
EMBEDDED SYSTEM DESIGN

DEPT. COMPUTER AND INFORMATION

SCIENCE (IDA)

LINKÖPINGS UNIVERSITET

LECTURE VI
TDDI11 Embedded

Software

Design challenge:
optimizing design metrics

Common metrics:

• NRE cost (Non-Recurring Engineering cost): The one-time
monetary cost of designing the system

• Unit cost: the monetary cost of manufacturing each copy of
the system, excluding NRE cost

• Time-to-prototype: the time needed to build a working
version of the system

• Time-to-market: the time required to develop a system to
the point that it can be released and sold to customers

Common metrics (continued)

• Size: the physical space required by the system

• Performance: execution time or throughput of the system

• Power: amount of power consumed by the system

• Flexibility: ability to change the functionality of the
system without incurring heavy NRE cost

• Maintainability: the ability to modify the system after its
initial release

• Safety: absence of catastrophic consequences on the
user(s) and the environment.

Design challenge:
optimizing design metrics

Design metric tradeoffs:
improving one may worsen others

SizePerformance

Power

NRE cost

Design methodology is important

The loss of the Mars climate observer (1999)

• Most likely approached Mars too closely

• One of the problems: requirement

• Jet Propulsion Lab expected values in Newton

• Contractor calculated in pound force

• Trajectory adjustments unsuccessful

• Was not caught by configuration process or manual
inspection

Design methodology, design flow

• Design methodology: the process of creating a system

• Goal: optimize competing design metrics

• Time-to-market

• Design cost

• Manufacturing cost

• Quality, etc.

• Design flow: sequence of steps in a design methodology.
• May be partially or fully automated with compilers and CAD tools.

• Use tools to transform, verify design.

• Design flow is one component of design methodology.
Methodology also includes management, organization, etc.

Waterfall model

Early model for software development.

Successive refinement:

• Several iterations, suited for when unfamiliar with
domain application

Spiral model

• More realistic, but can be complex, time to market?

From http://iansommerville.com

Design flows for embedded systems

• Embedded systems need design of hardware and
software

• Even if you don’t design hardware, you still need
select the correct boards, plug together several
hardware components, and write code

Hierarchical design

• from a most abstract complete system design flow
• to more detailed design flow of components
• many involved teams: requirements, design, testing
• Communication is important!

• Large project, several teams

• Good communication between teams: e.g.,
components and design

• Eliminate “over-the-wall” approach

• Cross-functional teams

• Concurrent product realization

• Information sharing

• Integrated project management

http://npdbook.com

http://npdbook.com

”Concurrent” vs. ”Over-the-wall” Engineering

10%

7%

27%
56%

Other

Code

Design

Requirements

[Jim Cooling 2003]

Frequency of faults

• Requirement: informal descriptions of what customer
wants:

• Correctness, unambiguousness, completeness,
verifiability, consistency, modifiability, traceability

• Specification: more detailed, precise descriptions

• Both Requirements and specification describe system
behavior from outside

Requirement and Specification

• Describing embedded systems’ behavior
– Can be extremely difficult

• Complexity increasing with increasing IC capacity

• Desired behavior often not fully understood in beginning

• English (or other natural language) common starting
point

– Precise description difficult to impossible

Requirement and Specification

Several factors, including ambiguities about relation
between TCAS (Trafic Collision Avoidance System) and
ATC (Air Trafic Control)

www.jal.com

The 2002-Überlingen crash

Models and languages

• How can we (precisely) capture behavior?
– We may think of languages (C, C++), but computation model is the key

• Common computation models:
– Sequential program model

• Statements, rules for composing statements, semantics for executing them

– State machine model
• For control dominated systems, monitors control inputs, sets control outputs

– Dataflow model
• For data dominated systems, transforms input data streams into output

streams

Models and languages

From “experience from specifying TCASII requirements using RSML”, Heimfahl and al, 1998.

• Quality should be built in

• Quality standards (e.g., iso 9000)

• Verify specification and review designs

• Long lived bugs are more expensive

• The Therac-25 medical imaging system
• Six known accidents, massive radiation overdose

• Machine software developed in assembly by single programmer over several
years

• Some errors depended on typing speed of operators

• Limited safety analysis, no mechanical backups, overly complex programs

Quality assurance

• Develop and share key components whether
proprietary or open source

• Use them in as many products as possible to
provide new functionalities

• Eliminate redundancies, speed development,
saves costs

Why platforms?

• Standards drive many markets

Standards and platforms drive
many markets

DO-178B/C

MISRA C:2012

ISO 26262

ASIL D, C, B, A

IEC 62304

https://en.wikipedia.org/wiki/IEC_62304

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

