
TDIU11 – Föreläsning 3
Filsystem

Filip Strömbäck



TDIU11 – Föreläsning 3 Filip Strömbäck 1

Planering
Vecka Föreläsning Seminarie

4 Processer och trådar —
5 Filsystem och lagring Utmaning 1: Schemaläggning
6 Minneshantering Rapport 1: Filsystem I
7 Virtuellt minne Utmaning 2: Filsystem
8 Säkerhet Utmaning 3: Virtuellt minne
9 Repetition/utblickar Rapport 2: Filsystem II

10 — Utmaning 4: Säkerhet
11 Tentaförberedelse Utmaning 5: Repetition (tisdag)
12 (omtenta-p) Rapport: Uppsamling



1 Lagring
2 Binära beräkningar
3 Schemaläggning av disk
4 Partitioner
5 Filsystem: Inoder
6 Filsystem: Kataloger



TDIU11 – Föreläsning 3 Filip Strömbäck 3

Mål med föreläsningen

• Operativsystemet ger oss:
filer (files) och
kataloger (directories)a

• En disk är en array av block där OS kan
lagra data

• Hur lagrar vi filer i en array av block?
aNotera: mapp (folder) är tekniskt sett något annat

Block

Partitioner

Inoder

Filer och kataloger



TDIU11 – Föreläsning 3 Filip Strömbäck 4

Hur fungerar en disk?

Bild från material till
Operating System Concepts

• Minsta enhet: sektor (block)
Historiskt: 512 B, numera ca 4 KiB

• Åtkomstid: byt spår (track) + vänta på
sektor

• Söktid: 3–12 ms
• Vänta på sektor: 60

RPM
För 5400 RPM: 11.2 ms max, 5.5 ms
medel.



TDIU11 – Föreläsning 3 Filip Strömbäck 5

Hur fungerar en SSD?

FTL

OS

Flash

• Minsta enhet: block, ca 4 KiB
• Flash Translation Layer (FTL):

• Wear-levelling
• Rensar använda block
• Emulering av mindre blockstorlek

• Åtkomsttid: svarstid hos FTL och
flash-minne, kan hantera flera operationer
samtidigt



TDIU11 – Föreläsning 3 Filip Strömbäck 6

Abstraktion för att hantera diskar

Möjligt gränssnitt:

int get_block_size(int disk);

void read_block(int disk, int block, byte *data);

void write_block(int disk, int block, const byte *data);

Hur lagrar vi filer?



1 Lagring
2 Binära beräkningar
3 Schemaläggning av disk
4 Partitioner
5 Filsystem: Inoder
6 Filsystem: Kataloger



TDIU11 – Föreläsning 3 Filip Strömbäck 8

Hur stor är en megabyte/mebibyte?

• Många storlekar inom data är 2n för något heltal n ≥ 0

• Det är smidigt att säga 1 KiB = 210 bytes
• Hur många bytes är 1 MiB?

Prefix SI Tvåpotens
kilo 1 kB = 103 B 1 KiB = 210 B = 1024 B
mega 1 MB = 106 B 1 MiB = 220 B = 1024 KiB = 1048576 B
giga 1 GB = 109 B 1 GiB = 230 B = 1024 MiB = 1073741824 B



TDIU11 – Föreläsning 3 Filip Strömbäck 9

Räkna med tvåpotenser
Ofta smidigt att behålla tal i bas 2:
Exempel: Vi har en disk som är 8 GiB stor
med 512 byte block. Hur många block har
vi?

8 GiB = 23 · 230 bytes
233

29
= 224 block

(Tiotalet i exponenten ger rätt prefix)

20 = 1
21 = 2
22 = 4 210 = 1 KiB
23 = 8 220 = 1 MiB
24 = 16 230 = 1 GiB
25 = 32 240 = 1 TiB
26 = 64 250 = 1 PiB
27 = 128 260 = 1 EiB
28 = 256
29 = 512



TDIU11 – Föreläsning 3 Filip Strömbäck 9

Räkna med tvåpotenser

Ofta smidigt att behålla tal i bas 2:
Exempel: Vi använder 32-bitars heltal för
att indexera 1 KiB stora block. Hur stor
kan vår disk vara?

232 · 210 bytes = 242 bytes =
= 22 · 240 bytes = 22 TiB = 4 TiB

(Tiotalet i exponenten ger rätt prefix)

20 = 1
21 = 2
22 = 4 210 = 1 KiB
23 = 8 220 = 1 MiB
24 = 16 230 = 1 GiB
25 = 32 240 = 1 TiB
26 = 64 250 = 1 PiB
27 = 128 260 = 1 EiB
28 = 256
29 = 512



TDIU11 – Föreläsning 3 Filip Strömbäck 10

Hexadecimala tal

Ofta smidigt att jobba i bas 16 (hexadecimalt):
• 0-9, A-F ⇒ Varje position är 4 bitar
• Konvention i kursen: Prefix 0x som i C och C++

Exempel: 32-bitars tal
Hex: 0x 1 2 4 8 1 3 7 F
Bin: 0001 0010 0100 1000 0001 0011 0111 1111



1 Lagring
2 Binära beräkningar
3 Schemaläggning av disk
4 Partitioner
5 Filsystem: Inoder
6 Filsystem: Kataloger



TDIU11 – Föreläsning 3 Filip Strömbäck 12

Schemaläggning av diskåtkomst

För mekaniska diskar:
• Söktid (accesstid) tar mest tid
• Läs block ”nära” varandra om

möjligt!

Några alternativ:
• FCFS
• SSTF
• SCAN, C-SCAN
• LOOK, C-LOOK

Exempel:
Disk med 200 sektorer
Start: 100, kom från 10
Kö: 180, 30, 130, 90, 50, 190



TDIU11 – Föreläsning 3 Filip Strömbäck 13

FCFS – First Come First Served
Idé: Använd ordningen i kön

Exempel:
Disk med 200 sektorer
Start: 100, kom från 10
Kö: 180, 30, 130, 90, 50, 190

Totalt: 550
2 4 6

0
20
40
60
80
100
120
140
160
180
200

Tid

Se
kt

or



TDIU11 – Föreläsning 3 Filip Strömbäck 14

SSTF – Shortest Search Time First
Idé: Välj det närmst nuvarande
position först

Exempel:
Disk med 200 sektorer
Start: 100, kom från 10
Kö: 180, 30, 130, 90, 50, 190

Totalt: 230
Risk för starvation

2 4 6
0

20
40
60
80
100
120
140
160
180
200

Tid

Se
kt

or



TDIU11 – Föreläsning 3 Filip Strömbäck 15

SCAN
Idé: Gå fram och tillbaka
mellan minsta och största
sektorn

Exempel:
Disk med 200 sektorer
Start: 100, kom från 10
Kö: 180, 30, 130, 90, 50, 190

Totalt: 270
2 4 6 8

0
20
40
60
80

100
120
140
160
180
200

Tid

Se
kt

or



TDIU11 – Föreläsning 3 Filip Strömbäck 16

C-SCAN
Idé: Gå från 0 till 200, börja
sedan om igen.

Exempel:
Disk med 200 sektorer
Start: 100, kom från 10
Kö: 180, 30, 130, 90, 50, 190

Totalt: 390
Jämnare accesstid

2 4 6 8
0

20
40
60
80

100
120
140
160
180
200

Tid

Se
kt

or



TDIU11 – Föreläsning 3 Filip Strömbäck 17

LOOK
Idé: Gå mellan största och
minsta access, fram och
tillbaka.

Exempel:
Disk med 200 sektorer
Start: 100, kom från 10
Kö: 180, 30, 130, 90, 50, 190

Totalt: 250
2 4 6

0
20
40
60
80
100
120
140
160
180
200

Tid

Se
kt

or



TDIU11 – Föreläsning 3 Filip Strömbäck 18

C-LOOK
Idé: Gå mellan största och
minsta access, cirkulärt

Exempel:
Disk med 200 sektorer
Start: 100, kom från 10
Kö: 180, 30, 130, 90, 50, 190

Totalt: 310
Jämnare accesstid

2 4 6
0

20
40
60
80
100
120
140
160
180
200

Tid

Se
kt

or



TDIU11 – Föreläsning 3 Filip Strömbäck 19

Räkna total söktid – I Emacs-lisp!
(defun travel (elems)

(if (null (cdr elems))
0

(+ (abs (- (car elems) (car (cdr elems))))
(travel (cdr elems)))))

(travel '(100 180 30 130 90 50 190)) ;; FCFS
(travel '(100 90 50 30 130 180 190)) ;; SSTF
(travel '(100 130 180 190 200 90 50 30)) ;; SCAN
(travel '(100 130 180 190 200 0 30 50 90)) ;; C-SCAN
(travel '(100 130 180 190 90 50 30)) ;; LOOK
(travel '(100 130 180 190 30 50 90)) ;; C-LOOK



1 Lagring
2 Binära beräkningar
3 Schemaläggning av disk
4 Partitioner
5 Filsystem: Inoder
6 Filsystem: Kataloger



TDIU11 – Föreläsning 3 Filip Strömbäck 21

Partitioner
• En disk kan delas upp i partitioner
• Varje partition är en samling block som

ligger efter varandra
• Olika partitioner är oberoende av

varandra, kan innehålla olika filsystem
• Exempelvis:

• FAT32 för uppstartsfiler (UEFI)
• ext4/NTFS för systemet
• Partition för swap
• Återställningspartition

boot

system

swap

Från Till
0 8 500
1 500 8192
2 8192 9890

Partitionstabell + MBR



TDIU11 – Föreläsning 3 Filip Strömbäck 22

Abstraktion för partitioner
Möjligt gränssnitt:

int get_block_size(int disk);

int get_partition_count(int disk);

void read_block(int disk, int part, int block, byte *data);

void write_block(int disk, int part, int block, const byte *data);

Hur lagrar vi filer?



1 Lagring
2 Binära beräkningar
3 Schemaläggning av disk
4 Partitioner
5 Filsystem: Inoder
6 Filsystem: Kataloger



TDIU11 – Föreläsning 3 Filip Strömbäck 24

Filsystem

• Lager ovanpå en partition
• Beskriver hur vi lagrar filer och

kataloger
• Många olika med olika för- och

nackdelar
• FAT32, exFAT
• NTFS
• ext3, ext4, ...
• HFS
• ...

Blockstorlek:
• FS arbetar med logiska block eller

kluster
• Kan ha annan storlek än fysiska

block
• Ett logiskt block brukar vara 2n

fysiska block
• Om vi lagrar block-index som

32-bitars tal, hur stor disk kan vi
ha med en viss blockstorlek?



TDIU11 – Föreläsning 3 Filip Strömbäck 25

Vad är en inod?
Inod (UNIX) / MFT Record (NTFS)
• Sekvens av bytes (inte block)
• Godtycklig längd
• Attribut (ägare, rättigheter, ...)
• Identitet i form av ID (ls -i)

Tänk fil utan namn – vi använder tal
som ”namn” (ex.vis nummer på logiskt
block där inoden börjar)

data

information
Inod 1

data

information
Inod 2



TDIU11 – Föreläsning 3 Filip Strömbäck 26

Hur lagrar vi inoder? – Kontinuerlig allokering

Idé: Lagra inoder sekventiellt

Fördelar:
• enkel att implementera
• sekventiell åtkomst

Nackdelar:
• fragmentering

inod 1

inod 5



TDIU11 – Föreläsning 3 Filip Strömbäck 27

Allokering av block

Finns olika strategier:
• First-fit
• Best-fit
• Worst-fit

Notera: Kan också användas
för att implementera new och
malloc.

Disk, 9 block

2 block

1 block

1 block

3 block

1:

2:

3:

4:

Inoder

1 block

1 block

1 block

4 block

2 block



TDIU11 – Föreläsning 3 Filip Strömbäck 27

Allokering av block

Finns olika strategier:
⇒ First-fit
• Best-fit
• Worst-fit

Notera: Kan också användas
för att implementera new och
malloc.

Disk, 9 block

2 block

1 block

1 block

3 block

1:

2:

3:

4:

Inoder

1 block

1 block

1 block

4 block

2 block



TDIU11 – Föreläsning 3 Filip Strömbäck 27

Allokering av block

Finns olika strategier:
⇒ First-fit
• Best-fit
• Worst-fit

Notera: Kan också användas
för att implementera new och
malloc.

Disk, 9 block

2 block

1 block

1 block

3 block

1:

2:

3:

4:

Inoder

1 block

1 block

1 block

2 block

2 block

2 block



TDIU11 – Föreläsning 3 Filip Strömbäck 27

Allokering av block

Finns olika strategier:
⇒ First-fit
• Best-fit
• Worst-fit

Notera: Kan också användas
för att implementera new och
malloc.

Disk, 9 block

2 block

1 block

1 block

3 block

1:

2:

3:

4:

Inoder

1 block

1 block

2 block

2 block

2 block

1 block



TDIU11 – Föreläsning 3 Filip Strömbäck 27

Allokering av block

Finns olika strategier:
⇒ First-fit
• Best-fit
• Worst-fit

Notera: Kan också användas
för att implementera new och
malloc.

Disk, 9 block

2 block

1 block

1 block

3 block

1:

2:

3:

4:

Inoder

1 block

1 block

2 block

2 block

1 block

1 block
1 block



TDIU11 – Föreläsning 3 Filip Strömbäck 27

Allokering av block

Finns olika strategier:
⇒ First-fit
• Best-fit
• Worst-fit

Notera: Kan också användas
för att implementera new och
malloc.

Disk, 9 block

2 block

1 block

1 block

3 block

1:

2:

3:

4:

Inoder

1 block

1 block

2 block

2 block

1 block

1 block
1 block



TDIU11 – Föreläsning 3 Filip Strömbäck 27

Allokering av block

Finns olika strategier:
• First-fit

⇒ Best-fit
• Worst-fit

Notera: Kan också användas
för att implementera new och
malloc.

Disk, 9 block

2 block

1 block

1 block

3 block

1:

2:

3:

4:

Inoder

1 block

1 block

1 block

4 block

2 block



TDIU11 – Föreläsning 3 Filip Strömbäck 27

Allokering av block

Finns olika strategier:
• First-fit

⇒ Best-fit
• Worst-fit

Notera: Kan också användas
för att implementera new och
malloc.

Disk, 9 block

2 block

1 block

1 block

3 block

1:

2:

3:

4:

Inoder

1 block

1 block

1 block

4 block

2 block2 block



TDIU11 – Föreläsning 3 Filip Strömbäck 27

Allokering av block

Finns olika strategier:
• First-fit

⇒ Best-fit
• Worst-fit

Notera: Kan också användas
för att implementera new och
malloc.

Disk, 9 block

2 block

1 block

1 block

3 block

1:

2:

3:

4:

Inoder

1 block

1 block

1 block

4 block

2 block2 block

1 block



TDIU11 – Föreläsning 3 Filip Strömbäck 27

Allokering av block

Finns olika strategier:
• First-fit

⇒ Best-fit
• Worst-fit

Notera: Kan också användas
för att implementera new och
malloc.

Disk, 9 block

2 block

1 block

1 block

3 block

1:

2:

3:

4:

Inoder

1 block

1 block

1 block

2 block2 block

1 block

1 block

3 block



TDIU11 – Föreläsning 3 Filip Strömbäck 27

Allokering av block

Finns olika strategier:
• First-fit

⇒ Best-fit
• Worst-fit

Notera: Kan också användas
för att implementera new och
malloc.

Disk, 9 block

2 block

1 block

1 block

3 block

1:

2:

3:

4:

Inoder

1 block

1 block

1 block

2 block2 block

1 block

1 block

3 block



TDIU11 – Föreläsning 3 Filip Strömbäck 27

Allokering av block

Finns olika strategier:
• First-fit

⇒ Best-fit
• Worst-fit

Notera: Kan också användas
för att implementera new och
malloc.

Disk, 9 block

2 block

1 block

1 block

3 block

1:

2:

3:

4:

Inoder

1 block

1 block

1 block

2 block2 block

1 block

1 block

3 block



TDIU11 – Föreläsning 3 Filip Strömbäck 27

Allokering av block

Finns olika strategier:
• First-fit
• Best-fit

⇒ Worst-fit

Notera: Kan också användas
för att implementera new och
malloc.

Disk, 9 block

2 block

1 block

1 block

3 block

1:

2:

3:

4:

Inoder

1 block

1 block

1 block

4 block

2 block



TDIU11 – Föreläsning 3 Filip Strömbäck 27

Allokering av block

Finns olika strategier:
• First-fit
• Best-fit

⇒ Worst-fit

Notera: Kan också användas
för att implementera new och
malloc.

Disk, 9 block

2 block

1 block

1 block

3 block

1:

2:

3:

4:

Inoder

1 block

1 block

1 block

2 block

2 block

2 block



TDIU11 – Föreläsning 3 Filip Strömbäck 27

Allokering av block

Finns olika strategier:
• First-fit
• Best-fit

⇒ Worst-fit

Notera: Kan också användas
för att implementera new och
malloc.

Disk, 9 block

2 block

1 block

1 block

3 block

1:

2:

3:

4:

Inoder

1 block

1 block

1 block

2 block

2 block

1 block
1 block



TDIU11 – Föreläsning 3 Filip Strömbäck 27

Allokering av block

Finns olika strategier:
• First-fit
• Best-fit

⇒ Worst-fit

Notera: Kan också användas
för att implementera new och
malloc.

Disk, 9 block

2 block

1 block

1 block

3 block

1:

2:

3:

4:

Inoder

1 block

1 block

1 block

2 block

1 block
1 block

1 block
1 block



TDIU11 – Föreläsning 3 Filip Strömbäck 27

Allokering av block

Finns olika strategier:
• First-fit
• Best-fit

⇒ Worst-fit

Notera: Kan också användas
för att implementera new och
malloc.

Disk, 9 block

2 block

1 block

1 block

3 block

1:

2:

3:

4:

Inoder

1 block

1 block

1 block

2 block

1 block
1 block

1 block
1 block



TDIU11 – Föreläsning 3 Filip Strömbäck 28

Hur lagrar vi inoder? – Länkad allokering
Idé: Undvik fragmentering
genom att länka inoder

Fördelar:
• enkel att implementera
• ingen extern

fragmentering
Nackdelar:
• dyrt att hoppa runt i filer

inod 1

inod 7



TDIU11 – Föreläsning 3 Filip Strömbäck 29

Hur lagrar vi inoder? – File Allocation Table (FAT)
Idé: Flytta ihop länkarna!

Fördelar:
• ingen extern

fragmentering
• enkelt att veta vad som är

ledigt
Nackdelar:
• vi vill ha FAT i RAM
• om FAT skadas är

filsystemet oläsbart

Från Till
0 -
1 4
2 -
3 -
4 3
5 2
6 -
7 5

FAT



TDIU11 – Föreläsning 3 Filip Strömbäck 30

Hur lagrar vi inoder? – Indexerad allokering
Idé: Använd ett block för att
lagra ”pekare” till andra block!

Fördelar:
• ingen extern

fragmentering
• enkelt att söka

Nackdelar:
• begränsad filstorlek

inod 2

3
7
5



TDIU11 – Föreläsning 3 Filip Strömbäck 31

Hur lagrar vi inoder? – Fler nivåer av indexering
Idé: Använd flera nivåer av
indirekta block för större filer!

Fördelar:
• ingen fragmentering
• ok sökning
• hanterar stora filer

Nackdel:
• mycket overhead för små

inoder

inod



TDIU11 – Föreläsning 3 Filip Strömbäck 32

Hur lagrar vi inoder? – Varierande antal nivåer
Idé: Använd flera nivåer av
indirekta block!

Fördelar:
• ingen fragmentering
• ok sökning
• hanterar stora filer

Nackdel:
• komplex att implementera

inod
attribut

data

direkt
1 nivå

2 nivåer



TDIU11 – Föreläsning 3 Filip Strömbäck 33

Hur vet vi vad som är ledigt?

Bitmap:
• 1 bit/logiskt block
• Blir snabbt stor

Länkad:
• Länka lediga block
• Svårt att hitta sekventiella block

Länkad med räknare:
• Räkna sekventiella lediga block
• Fortfarande dyr att traversera

Indexerad:
• Lagra en ”inod” med alla lediga

block
• Kan enkelt plocka indexblock till

ny fil



TDIU11 – Föreläsning 3 Filip Strömbäck 34

Abstraktion för inoder

Möjligt gränssnitt:
int inode_size(int id);

int inode_read(int id, int offset, byte *data, int size);

int inode_write(int id, int offset, const byte *data, int size);

Hur kan OS veta vad som borde laddas in i RAM?



TDIU11 – Föreläsning 3 Filip Strömbäck 35

Datastrukturer i kernel
User Kernel

P1

P2

Per-process OFT

Pos SW
0: 32 0
1: 51 2
2: 0 0

Pos SW
0: 32 2
1: 0 3
2: – –

Open Buffer Inod
0: 2 58
1: 0 – –
2: 2 4
3: 1 42

System-wide OFT



TDIU11 – Föreläsning 3 Filip Strömbäck 36

Smidigare abstraktion för inoder

Idé: Vi kräver att man öppnar en inod först!
int inode_open(int inode_id);
void inode_close(int fd);

int inode_size(int fd);
void inode_seek(int fd, int pos);
int inode_read(int fd, byte *data, int size);
int inode_write(int fd, const byte *data, int size);

Hur namnger vi inoder?



1 Lagring
2 Binära beräkningar
3 Schemaläggning av disk
4 Partitioner
5 Filsystem: Inoder
6 Filsystem: Kataloger



TDIU11 – Föreläsning 3 Filip Strömbäck 38

Hur namnger vi filer?

Idé: Lagra namn + id i inoder,
vi kallar dem katalog-inoder
Tabell med:
• Namn
• Inod

Inod innehåller:
• Om katalog/fil
• Rättigheter

Typ: katalog
Namn Inod
bin 12
home 5

0:
Rot

Typ: katalog
Namn Inod
emacs 38
g++ 8

12:

Typ: katalog
Namn Inod
a.txt 53
prog.c 15

5: Typ: Fil
textfil

53:

Typ: Fil
int main()

15:



TDIU11 – Föreläsning 3 Filip Strömbäck 39

Länkar i systemet
Idé: Tillåt flera referenser till
samma fil
• Hårda länkar
• Symboliska länkar

I inod:
• Antal referenser

Varför inte hård länk till
katalog?

Katalog 1
Namn Inod
a.txt 58

Fil 1
innehåll

58:

Sym-länk 1
a.txt

48:



TDIU11 – Föreläsning 3 Filip Strömbäck 39

Länkar i systemet
Idé: Tillåt flera referenser till
samma fil
• Hårda länkar
• Symboliska länkar

I inod:
• Antal referenser

Varför inte hård länk till
katalog?

Katalog 1
Namn Inod
a.txt 58
hard 58

Fil 2
innehåll

58:

Sym-länk 1
a.txt

48:



TDIU11 – Föreläsning 3 Filip Strömbäck 39

Länkar i systemet
Idé: Tillåt flera referenser till
samma fil
• Hårda länkar
• Symboliska länkar

I inod:
• Antal referenser

Varför inte hård länk till
katalog?

Katalog 1
Namn Inod
a.txt 58
hard 58
sym 48

Fil 2
innehåll

58:

Sym-länk 1
a.txt

48:



TDIU11 – Föreläsning 3 Filip Strömbäck 40

Abstraktion för filer

Nu kan vi använda filnamn och sökvägar!
int open(const char *name);
void close(int fd);

int size(int fd);
void seek(int fd, int pos);
int read(int fd, byte *data, int size);
int write(int fd, const byte *data, int size);



TDIU11 – Föreläsning 3 Filip Strömbäck 41

Abstraktion för filer (forts.)

Nu kan vi använda filnamn och sökvägar!
DIR *opendir(const char *name);
void closedir(DIR *dir);
dirent *readdir(DIR *dir);

void unlink(const char *name);
void rename(const char *old, const char *new);



TDIU11 – Föreläsning 3 Filip Strömbäck 42

Virtuellt filsystem

Många system har ett virtuellt
filsystem:
• Program ser ett filsystem
• Finns egentligen olika

filsystem

/

home bin tmp

prog.c emacs abc.tmp

tmpfsSeparat disk



Filip Strömbäck

www.liu.se

www.liu.se

	Lagring
	Binära beräkningar
	Schemaläggning av disk
	Partitioner
	Filsystem: Inoder
	Filsystem: Kataloger

