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Varför multiprogrammering?

Exempel: Skriv innehållet i en fil på skärmen (cat):

Start read()

vänta

read() klar write()

vänta

write() klar

Onödigt att CPU (och resten av systemet) måste vänta. Vi nyttjar tiden
genom att köra andra trådar!
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Processhantering

UNIX (Linux, MacOS)
• fork()
• exec(program, ...)
• posix_spawn(program, ...)
• waitpid()

Windows NT
• CreateProcess(program, ...)
• WaitForSingleObject()
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Trådhantering

UNIX (Linux, MacOS)
• pthread_create()
• pthread_join()
• pthread_detach()
• (clone())

Windows NT
• CreateThread()
• WaitForSingleObject()

C++
• std::thread
• thread.join()
• thread.detach()
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Trådens livstid – Tillståndsdiagram (thread/process-state diagram)

new terminated

ready running

wait for disk

wait for keyboard

wait for network

admitted exit

interrupt

dispatch

I/O or sleepcompleted
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Hantering av trådar i Kernel
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Terminologi

Kom ihåg:
Historiskt sett fanns inte trådar. Då fanns bara processer. Därför beskrivs
många schemaläggare som att de schemalägger processer snarare än trådar.
Idén är densamma. Kursen försöker använda trådar.
Undantaget från detta är job schedulers. De schemalägger programkörningar,
dvs. hela processer.
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Typer av schemaläggare

• Korttid: Scheduler (schemaläggare)
Arbetar under körning av processer trådar. Ser till att CPU har något att
göra så ofta som möjligt. Måste därför ta beslut snabbt.

• Långtid: Job scheduler
Körs ibland, och beslutar vilka job (=processer) som ska startas. Ser till
att korttids-scheduler har ”lagom” mycket att hantera, och att systemet
inte får slut på RAM.
(Detta är vad som används ex.vis på superdatorer tillsammans med en
”vanlig” schemaläggare)
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Vad behöver schemaläggaren veta?

Start read()

vänta

read() klar write()

vänta

write() klar

CPU burst CPU burst CPU burstI/O burst I/O burst

• CPU burst följt av I/O burst
• Vi schemalägger CPU ⇒ en CPU burst kan betraktas i isolation
• Tänk: bryr oss bara om ready-kö
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Hur byter vi mellan olika trådar/processer?

cat

emacs

read()

vänta

read() klar

? ?
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Hur byter vi mellan olika trådar/processer?

cat
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Context-switch:
• Spara register
• Byt stack
• Återställ register
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Hur jämför vi schemaläggare?

CPU utilization: Hur stor andel av CPU-tid används (i %)?
Throuhgput: Hur många trådar blir klara per tidsenhet?
Turnaround time: Hur lång tid tar det för en tråd att bli klar?
Waiting time: Hur lång tid har en tråd fått vänta ofrivilligt?
Response time: Hur lång tid tar det för en tråd att reagera på indata?

Även average turnaround time och average waiting time.
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FIFO (First In First Out)/FCFS (First Come First Served)

• Låt processer köra i ordningen de
lades in i ready-kö

Exempel:

Tråd Start Burst
A 0 10
B 0 5
C 2 1
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SJF (Shortest Job First)

• Kör den process som är kortast
först!

Exempel:

Tråd Start Burst
A 0 10
B 0 5
C 2 1
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Prioritetsbaserad schemaläggning

• Ge varje process en prioritet!
• Problem: risk för starvation, kan

lösas med ageing

Exempel:

Tråd Start Burst Prio
A 0 10 2
B 0 5 3
C 2 1 1
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När körs schemaläggaren?

Schemaläggaren är en bit kod som måste köras på CPU.

Vad händer om tråden/processen aldrig terminerar eller väntar?
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Preemption

Vi tillåter OS att avbryta körande tråd/process
• När time-quantum är slut, med hjälp av timeravbrott
• När andra trådar/processer blir redo (nya processer, eller om de väntat

klart)

Vi får då preemptive schedulers
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Tillståndsdiagram

new terminated

ready running

wait for disk

wait for keyboard

wait for network

admitted exit

interrupt

dispatch

I/O or sleepcompleted
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Round-robin = FIFO/FCFS med preemption

• Som FIFO, men om en process
kör längre än time-quantum, byt
till nästa

• Time quantum måste vara
”lagom”
• Litet ⇒ mycket overhead
• Stort ⇒ ingen preemption

Exempel:

Tråd Start Burst
A 0 10
B 0 5
C 2 1

Time quantum = 2
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Shortest remaining time first = SJF med preemption

• Som SJF, men nya
trådar/processer kan avbryta
körande process.

• Optimal med avseende på average
waiting time (vi vet dock sällan på
förhand exakt hur lång en burst är
— vi måste estimera den)

Exempel:

Tråd Start Burst
A 0 10
B 0 5
C 2 1
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Prioritetsbaserad schemaläggning

• Som i ej-preemptive variant, men
nya trådar/processer kan avbryta
körande process.

• Om flera med samma prioritet,
round-robin mellan dessa.

Exempel:

Tråd Start Burst Prio
A 0 10 2
B 0 5 3
C 2 1 1
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Multilevel scheduling
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1: SJF

3: FIFO

2: Round-robin
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Hur gör ”riktiga” operativsystem?

• Hybridapproach, ofta prioritetsbaserad i grunden
• Preemptive med tidskvantum i storleksordning 10 ms
• Prioritet justeras dynamiskt (ex. Windows ger högre prioritet till aktiv

process)
• Se artikeln ”The Linux Scheduler: A Decade of Wasted Cores” länkad

från ”Litteratur” på kurshemsidan.
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Exempel på redovisning, 1

Exempelproblem baserat på gårdagens och dagens föreläsning:
Processer som körs i user-mode får inte kommunicera direkt med exempelvis
hårddisk i systemet. Hur gör OS för att låta processer exempelvis läsa
innehållet i en fil på ett säkert sätt? Redogör översiktligt för de steg som krävs
för att läsa data från en fil.
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Exempel på redovisning, 2
Exempelproblem baserat på schemaläggning:
Schemalägg följande trådar enligt preemptive SJF:

Arrival Burst
T1 0 4
T2 2 3
T3 7 3
T4 8 2

Time quantum = 2
Beräkna också average waiting time
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