
TDIU11 – Föreläsning 2
Schemaläggning

Filip Strömbäck



1 Multiprogrammering
2 Schemaläggning
3 Algoritmer för schemaläggning
4 Preemption
5 Seminarier



TDIU11 – Föreläsning 2 Filip Strömbäck 2

Varför multiprogrammering?

Exempel: Skriv innehållet i en fil på skärmen (cat):

Start read()

vänta

read() klar write()

vänta

write() klar

Onödigt att CPU (och resten av systemet) måste vänta. Vi nyttjar tiden
genom att köra andra trådar!



TDIU11 – Föreläsning 2 Filip Strömbäck 3

Processhantering

UNIX (Linux, MacOS)
• fork()
• exec(program, ...)
• posix_spawn(program, ...)
• waitpid()

Windows NT
• CreateProcess(program, ...)
• WaitForSingleObject()



TDIU11 – Föreläsning 2 Filip Strömbäck 4

Trådhantering

UNIX (Linux, MacOS)
• pthread_create()
• pthread_join()
• pthread_detach()
• (clone())

Windows NT
• CreateThread()
• WaitForSingleObject()

C++
• std::thread
• thread.join()
• thread.detach()



TDIU11 – Föreläsning 2 Filip Strömbäck 5

Trådens livstid – Tillståndsdiagram (thread/process-state diagram)

new terminated

ready running

wait for disk

wait for keyboard

wait for network

admitted exit

interrupt

dispatch

I/O or sleepcompleted



TDIU11 – Föreläsning 2 Filip Strömbäck 6

Hantering av trådar i Kernel

Sc
he

du
ler

CPU

CPU

di
sp

at
ch

di
sp

at
ch

Ready-köKeyboard

Disk

NetworkI/
O

or
sle

ep

interrupt
co

m
pl

et
ed



TDIU11 – Föreläsning 2 Filip Strömbäck 7

Terminologi

Kom ihåg:
Historiskt sett fanns inte trådar. Då fanns bara processer. Därför beskrivs
många schemaläggare som att de schemalägger processer snarare än trådar.
Idén är densamma. Kursen försöker använda trådar.
Undantaget från detta är job schedulers. De schemalägger programkörningar,
dvs. hela processer.



1 Multiprogrammering
2 Schemaläggning
3 Algoritmer för schemaläggning
4 Preemption
5 Seminarier



TDIU11 – Föreläsning 2 Filip Strömbäck 9

Typer av schemaläggare

• Korttid: Scheduler (schemaläggare)
Arbetar under körning av processer trådar. Ser till att CPU har något att
göra så ofta som möjligt. Måste därför ta beslut snabbt.

• Långtid: Job scheduler
Körs ibland, och beslutar vilka job (=processer) som ska startas. Ser till
att korttids-scheduler har ”lagom” mycket att hantera, och att systemet
inte får slut på RAM.
(Detta är vad som används ex.vis på superdatorer tillsammans med en
”vanlig” schemaläggare)



TDIU11 – Föreläsning 2 Filip Strömbäck 10

Vad behöver schemaläggaren veta?

Start read()

vänta

read() klar write()

vänta

write() klar

CPU burst CPU burst CPU burstI/O burst I/O burst

• CPU burst följt av I/O burst
• Vi schemalägger CPU ⇒ en CPU burst kan betraktas i isolation
• Tänk: bryr oss bara om ready-kö



TDIU11 – Föreläsning 2 Filip Strömbäck 10

Vad behöver schemaläggaren veta?

Start read()

vänta

read() klar write()

vänta

write() klar

CPU burst CPU burst CPU burst

I/O burst I/O burst

• CPU burst följt av I/O burst
• Vi schemalägger CPU ⇒ en CPU burst kan betraktas i isolation
• Tänk: bryr oss bara om ready-kö



TDIU11 – Föreläsning 2 Filip Strömbäck 10

Vad behöver schemaläggaren veta?

Start read()

vänta

read() klar write()

vänta

write() klar

CPU burst CPU burst CPU burstI/O burst I/O burst

• CPU burst följt av I/O burst
• Vi schemalägger CPU ⇒ en CPU burst kan betraktas i isolation
• Tänk: bryr oss bara om ready-kö



TDIU11 – Föreläsning 2 Filip Strömbäck 10

Vad behöver schemaläggaren veta?

Start read()

vänta

read() klar write()

vänta

write() klar

CPU burst CPU burst CPU burstI/O burst I/O burst

• CPU burst följt av I/O burst
• Vi schemalägger CPU ⇒ en CPU burst kan betraktas i isolation
• Tänk: bryr oss bara om ready-kö



TDIU11 – Föreläsning 2 Filip Strömbäck 11

Hur byter vi mellan olika trådar/processer?

cat

emacs

read()

vänta

read() klar

? ?



TDIU11 – Föreläsning 2 Filip Strömbäck 11

Hur byter vi mellan olika trådar/processer?

cat

emacs

read()

vänta

read() klar

sa
ve

re
st

or
e

sa
ve

re
st

or
e

Context-switch:
• Spara register
• Byt stack
• Återställ register



TDIU11 – Föreläsning 2 Filip Strömbäck 12

Hur jämför vi schemaläggare?

CPU utilization: Hur stor andel av CPU-tid används (i %)?
Throuhgput: Hur många trådar blir klara per tidsenhet?
Turnaround time: Hur lång tid tar det för en tråd att bli klar?
Waiting time: Hur lång tid har en tråd fått vänta ofrivilligt?
Response time: Hur lång tid tar det för en tråd att reagera på indata?

Även average turnaround time och average waiting time.



1 Multiprogrammering
2 Schemaläggning
3 Algoritmer för schemaläggning
4 Preemption
5 Seminarier



TDIU11 – Föreläsning 2 Filip Strömbäck 14

FIFO (First In First Out)/FCFS (First Come First Served)

• Låt processer köra i ordningen de
lades in i ready-kö

Exempel:

Tråd Start Burst
A 0 10
B 0 5
C 2 1



TDIU11 – Föreläsning 2 Filip Strömbäck 15

SJF (Shortest Job First)

• Kör den process som är kortast
först!

Exempel:

Tråd Start Burst
A 0 10
B 0 5
C 2 1



TDIU11 – Föreläsning 2 Filip Strömbäck 16

Prioritetsbaserad schemaläggning

• Ge varje process en prioritet!
• Problem: risk för starvation, kan

lösas med ageing

Exempel:

Tråd Start Burst Prio
A 0 10 2
B 0 5 3
C 2 1 1



TDIU11 – Föreläsning 2 Filip Strömbäck 17

När körs schemaläggaren?

Schemaläggaren är en bit kod som måste köras på CPU.

Vad händer om tråden/processen aldrig terminerar eller väntar?



1 Multiprogrammering
2 Schemaläggning
3 Algoritmer för schemaläggning
4 Preemption
5 Seminarier



TDIU11 – Föreläsning 2 Filip Strömbäck 19

Preemption

Vi tillåter OS att avbryta körande tråd/process
• När time-quantum är slut, med hjälp av timeravbrott
• När andra trådar/processer blir redo (nya processer, eller om de väntat

klart)

Vi får då preemptive schedulers



TDIU11 – Föreläsning 2 Filip Strömbäck 20

Tillståndsdiagram

new terminated

ready running

wait for disk

wait for keyboard

wait for network

admitted exit

interrupt

dispatch

I/O or sleepcompleted



TDIU11 – Föreläsning 2 Filip Strömbäck 21

Round-robin = FIFO/FCFS med preemption

• Som FIFO, men om en process
kör längre än time-quantum, byt
till nästa

• Time quantum måste vara
”lagom”
• Litet ⇒ mycket overhead
• Stort ⇒ ingen preemption

Exempel:

Tråd Start Burst
A 0 10
B 0 5
C 2 1

Time quantum = 2



TDIU11 – Föreläsning 2 Filip Strömbäck 22

Shortest remaining time first = SJF med preemption

• Som SJF, men nya
trådar/processer kan avbryta
körande process.

• Optimal med avseende på average
waiting time (vi vet dock sällan på
förhand exakt hur lång en burst är
— vi måste estimera den)

Exempel:

Tråd Start Burst
A 0 10
B 0 5
C 2 1



TDIU11 – Föreläsning 2 Filip Strömbäck 23

Prioritetsbaserad schemaläggning

• Som i ej-preemptive variant, men
nya trådar/processer kan avbryta
körande process.

• Om flera med samma prioritet,
round-robin mellan dessa.

Exempel:

Tråd Start Burst Prio
A 0 10 2
B 0 5 3
C 2 1 1



TDIU11 – Föreläsning 2 Filip Strömbäck 24

Multilevel scheduling

Sc
he

du
ler

CPU

CPU

1: SJF

3: FIFO

2: Round-robin



TDIU11 – Föreläsning 2 Filip Strömbäck 25

Hur gör ”riktiga” operativsystem?

• Hybridapproach, ofta prioritetsbaserad i grunden
• Preemptive med tidskvantum i storleksordning 10 ms
• Prioritet justeras dynamiskt (ex. Windows ger högre prioritet till aktiv

process)
• Se artikeln ”The Linux Scheduler: A Decade of Wasted Cores” länkad

från ”Litteratur” på kurshemsidan.



1 Multiprogrammering
2 Schemaläggning
3 Algoritmer för schemaläggning
4 Preemption
5 Seminarier



TDIU11 – Föreläsning 2 Filip Strömbäck 27

Exempel på redovisning, 1

Exempelproblem baserat på gårdagens och dagens föreläsning:
Processer som körs i user-mode får inte kommunicera direkt med exempelvis
hårddisk i systemet. Hur gör OS för att låta processer exempelvis läsa
innehållet i en fil på ett säkert sätt? Redogör översiktligt för de steg som krävs
för att läsa data från en fil.



TDIU11 – Föreläsning 2 Filip Strömbäck 28

Exempel på redovisning, 2
Exempelproblem baserat på schemaläggning:
Schemalägg följande trådar enligt preemptive SJF:

Arrival Burst
T1 0 4
T2 2 3
T3 7 3
T4 8 2

Time quantum = 2
Beräkna också average waiting time



Filip Strömbäck

www.liu.se

www.liu.se

	Multiprogrammering
	Schemaläggning
	Algoritmer för schemaläggning
	Preemption
	Seminarier

