TDIU11 - Forelasning 2

Schemalaggning

Filip Stromback

II LINKOPING
o UNIVERSITY

1 Multiprogrammering

II LINKOPING
o UNIVERSITY

TDIU11 - Forelasning 2 Filip Stromback

Varfér multiprogrammering?

Exempel: Skriv innehéllet i en fil pa skdrmen (cat):

Start read() read () klar write() write() klar

Onodigt att CPU (och resten av systemet) maste vanta. Vi nyttjar tiden
genom att kora andra tradar!

LINKOPING
II.“ UNIVERSITY

TDIU11 - Forelasning 2 Filip Stromback

Processhantering

UNIX (Linux, MacOS)

® fork() Windows NT
® exec(program, ...) ® CreateProcess(program,
® posix_spawn(program, ...) ® WaitForSingleObject ()

® waitpid()

LINKOPING
II.“ UNIVERSITY

TDIU11 - Forelasning 2

Tradhantering

UNIX (Linux, MacOS)
® pthread_create()
® pthread_join()
® pthread_detach()
® (clone())

Filip Stromback

Windows NT

® CreateThread()

® WaitForSingleObject()
C++

® std::thread

® thread.join()

® thread.detach()

LINKOPING
II.“ UNIVERSITY

TDIU11 - Forelasning 2 Filip Stromback

Tradens livstid — Tillstandsdiagram (thread/process-state diagram)

interrupt
—
dispatch
completed I/O or sleep

wait for keyboard

wait for network

LINKOPING
II.“ UNIVERSITY

TDIU11 - Forelasning 2

Hantering av tradar i Kernel

Disk

—

|

[|

|

F

Keyboard

—

|

[|

|

icompleted

F

I/0O or sleep

Network

—

|

[|

|

F

Filip Stromback

Ready-ko

interrupt

Scheduler

ldispatch

ldispatch

LINKOPING
UNIVERSITY

TDIU11 - Forelasning 2 Filip Stromback

Terminologi

Kom ihag:

Historiskt sett fanns inte tradar. Da fanns bara processer. Darfor beskrivs
manga schemaldggare som att de schemalagger processer snarare an tradar.
Idén &r densamma. Kursen forsoker anvanda tridar.

Undantaget fran detta ar job schedulers. De schemaldgger programkorningar,
dvs. hela processer.

II LINKOPING
@ UNIVERSITY

2 Schemalaggning

II LINKOPING
o UNIVERSITY

TDIU11 - Forelasning 2 Filip Stromback

Typer av schemalaggare

e Korttid: Scheduler (schemalaggare)
Arbetar under kérning av processer tradar. Ser till att CPU har nagot att
gora sd ofta som mojligt. Maste darfor ta beslut snabbt.

® Langtid: Job scheduler
Kors ibland, och beslutar vilka job (=processer) som ska startas. Ser till
att korttids-scheduler har "lagom” mycket att hantera, och att systemet
inte far slut pd& RAM.
(Detta ar vad som anvands ex.vis pa superdatorer tillsammans med en
"vanlig” schemalaggare)

LINKOPING
II.“ UNIVERSITY

TDIU11 - Forelasning 2 Filip Stromback

Vad behover schemalaggaren veta?

Start read() read () klar write() write() klar

10

LINKOPING
II.“ UNIVERSITY

TDIU11 - Forelasning 2 Filip Stromback

Vad behover schemalaggaren veta?

Start read() read () klar write() write() klar
-~ - R =
H/—/ %/—/
CPU burst CPU burst CPU burst

LINKOPING
II.“ UNIVERSITY

TDIU11 - Forelasning 2 Filip Stromback

Vad behover schemalaggaren veta?

write() write() klar

Start read() read () klar
- -
H/—/ %/—/

CPU burst 1/0 burst CPU burst

[/O burst CPU burst

10

LINKOPING
II.“ UNIVERSITY

TDIU11 - Forelasning 2 Filip Stromback 10

Vad behover schemalaggaren veta?

Start read() read() klar write() write() klar
s -
H/—/%/—/

CPU burst 1/0 burst CPU burst [/O burst CPU burst

e CPU burst foljt av 1/0 burst

® Vi schemalidgger CPU = en CPU burst kan betraktas i isolation
® Tank: bryr oss bara om ready-ké

LINKOPING
II.“ UNIVERSITY

TDIU11 - Forelasning 2 Filip Stromback

Hur byter vi mellan olika tradar/processer?

read() read () klar

11

LINKOPING
II.“ UNIVERSITY

TDIU11 - Forelasning 2

Hur byter vi mellan olika tradar/processer?

read()

cat --

Context-switch:
® Spara register
® Byt stack

o Aterstall register

restore

read()

LINKOPING
II.“ UNIVERSITY

TDIU11 - Forelasning 2 Filip Stromback

Hur jamfor vi schemalaggare?

CPU utilization: ~ Hur stor andel av CPU-tid anvands (i %)?

Throuhgput: Hur manga tradar blir klara per tidsenhet?
Turnaround time: Hur lang tid tar det for en trad att bli klar?

Waiting time: Hur lang tid har en trdd fatt vanta ofrivilligt?
Response time: Hur l&dng tid tar det for en trad att reagera pé indata?

Aven average turnaround time och average waiting time.

12

LINKOPING
II.“ UNIVERSITY

3 Algoritmer for schemalaggning

II LINKOPING
o UNIVERSITY

TDIU11 - Forelasning 2 Filip Stromback 14

FIFO (First In First Out)/FCFS (First Come First Served)

Exempel:

® | it processer kora i ordningen de Trad ‘ Start Burst

lades in i ready-ko A 0 10
B 0 5
C 2 1

LINKOPING
II.“ UNIVERSITY

TDIU11 - Forelasning 2

SJF (Shortest Job First)

® Kor den process som ar kortast
forst!

Filip Stromback 15

Exempel:

Trad ‘ Start Burst

A 0 10
B 0 5
C 2 1

LINKOPING
II.“ UNIVERSITY

TDIU11 - Forelasning 2 Filip Stromback 16

Prioritetsbaserad schemalaggning

Exempel:
® Ge varje process en prioritet! Trad ‘ Start Burst Prio
® Problem: risk for starvation, kan A 0 10 2
|6sas med ageing B 0 5 3
C 2 1 1

LINKOPING
II.“ UNIVERSITY

TDIU11 - Forelasning 2 Filip Stromback

Nar kors schemalaggaren?

Schemalédggaren &r en bit kod som maste koras pd CPU.

Vad hander om traden/processen aldrig terminerar eller vantar?

17

LINKOPING
II.“ UNIVERSITY

4 Preemption

II LINKOPING
o UNIVERSITY

TDIU11 - Forelasning 2 Filip Stromback

Preemption

Vi tilldter OS att avbryta kérande trad/process

® Nar time-quantum ar slut, med hjalp av timeravbrott

® Nar andra tradar/processer blir redo (nya processer, eller om de vantat
klart)

Vi far d& preemptive schedulers

19

LINKOPING
II.“ UNIVERSITY

TDIU11 - Forelasning 2

Tillstdndsdiagram

admitted

completed

Filip Stromback

interrupt

dispatch

exit

running

wait for disk

wait for keyboard

[/O or sleep

wait for network

20

II LINKOPING
@ UNIVERSITY

TDIU11 - Forelasning 2

Filip Stromback 21

Round-robin = FIFO/FCFS med preemption

® Som FIFO, men om en process
kor langre an time-quantum, byt
till nasta
® Time quantum maste vara
"lagom”
= Litet = mycket overhead
= Stort = ingen preemption

Exempel:

Trad ‘ Start Burst

A 0 10
B 0 5
C 2 1

Time quantum = 2

LINKOPING
II.“ UNIVERSITY

TDIU11 - Forelasning 2 Filip Stromback

Shortest remaining time first = SJF med preemption

® Som SJF, men nya Exempel:
trddar/processer kan avbryta
koérande process. Trad ‘ Start Burst
® Optimal med avseende pd average A 0 10
waiting time (vi vet dock sallan pa B 0 5
forhand exakt hur lang en burst ar C 2 1

— vi maste estimera den)

22

LINKOPING
II.“ UNIVERSITY

TDIU11 - Forelasning 2 Filip Stromback 23

Prioritetsbaserad schemalaggning

Exempel:
® Som i ej-preemptive variant, men
nya tradar/processer kan avbryta Trad ‘ Start Burst Prio
korande process. A 0 10 2
® Om flera med samma prioritet, B 0 5 3
round-robin mellan dessa. C 2 1 1

LINKOPING
II.“ UNIVERSITY

TDIU11 - Forelasning 2

Multilevel scheduling

Filip Stromback

—CT T T T+

1: SJF

]_,

a{ \ \ \ \ }—>[2: Round—robin]—*

—[T T T T

3: FIFO

]_,

Scheduler

24

LINKOPING
UNIVERSITY

TDIU11 - Forelasning 2 Filip Stromback

Hur gor "riktiga” operativsystem?

Hybridapproach, ofta prioritetsbaserad i grunden

Preemptive med tidskvantum i storleksordning 10 ms

® Prioritet justeras dynamiskt (ex. Windows ger hdgre prioritet till aktiv
process)

Se artikeln "The Linux Scheduler: A Decade of Wasted Cores” ldnkad
fran "Litteratur” pa kurshemsidan.

25

LINKOPING
II.“ UNIVERSITY

5 Seminarier

II LINKOPING
o UNIVERSITY

TDIU11 - Forelasning 2 Filip Stromback

Exempel pa redovisning, 1

Exempelproblem baserat pd gardagens och dagens forelasning:

Processer som kors i user-mode far inte kommunicera direkt med exempelvis
harddisk i systemet. Hur gér OS for att |ata processer exempelvis lasa
innehallet i en fil pa ett sdkert satt? Redogodr oversiktligt for de steg som kravs
for att lasa data fran en fil.

27

LINKOPING
II.“ UNIVERSITY

TDIU11 - Forelasning 2 Filip Stromback 28

Exempel pa redovisning, 2

Exempelproblem baserat pa schemalaggning:

Schemalégg foljande tradar enligt preemptive SJF:

Arrival Burst

Ty 0 4
T 2 3
T3 7 3
Ty 8 2

Time quantum = 2

Berdkna ocksa average waiting time

LINKOPING
II.“ UNIVERSITY

Filip Stromback

www.liu.se

II LINKOPING
o UNIVERSITY

www.liu.se

	Multiprogrammering
	Schemaläggning
	Algoritmer för schemaläggning
	Preemption
	Seminarier

