TDIU11 - Forelasning 3

Filsystem

Filip Stromback

II LINKOPING
o UNIVERSITY

TDIU11 - Foérelasning 3 Filip Stromback

Planering

Vecka Forelasning Seminarie
Processer och trddar —

5 Filsystem och lagring Utmaning 1: Schemaldggning

6 Minneshantering Rapport 1: Filsystem |

7 Virtuellt minne Utmaning 2: Filsystem

8 Sékerhet Utmaning 3: Virtuellt minne

9 Repetition/utblickar ~ Rapport 2: Filsystem Il

10 — Utmaning 4: Sakerhet

11 | Tentaférberedelse Utmaning 5: Repetition (tisdag)
12 (omtenta-p) Rapport: Uppsamling

LINKOPING
II.“ UNIVERSITY

1 Lagring

II LINKOPING
o UNIVERSITY

TDIU11 - Foérelasning 3 Filip Stromback

Mal med forelasningen

® Operativsystemet ger oss:
filer (files) och
kataloger (directories)?

® En disk ar en array av block dar OS kan
lagra data

® Hur lagrar vi filer i en array av block?

“Notera: mapp (folder) ar tekniskt sett ndgot annat

]
T

]

]

]

Filer och kataloger
Inoder
Partitioner

Block

LINKOPING
UNIVERSITY

TDIU11 - Foérelasning 3

Hur fungerar en disk?

rotation
Bild fran material till
Operating System Concepts

embly

Filip Stromback

® Minsta enhet: sektor (block)
Historiskt: 512 B, numera ca 4 KiB

o Atkomstid: byt spar (track) + vanta pa
sektor

® Soktid: 3-12 ms

® \/anta pa sektor: %
For 5400 RPM: 11.2 ms max, 5.5 ms
medel.

LINKOPING
II." UNIVERSITY

TDIU11 - Foérelasning 3

Hur fungerar en SSD?
(ON)

|

FTL

AN

Flash

Filip Stromback

e Minsta enhet: block, ca 4 KiB
® Flash Translation Layer (FTL):
= Wear-levelling
= Rensar anvinda block
= Emulering av mindre blockstorlek
o Atkomsttid: svarstid hos FTL och
flash-minne, kan hantera flera operationer
samtidigt

LINKOPING
II.“ UNIVERSITY

TDIU11 - Foérelasning 3 Filip Stromback

Abstraktion for att hantera diskar

Moijligt granssnitt:

int get_block_size(int disk);
void read_block(int disk, int block, byte *data);

void write_block(int disk, int block, const byte *data);

Hur lagrar vi filer?

LINKOPING
II.“ UNIVERSITY

2 Binara berakningar

II LINKOPING
o UNIVERSITY

TDIU11 - Foérelasning 3 Filip Stromback

Hur stor &r en megabyte/mebibyte?

® Manga storlekar inom data ar 2" for nagot heltal n > 0
e Det ir smidigt att siga 1 KiB = 210 bytes
® Hur manga bytes ar 1 MiB?

Prefix ‘ Sl ‘ Tvapotens
kilo 1kB= 10°B | 1KiB= 29B= 1024B
mega | IMB= 10°B |1MiB= 2B = 1024 KiB = 1048576 B

giga 1GB= 10°B| 1GB= 2°B= 1024 MiB = 1073741824 B

LINKOPING
II.“ UNIVERSITY

TDIU11 - Foérelasning 3 Filip Stromback

Rakna med tvapotenser
Ofta smidigt att behalla tal i bas 2:

Exempel: Vi har en disk som ar 8 GiB stor
med 512 byte block. Hur manga block har
vi?

8 GiB = 23 - 20 bytes
233

S5 = 2% block

(Tiotalet i exponenten ger ratt prefix)

220

1 KiB
1 MiB
1 GiB
1TiB
1 PiB
1 EiB

LINKOPING
II.“ UNIVERSITY

TDIU11 - Foérelasning 3 Filip Stromback

Rakna med tvapotenser

Ofta smidigt att behélla tal i bas 2:

Exempel: Vi anvander 32-bitars heltal for
att indexera 1 KiB stora block. Hur stor
kan var disk vara?

232 . 210 hytes = 242 bytes =
=22.2% bytes = 22 TiB = 4 TiB

(Tiotalet i exponenten ger ratt prefix)

250

1 KiB
1 MiB
1 GiB
1TiB
1 PiB
1 EB

LINKOPING
II.“ UNIVERSITY

TDIU11 - Foérelasning 3 Filip Stromback

Hexadecimala tal

Ofta smidigt att jobba i bas 16 (hexadecimalt):

® 0-9, A-F = Varje position ar 4 bitar

® Konvention i kursen: Prefix 0x som i C och C++

Exempel: 32-bitars tal

Hex: 0x 1 2 4 8 1 3 7
Bin: 0001 0010 0100 1000 0001 0011 0111

1111

10

LINKOPING
II.“ UNIVERSITY

3 Schemalaggning av disk

II LINKOPING
o UNIVERSITY

TDIU11 - Foérelasning 3

Schemalaggning av diskatkomst

For mekaniska diskar:
® Soktid (accesstid) tar mest tid

® | 3s block "nara” varandra om
mojligt!

Filip Stromback

Nagra alternativ:
® FCFS
® SSTF
e SCAN, C-SCAN
* LOOK, C-LOOK

Exempel:

Disk med 200 sektorer

Start: 100, kom fran 10

Ké: 180, 30, 130, 90, 50, 190

12

LINKOPING
II.“ UNIVERSITY

TDIU11 - Foérelasning 3

FCFS - First Come First Served

Idé: Anvand ordningen i kon

Exempel:

Disk med 200 sektorer

Start: 100, kom fran 10

Ké: 180, 30, 130, 90, 50, 190

Totalt: 550

Filip Stromback

Sektor

13

LINKOPING
II.“ UNIVERSITY

TDIU11 - Foérelasning 3 Filip Stromback

SSTF — Shortest Search Time First

Idé: Valj det narmst nuvarande
position forst

Exempel:

Disk med 200 sektorer

Start: 100, kom fran 10

Ké: 180, 30, 130, 90, 50, 190

Totalt: 230
Risk for starvation

Sektor

14

LINKOPING
II.“ UNIVERSITY

TDIU11 - Foérelasning 3

SCAN

Idé: G3 fram och tillbaka
mellan minsta och storsta
sektorn

Exempel:

Disk med 200 sektorer

Start: 100, kom fran 10

Ké: 180, 30, 130, 90, 50, 190

Totalt: 270

Filip Stromback

Sektor

15

LINKOPING
II.“ UNIVERSITY

TDIU11 - Foérelasning 3

C-SCAN

Idé: Ga fran 0 till 200, borja
sedan om igen.

Exempel:

Disk med 200 sektorer

Start: 100, kom fran 10

Ké: 180, 30, 130, 90, 50, 190

Totalt: 390
Jamnare accesstid

Filip Stromback

Sektor

16

LINKOPING
II.“ UNIVERSITY

TDIU11 - Foérelasning 3

LOOK

Idé: G3 mellan stdrsta och
minsta access, fram och
tillbaka.

Exempel:

Disk med 200 sektorer

Start: 100, kom fran 10

Ké: 180, 30, 130, 90, 50, 190

Totalt: 250

Filip Stromback

Sektor

17

LINKOPING
II.“ UNIVERSITY

TDIU11 - Foérelasning 3

C-LOOK

Idé: G3 mellan stdrsta och
minsta access, cirkulart

Exempel:

Disk med 200 sektorer

Start: 100, kom fran 10

Ké: 180, 30, 130, 90, 50, 190

Totalt: 310
Jamnare accesstid

Filip Stromback

Sektor

18

LINKOPING
II.“ UNIVERSITY

TDIU11 - Forelasning 3 Filip Stromback 19

Rakna total soktid — I Emacs-lisp!

(defun travel (elems)
(if (null (cdr elems))
0
(+ (abs (- (car elems) (car (cdr elems))))
(travel (cdr elems)))))

(travel '(100 180 30 130 90 50 190)) ;; FCFS
(travel '(100 90 50 30 130 180 190)) ;5 SSTF
(travel '(100 130 180 190 200 90 50 30)) ;5 SCAN
(travel '(100 130 180 190 200 0 30 50 90)) ;; C-SCAN
(travel '(100 130 180 190 90 50 30)) ;3 LOOK
(travel '(100 130 180 190 30 50 90)) ;3 C-LOOK

LINKOPING
II.“ UNIVERSITY

4 Partitioner

II LINKOPING
o UNIVERSITY

TDIU11 - Forelasning 3 Filip Stromback 21

Partitioner

® En disk kan delas upp i partitioner Partitionstabell + MBR

] o] Fran Till
® Varje partition ar en samling block som 0 8 | 500
ligger efter varandra boot 1| 500 | 8192
® Olika partitioner ar oberoende av 2 | 8192 | 9890
varandra, kan innehalla olika filsystem
system
® Exempelvis:
= FAT32 for uppstartsfiler (UEFI)
= extd4/NTFS for systemet
= Partition fér swap swap

= Aterstaliningspartition

LINKOPING
II.“ UNIVERSITY

TDIU11 - Forelasning 3 Filip Stromback 22

Abstraktion for partitioner
Moijligt granssnitt:
int get_block_size(int disk);
int get_partition_count (int disk);
void read_block(int disk, int part, int block, byte *data);

void write_block(int disk, int part, int block, const byte *data);

Hur lagrar vi filer?

II LINKOPING
@ UNIVERSITY

5 Filsystem: Inoder

II LINKOPING
o UNIVERSITY

TDIU11 - Foérelasning 3
Filsystem

® | ager ovanpa en partition

® Beskriver hur vi lagrar filer och

kataloger
® Manga olika med olika for- och
nackdelar
» FAT32, exFAT
= NTFS
= ext3, ext4, ...
= HFS

Filip Stromback

Blockstorlek:
® FS arbetar med logiska block eller
kluster
® Kan ha annan storlek an fysiska
block
® Ftt logiskt block brukar vara 2"
fysiska block

® Om vi lagrar block-index som
32-bitars tal, hur stor disk kan vi
ha med en viss blockstorlek?

24

LINKOPING
II.“ UNIVERSITY

TDIU11 - Foérelasning 3 Filip Stromback

Vad ar en inod?

Inod (UNIX) / MFT Record (NTFS)

Inod 1
® Sekvens av bytes (inte block) . _ Inod 2
information . ;
® Godtycklig langd information
o Attribut (3gare, rattigheter, ...)
e |dentitet i form av ID (1s -i) data
Tank fil utan namn — vi anvander tal data

som "namn” (ex.vis nummer pé logiskt
block dar inoden bérjar)

LINKOPING
II.“ UNIVERSITY

TDIU11 - Foérelasning 3 Filip Stromback

Hur lagrar vi inoder? — Kontinuerlig allokering

Idé: Lagra inoder sekventiellt

inod 1

Fordelar:

® enkel att implementera

® sekventiell atkomst

Nackdelar:

® fragmentering

inod 5

HAREANNY

LINKOPING
II.“ UNIVERSITY

TDIU11 - Foérelasning 3
Allokering av block

Finns olika strategier:
® First-fit
® PBest-fit
® Worst-fit

Notera: Kan ocksa anvandas
for att implementera new och
malloc.

Filip Stromback

Inoder

1: 2 block

2: [Toloek_]
3: [Tooek]

4. 3 block

Disk, 9 block

1 block
1 block

4 block

1 block

2 block

27

LINKOPING
II.“ UNIVERSITY

TDIU11 - Foérelasning 3
Allokering av block

Finns olika strategier:
= First-fit

® PBest-fit

® Worst-fit

Notera: Kan ocksa anvandas
for att implementera new och
malloc.

Filip Stromback

Inoder

1: 2 block

2: [Toloek_]
3: [Tooek]

4. 3 block

Disk, 9 block

1 block
1 block

4 block

1 block

2 block

27

LINKOPING
II.“ UNIVERSITY

TDIU11 - Foérelasning 3
Allokering av block

Finns olika strategier:
= First-fit

® PBest-fit

® Worst-fit

Notera: Kan ocksa anvandas
for att implementera new och
malloc.

Filip Stromback

Inoder Disk, 9 block

1 block

1: 2 block \ T block

2: 1 block 2 block

3: 1 blOCk 2 block
1 block

4. 3 block
2 block

27

LINKOPING
II.“ UNIVERSITY

TDIU11 - Foérelasning 3 Filip Stromback

Allokering av block

Inoder Disk, 9 block
Finns olika strategier: 1 2o 1 block
= First-fit : o S 1 block
® Best-fit T
I) 2: A 2 block
o \Worst-fit
3: 1 blOCk 2 blOCk
Notera: Kan ocksa anvandas
for att implementera new och 2| 3 bock 1 block
: oc
malloc. 2 block

LINKOPING
II.“ UNIVERSITY

TDIU11 - Foérelasning 3
Allokering av block

Finns olika strategier:
= First-fit

® PBest-fit

® Worst-fit

Notera: Kan ocksa anvandas
for att implementera new och
malloc.

Filip Stromback

Inoder

1: 2 block -

2 [Toock |
3: [Tooek]

4. 3 block

Disk, 9 block

1 block

1 block

2 block

1 block

1 block

1 block

2 block

27

LINKOPING
II.“ UNIVERSITY

TDIU11 - Foérelasning 3
Allokering av block

Finns olika strategier:
= First-fit

® Best-fit

® Worst-fit

Notera: Kan ocksa anvandas
for att implementera new och
malloc.

Filip Stromback

Inoder Disk, 9 block
» 1 block
: 2 block - P

! ° o7 [1block
2:[1block |} N 2 block
3: 1block f----"7- - 1 block
1 block
1 block

4.
2 block

27

LINKOPING
II.“ UNIVERSITY

TDIU11 - Foérelasning 3
Allokering av block

Finns olika strategier:
® First-fit

= Best-fit
® Worst-fit

Notera: Kan ocksa anvandas
for att implementera new och
malloc.

Filip Stromback

Inoder

1: 2 block

2: [Toloek_]
3: [Tooek]

4. 3 block

Disk, 9 block

1 block
1 block

4 block

1 block

2 block

27

LINKOPING
II.“ UNIVERSITY

TDIU11 - Foérelasning 3
Allokering av block

Finns olika strategier:
® First-fit

= Best-fit
® Worst-fit

Notera: Kan ocksa anvandas
for att implementera new och
malloc.

Filip Stromback

Inoder

1: 2 block

2: [Toloek_]
3: [Tooek]

4. 3 block

Disk, 9 block

1 block
1 block

4 block

1 block

2 block

27

LINKOPING
II.“ UNIVERSITY

TDIU11 - Foérelasning 3
Allokering av block

Finns olika strategier:
® First-fit

= Best-fit
® Worst-fit

Notera: Kan ocksa anvandas
for att implementera new och
malloc.

2:

3: [Toloek_]

Filip Stromback

Inoder

2 block

3 block

Y 2 block

Disk, 9 block

1 block
1 block

4 block

1 block

27

LINKOPING
II.“ UNIVERSITY

TDIU11 - Foérelasning 3
Allokering av block

Finns olika strategier:
® First-fit

= Best-fit
® Worst-fit

Notera: Kan ocksa anvandas
for att implementera new och
malloc.

Filip Stromback

Inoder

Disk, 9 block

1: 2 block

1 block

1 block

1 block

4. 3 block

3 block

1 block

2 block

LINKOPING
II.“ UNIVERSITY

TDIU11 - Foérelasning 3
Allokering av block

Finns olika strategier:
® First-fit

= Best-fit
® Worst-fit

Notera: Kan ocksa anvandas
for att implementera new och
malloc.

Filip Stromback

Inoder

1: 2 block

4. 3 block

Disk, 9 block
1 block
1 block
1 block

3 block

1 block

2 block

27

LINKOPING
II.“ UNIVERSITY

TDIU11 - Foérelasning 3
Allokering av block

Finns olika strategier:
® First-fit

= Best-fit
® Worst-fit

Notera: Kan ocksa anvandas
for att implementera new och
malloc.

Filip Stromback

Inoder

1: 2 block

2: [Toa
3 [Tooek 1~

4. 3 block

Disk, 9 block
» 1 block
1 block
vl 1 block
v 3 block
1 block
Y 2 block

27

LINKOPING
II.“ UNIVERSITY

TDIU11 - Foérelasning 3
Allokering av block

Finns olika strategier:
® First-fit
® PBest-fit

= Worst-fit

Notera: Kan ocksa anvandas
for att implementera new och
malloc.

Filip Stromback

Inoder

1: 2 block

2: [Toloek_]
3: [Tooek]

4. 3 block

Disk, 9 block

1 block
1 block

4 block

1 block

2 block

27

LINKOPING
II.“ UNIVERSITY

TDIU11 - Foérelasning 3
Allokering av block

Finns olika strategier:
® First-fit
® PBest-fit

= Worst-fit

Notera: Kan ocksa anvandas
for att implementera new och
malloc.

Filip Stromback

Inoder Disk, 9 block

1 block

1: 2 block \ T block

2: 1 block 2 block

3: 1 blOCk 2 block
1 block

4. 3 block
2 block

27

LINKOPING
II.“ UNIVERSITY

TDIU11 - Foérelasning 3
Allokering av block

Finns olika strategier:
® First-fit
® PBest-fit

= Worst-fit

Notera: Kan ocksa anvandas
for att implementera new och
malloc.

Filip Stromback

Inoder
1: 2 block
2: 1 block

3: [Toloek_]

4. 3 block

Disk, 9 block

1 block

1 block

2 block

1 block

1 block

1 block

2 block

27

LINKOPING
II.“ UNIVERSITY

TDIU11 - Foérelasning 3 Filip Stromback

Allokering av block

Inoder Disk, 9 block

Finns olika strategier: 1 ook T block
® First-fit : oc L 1 block

® PBest-fit S
. 2: 1 block - A 2 block

= Worst-fit _ el

3: 1 block "1 block
Notera: Kan ocksd anvandas 1 block
for att implementera new och 1 block
malloc. 4: 3 block 1 block
1 block

LINKOPING
II.“ UNIVERSITY

TDIU11 - Foérelasning 3
Allokering av block

Finns olika strategier:
® First-fit
® Best-fit

= Worst-fit

Notera: Kan ocksa anvandas
for att implementera new och
malloc.

Filip Stromback

Inoder Disk, 9 block

1 block
: 2 block -

! N 1 block
2:| 1block F-__ Al 2 block
3:] 1block | “*_1 block
AN 1 block
N 1 block
4: 4 1 block
1 block

27

LINKOPING
II.“ UNIVERSITY

TDIU11 - Foérelasning 3 Filip Stromback

Hur lagrar vi inoder? — Lankad allokering

Idé: Undvik fragmentering

genom att lanka inoder
- inod 1
Fordelar:
® enkel att implementera)
® ingen extern
fragmentering
. inod 7
Nackdelar: -

® dyrt att hoppa runt i filer

28

LINKOPING
II.“ UNIVERSITY

TDIU11 - Foérelasning 3 Filip Stromback

Hur lagrar vi inoder? — File Allocation Table (FAT)
Idé: Flytta ihop lankarna!

FAT

Fordelar: Fran T Tl
® ingen extern 0 -
fragmentering 1 4

® enkelt att veta vad som ar 2 N
ledigt i 3:
Nackdelar: 5 2
e vivill ha FAT i RAM 6 -

® om FAT skadas ar 7 5

LINKOPING
II.“ UNIVERSITY

TDIU11 - Foérelasning 3 Filip Stromback

Hur lagrar vi inoder? — Indexerad allokering

Idé: Anvand ett block fér att

lagra "pekare” till andra block!

inod 2

Fordelar:

® ingen extern
fragmentering

~

® enkelt att soka
Nackdelar:

® begransad filstorlek

L7

LINKOPING
II.“ UNIVERSITY

TDIU11 - Foérelasning 3 Filip Stromback

Hur lagrar vi inoder? — Fler nivaer av indexering

Idé: Anvand flera nivaer av
indirekta block for storre filer!

Fordelar: inod S
® ingen fragmentering
® ok sokning \
® hanterar stora filer
Nackdel:
® mycket overhead fér smé
inoder

RN

LINKOPING
II.“ UNIVERSITY

TDIU11 - Foérelasning 3

Filip Stromback

Hur lagrar vi inoder? — Varierande antal nivaer

Idé: Anvand flera nivaer av
indirekta block!

Fordelar:
® ingen fragmentering
® ok sokning
® hanterar stora filer
Nackdel:

® komplex att implementera

inod

attribut

data

direkt

1 niva

\

2 nivaer

/

32

/ A

LINKOPING
II.“ UNIVERSITY

TDIU11 - Foérelasning 3

Hur vet vi vad som ar ledigt?

Bitmap:
® 1 bit/logiskt block
® Blir snabbt stor
Lankad:
® | dnka lediga block
® Svart att hitta sekventiella block

Filip Stromback 33

Lankad med raknare:
® Raikna sekventiella lediga block
® Fortfarande dyr att traversera
Indexerad:
® | agra en "inod" med alla lediga
block
® Kan enkelt plocka indexblock till
ny fil

LINKOPING
II.“ UNIVERSITY

TDIU11 - Foérelasning 3 Filip Stromback

Abstraktion for inoder

Moijligt granssnitt:

int inode_size(int id);

34

int inode_read(int id, int offset, byte *data, int size);

int inode_write(int id, int offset, const byte *data,

Hur kan OS veta vad som borde laddas in i RAM?

int size);

LINKOPING
UNIVERSITY

TDIU11 - Foérelasning 3 Filip Stromback

Datastrukturer i kernel

User 3 Kernel
: Per-process OFT System-wide OFT
| | Pos | SW | ! Open | Buffer | Inod
N ! 0: 2 ' 58
P1 - .10 32 0H T 5 — =
Lo L 51 2 -
v 5 0 0 2: 2 . 4
e 1 3: R 42
! Pos | SW || . -
oo 2] 2N 5t
P2 " 1. 0 3V
| Ho2: - -

LINKOPING
II.“ UNIVERSITY

TDIU11 - Foérelasning 3 Filip Stromback

Smidigare abstraktion for inoder

Idé: Vi kraver att man éppnar en inod forst!

int inode_open(int inode_id);
void inode_close(int fd);

int inode_size(int fd);

void inode_seek(int fd, int pos);

int inode_read(int fd, byte *data, int size);

int inode_write(int fd, const byte *data, int size);

Hur namnger vi inoder?

36

LINKOPING
UNIVERSITY

6 Filsystem: Kataloger

II LINKOPING
o UNIVERSITY

TDIU11 - Foérelasning 3

Hur namnger vi filer?

Idé: Lagra namn + id i inoder,
vi kallar dem katalog-inoder

Tabell med:
® Namn
® |nod
Inod innehaller:
® Om katalog/fil
® Rittigheter

Filip Stromback

Rot
Typ: katalog 12: | Typ: katalog
Namn | Inod Namn | Inod
bin 12 44J44> emacs 38
home 45_‘ g+ 5

Y —
Typ: katalog 53: | Typ: :!Il
Namn | Inod j textfi
a.txt 53 '

- | Typ: Fil

prog.c 15 & yp: Fi

int main()

38

LINKOPING
II.“ UNIVERSITY

TDIU11 - Foérelasning 3

Lankar i systemet

Idé: Tillat flera referenser till
samma fil

® Harda lankar

® Symboliska lankar

| inod:

® Antal referenser

Varfor inte hard lank till
katalog?

Filip Stromback

58:

Fil 1

Katalog 1
Namn Inod
a.txt 58

"| inneh&ll

LINKOPING
II.“ UNIVERSITY

TDIU11 - Foérelasning 3

Lankar i systemet

Idé: Tillat flera referenser till

samma fil

® Harda lankar

® Symboliska lankar

| inod:

® Antal referenser

Varfor inte hard lank till
katalog?

Filip Stromback

58;

Fil 2

Katalog 1
Namn Inod
a.txt 58
hard 58

innehall

39

LINKOPING
II.“ UNIVERSITY

TDIU11 - Foérelasning 3 Filip Stromback

Lankar i systemet

Idé: Tillat flera referenser till

samma fil
° . 58: Fil 2
® Harda lankar Katalog 1 SETTYS RN
® Symboliska lankar Namn | Inod
a.txt 58
| inod: hard 53
® Antal referenser sym 48 |—— 48;| Sym-lank 1
a.txt

Varfor inte hard lank till
katalog?

39

LINKOPING
II.“ UNIVERSITY

TDIU11 - Foérelasning 3 Filip Stromback

Abstraktion for filer

Nu kan vi anvanda filnamn och sékvagar!

int open(const char *name);
void close(int £fd);

int size(int fd);

void seek(int fd, int pos);

int read(int fd, byte *data, int size);

int write(int fd, const byte *data, int size);

40

LINKOPING
UNIVERSITY

TDIU11 - Foérelasning 3

Abstraktion for filer (forts.)

Filip Stromback

Nu kan vi anvanda filnamn och sokvagar!

DIR #*opendir (const char #*name);

void closedir (DIR *dir);
dirent *readdir (DIR *dir);

void unlink(const char *name);

void rename(const char *o0ld,

const char *new);

a1

II LINKOPING
@ UNIVERSITY

TDIU11 - Foérelasning 3

Virtuellt filsystem

Ménga system har ett virtuellt
filsystem:

® Program ser ett filsystem

® Finns egentligen olika
filsystem

Filip Stromback

Separat disk

42

LINKOPING
II.“ UNIVERSITY

Filip Stromback

www.liu.se

II LINKOPING
o UNIVERSITY

www.liu.se

	Lagring
	Binära beräkningar
	Schemaläggning av disk
	Partitioner
	Filsystem: Inoder
	Filsystem: Kataloger

