasning 4

Mal

Filip Stromback

RAM

0x10A0: 32

Process 1 0x10A1: 92
0x00A0: 32 0x10A2: 11
Ox00AL, 92 0x10A3: 62
0x00A2: 11 0x20A0: 81
0x00A3: 62 0x20A1: 53
0x20A2: 33

Fysisk adress —0x20A3: 91

Logisk/virtuell adress

Process 2

0x00AOQ:
0x00A1:
0x00A2:
0x00A3:

81
53
33
91

:

Logisk/virtuell adress

14

LINKOPING
II.“ UNIVERSITY

TDIU11 - Forelasning 4 Filip Stromback

Hur l6ser vi detta?

RAM

Adress

LLLl]]
@)
B
c

[TTTTT

Data

LINKOPING
II.“ UNIVERSITY

TDIU11 - Forelasning 4 Filip Stromback

Hur l6ser vi detta?

RAM

Logisk adress ﬁ Fysisk adress
g » MMU Y >
LI LJ

LLLl]]
@)
B
c

l

Data

Notera: logisk och fysisk adress kan vara olika stora!

LINKOPING
II.“ UNIVERSITY

Repetition: Inoder

Repetition: Kataloger
Minneshantering

Strategier: Kontinuerlig
Strategier: Segmentering
Strategier: Paging

Alternativ lagraing av page table
Nasta vecka

O~NO Ol WN =

LINKOPING
I I.“ UNIVERSITY

TDIU11 - Forelasning 4 Filip Stromback

Kontinuerlig (Continuous allocation)

MMU

Logisk adress —» Base: |0x00100000 Fysisk adress
Limit: | 0x00200000

Notera: Varje process har olika MMU-installningar!

17

LINKOPING
II.“ UNIVERSITY

TDIU11 - Forelasning 4 Filip Stromback

Kontinuerlig (Continuous allocation)

Process 1

Base: 0x90000000 [******** }
Limit: 0xBO0O00000

Base: 0x70000000 [******** }
Limit: 0x80000000

RAM

OxFFFFFFFF

0x00000000

18

LINKOPING
II.“ UNIVERSITY

TDIU11 - Forelasning 4

Filip Stromback

Kontinuerlig (Continuous allocation)

Base: 0x90000000

Limit: 0xBO0000Q

Intern fragmentering

Base: 0x7000000

Limit: 0x80000000

Process 1

Extern fragmenterlng —t

Process 2

RAM

OxFFFFFFFF

0x00000000

18

LINKOPING
II.“ UNIVERSITY

Repetition: Inoder

Repetition: Kataloger
Minneshantering

Strategier: Kontinuerlig
Strategier: Segmentering
Strategier: Paging

Alternativ lagraing av page table
Nasta vecka

O~NOOC1T P> W=

LINKOPING
I I.“ UNIVERSITY

TDIU11 - Forelasning 4

Segmentering

Filip Stromback

Segmentnummer ——

MMU

] Fysisk adress
Logisk adress —| Seg. table:
Y

Seg Base Limit
0 0x00100000 | 0x00180000
1 0x00200000 | 0x00280000
2 0x00180000 | 0x001A0000

Mindre block = Mindre problem med fragmentering
Notera: Varje process har olika segmenttabeller!

20

LINKOPING
II.“ UNIVERSITY

TDIU11 - Forelasning 4

Segmentering

Process 1

Stack Seg.

Data Seg.

Code Seg.

Process 2

Stack Seg.

Data Seg.

Code Seg.

Filip Stromback

RAM

OxFFFFFFFF

0x00000000

21

LINKOPING
UNIVERSITY

TDIU11 - Forelasning 4 Filip Stromback 22

Segmentering: Hur ser logiska adresser ut?

Alternativ 1: Segmentregister (t.ex. Protected Mode i Intel x86)

mov ds: [0x00F1], Ox4F DS:
Fysisk adress:

0x002000F1

eller

Logisk adress: | 0x0001 | | 0x00F1 >

T

Seg Base Limit
0x00100000 | 0x00108000
0x00200000 | 0x00208000
0x00180000 | 0x0018A000

Segmentation fault

N RO

LINKOPING
II.“ UNIVERSITY

TDIU11 - Forelasning 4 Filip Stromback 23

Segmentering: Hur ser logiska adresser ut?

Alternativ 2: Mest signifikanta bitar i logisk adress
mov [0x000100F1], Ox4F

Fysisk adress:
0x002000F1

Logisk adress: | 0x0001

T

Seg Base Limit
0x00100000 | 0x00108000
0x00200000 | 0x00208000
0x00180000 | 0x0018A000

eller

Segmentation fault

\4
N —=O

LINKOPING
II.“ UNIVERSITY

Repetition: Inoder

Repetition: Kataloger
Minneshantering

Strategier: Kontinuerlig
Strategier: Segmentering
Strategier: Paging

Alternativ lagraing av page table
Nasta vecka

O ~NOOT B WD =

LINKOPING
I I.“ UNIVERSITY

TDIU11 - Forelasning 4

Paging

e Vi vill undvika extrern
fragmentering

® |dé: Vi delar upp den virtuella
adressrymden i pages

® Alla pages har samma storlek

= Vi kan lagra en page var som helst
i RAM (i vilken frame som helst)

=- Bara intern fragmentering kvar!

® Hur stor ska en page vara?

Filip Stromback

Process 1 (pages) RAM (frames)

Process 2 (pages)

A

LINKOPING
II.“ UNIVERSITY

TDIU11 - Forelasning 4 Filip Stromback

Paging

MMU

Logisk adress Fysisk adress
Page table:
Y

Rad Frame
0 0x00100000
1 0x00200000
2 0x00180000

Olika page tables for olika processer!

26

LINKOPING
II.“ UNIVERSITY

TDIU11 - Forelasning 4

Paging: Hur stor blir page-table?

Filip Stromback

Logisk adress

32-bit logiska adresser 0x00203 | 8F0

32-bit fysiska adresser
4 KiB page och frame

Page-table far inte plats i
en page =

0x203

0x10200xxx
0x30205xxx

Fragmentering!

Kan vi valja en bra
page-size?

0x20900xxx

_

0x30205 | 8F0

Fysisk adress

220 glement:

4 MiB

20 + ? bitar = 22 = 4 bytes

27

LINKOPING
UNIVERSITY

TDIU11 - Forelasning 4

Filip Stromback 27

Paging: Hur stor blir page-table?

32-bit logiska adresser
48-bit fysiska adresser
4 KiB page och frame

Page-table far inte plats i
en page =
Fragmentering!

Kan vi valja en bra
page-size?

Logisk adress

0x00203 | 8F0 !
0x000030205 | 8FO |
Fysisk adress
0x000010200xxx

0x000030205x%x .
0x000020900xxx || 8 MiB

0x203

220

element:

A

36 + ? bitar = 23 = 8 bytes

LINKOPING
UNIVERSITY

TDIU11 - Forelasning 4 Filip Stromback

Paging: Hur stor blir page-table?

Logisk adress

48-bit logiska adresser | 0x000000203 | 8FO|
32-bit fysiska adresser 0x30205
4 KiB page och frame Fysisk adress
Page-table far inte plats i §
en page = o 0x10200xxx 936 of)
r bage = S A 0x30205xxx element:

ragmentering! 0%x20900xxx || 256 GiB
Kan vi valja en bra

%/—/

page-size?

20 + ? bitar = 22 = 4 bytes

27

LINKOPING
UNIVERSITY

TDIU11 - Forelasning 4 Filip Stromback

Hierarkisk Page-table

Idé: Vi lagrar page-table i flera nivaer!
Logisk adress
[0x3F$38] 708 |
[

v
4 ———| 0x10A8E | 708 |

Fysisk adress

0x3A88Bxxx

&
2 -
2 { 0x7A8DBxxx

© " 0x0ASDExxx 0x10A8ExxXX
0x8E950xxx 0xb5A9A1xxx

LINKOPING
II.“ UNIVERSITY

TDIU11 - Forelasning 4 Filip Stromback

Kostnad av paging

Losning:
Med 2 nivaer paging: e TLB (Translation Lookaside
e Kostar 2 lasningar att sla upp Buffer)
adress e Cache for MMU-berakningar
® Varje minnesaccess kostar som 3 (64-1024 element)
® RAM a&r forhallandevis langsamt... ® Undviker minnesatkomst om

elementet finns

29

LINKOPING
II.“ UNIVERSITY

TDIU11 - Forelasning 4

Kostnad av paging

Effective Access Time:
Antag:
® o = hit-ratio, i %
® ¢ = RAM-access
® ¢ = uppslagning i TLB
Litet i forhallande till ¢

Filip Stromback

EAT = (t+¢c)a+ (3t +e)(1 —)

e o =80%, t =100 ns ger EAT = 120 ns
e o =99%, t =100 ns ger EAT = 101 ns

30

LINKOPING
II.“ UNIVERSITY

Repetition: Inoder

Repetition: Kataloger
Minneshantering

Strategier: Kontinuerlig
Strategier: Segmentering
Strategier: Paging

Alternativ lagraing av page table
Nasta vecka

O~NO Ol WD

LINKOPING
I I.“ UNIVERSITY

TDIU11 - Forelasning 4 Filip Stromback

Hashad Page-table

Logisk adress Fysisk adress
|0x12345 | 678] 0x10A00 | 678 |

A

Y
(Hashfunktion } > ———{ 0x58300 = 0x15823 H
M 0x12345 = 0x10A00 |———

LINKOPING
II.“ UNIVERSITY

TDIU11 - Forelasning 4 Filip Stromback 33

Inverterad Page-table

Logisk adress Fysisk adress
|0x12345 | 678 | 0x0007A | 678 |
PID Page
Index 0x0007A
PID: sokning | 21 | 0x5182E
» 10 | 0x12345
10 | 0x12050
91 | 0x12050

PT har ett element per frame. Svart att dela minne mellan processer.

LINKOPING
II.“ UNIVERSITY

TDIU11 - Forelasning 4

Filip Stromback

Segmentering + Paging (Intel x86)

Segment ——»

Logisk adress —

Segmentering

0x00000100

Linjar
adress

0x00010000

Seg Base Limit Rad Frame

0 0x00100000 | 0x00180000 0 0x00100000
1 0x00200000 | 0x00280000 1 0x00200000
2 0x00180000 | 0x001A0000 2 0x00180000

Fysisk adress

LINKOPING
II.“ UNIVERSITY

Repetition: Inoder

Repetition: Kataloger
Minneshantering

Strategier: Kontinuerlig
Strategier: Segmentering
Strategier: Paging

Alternativ lagraing av page table
Nasta vecka

O ~NO O s WwN =

LINKOPING
I I.“ UNIVERSITY

TDIU11 - Forelasning 4 Filip Stromback

Nasta vecka

P3 64-bitarssystem har vi 256 TiB logisk adressrymd, men mycket mindre
RAM.

® Varfor ar det anvandbart?

® Hur kan vi anvanda mer minne an vad som finns tillgangligt?

36

LINKOPING
II.“ UNIVERSITY

Filip Stromback

www.liu.se

II LINKOPING
o UNIVERSITY

www.liu.se

	Repetition: Inoder
	Repetition: Kataloger
	Minneshantering
	Strategier: Kontinuerlig
	Strategier: Segmentering
	Strategier: Paging
	Alternativ lagraing av page table
	Nästa vecka

