
STATE MACHINES

DEPT. COMPUTER AND INFORMATION

SCIENCE (IDA)

LINKÖPINGS UNIVERSITET

LECTURE VI
TDDI11 Embedded

Software

Simple elevator controller

• Request Resolver resolves
various floor requests into
single requested floor

• Unit Control moves elevator
to this requested floor

“Move the elevator either up

or down to reach the

requested floor. Once at the

requested floor, open the

door for at least 10 seconds,

and keep it open until the

requested floor changes.

Ensure the door is never

open while moving. Don’t

change directions unless

there are no higher requests

when moving up or no lower

requests when moving

down…”

Partial English description

buttons

inside

elevator

Unit

Control

b1

down

open

floor

...

Request

Resolver

...

up/down

buttons

on each

floor

b2

bN

up1

up2

dn2

dnN

req

up

System interface

up3

dn3

INTRODUCTORY EXAMPLE:
AN ELEVATOR CONTROLLER

2

ELEVATOR CONTROLLER:
A SEQUENTIAL PROGRAM MODEL

3

Sequential program model

void UnitControl()

{

 up = down = 0; open = 1;

 while (1) {

 while (req == floor);

 open = 0;

 if (req > floor) { up = 1;}

 else {down = 1;}

 while (req != floor);

 up = down = 0;

 open = 1;

 delay(10);

 }

}

void

RequestResolver()

{

 while (1)

 ...

 req = ...

 ...

}

void main()

{

 Call concurrently:

 UnitControl() and

 RequestResolver()

}

Inputs: int floor; bit b1..bN; up1..upN-1;dn2..dnN;

Outputs: bit up, down, open;

Global variables: int req;

“Move the elevator either up

or down to reach the

requested floor. Once at the

requested floor, open the

door for at least 10 seconds,

and keep it open until the

requested floor changes.

Ensure the door is never

open while moving. Don’t

change directions unless

there are no higher requests

when moving up or no lower

requests when moving

down…”

Partial English description

buttons

inside

elevator

Unit

Control

b1

down

open

floor

...

Request

Resolver

...

up/down

buttons

on each

floor

b2

bN

up1

up2

dn2

dnN

req

up

System interface

up3

dn3

• Trying to capture this behavior as sequential program is a bit awkward

• Instead, we might consider an FSM model, describing the system as:

• Possible states

• E.g., Idle, GoingUp, GoingDn, DoorOpen

• Possible transitions from one state to another based on input

• E.g., req > floor

• Actions that occur in each state

• E.g., In the GoingUp state, u,d,o,t = 1,0,0,0 (up = 1, down, open,
and timer_start = 0)

FINITE-STATE MACHINE (FSM) MODEL

4

• The system is described as a set of states

• Each state is a representation of what the system looks like now and
how it got there

• Each state reacts in a specific way to every possible input event,
leading to a new state via a transition

5

STATE MACHINE

5

• There are two kinds of state machines

• Mealy and Moore

• Both are finite state machines

• Both can capture regular expressions

• Note: Finite state machines and finite automata are used
interchangeably

MEALY AND MOORE

6

MOORE MACHINES

A Moore machine is a tuple 𝑄, Σ, Γ, Δ, 𝐻, 𝑞0 consisting in:

1. a finite set 𝑄 of states where q0 is the start state

2. an alphabet Σ of input letters

3. an alphabet Γ of output characters

4. a mapping Δ associating a state in Q to each pair in 𝑄 × Σ

5. a mapping 𝐻 associating an output in Γ to each state in 𝑄

7

(𝑞, σ) 𝑞’ where 𝑞, 𝑞′ ∈ 𝑄 and 𝜎 ∈ Σ
Δ: transition

𝑞 𝑜 where 𝑞 ∈ 𝑄 and o ∈ Γ
𝐻: output

Example: states = {q0,q1,q2,q3} ={a,b} ={0,1}

Old state Output by the New state

 old state After input a After input b

 → 𝑞0 1 q1 q3

 q1 0 q3 q1

 q2 0 q0 q3

 q3 1 q3 q2

q0/1 q1/0

b

b
q3/1q2/0

a b

a

b
aa a b a b

1 0 0 1 0

EXAMPLE OF A MOORE
MACHINE

8

When does the machine output 1?

q1/0 q3/1
b

b a

q0/0

a

b
q2/0

a

b

a

Input a a a b a b b a a b b

State q0 q1 q2 q2 q3 q1 q0 q0 q1 q2 q3 q0

Output 0 0 0 0 1 0 0 0 0 0 1 0

ANOTHER MOORE
MACHINE

9

A Mealy machine is a tuple 𝑄, Σ, Γ, Δ, 𝑞0 consisting in:

• a finite set of 𝑄 of states where 𝑞0 is the start state

• an alphabet  of input letters

• an alphabet  of output characters

• a finite set of transitions Δ that indicate, for each
state and letter of the input alphabet, the state to go
to next and the associated output.

MEALY MACHINE

10

(𝑞, σ) (𝑞’, 𝑜) where 𝑞, 𝑞′ ∈ 𝑄, 𝜎 ∈ Σ and o ∈ Γ

𝑞
σ/o

𝑞’

q1
q3

b/1

b/0
a/0

q0

a/0

b/0
q2

a/0

b/0

a/0

MEALY MACHINE EXAMPLE

11

AN EXTENDED FINITE STATE
MACHINE

12

FSMD extends FSM with Data: complex data types and variables for storing
data

An FSMD is a tuple 𝑄, Σ, Γ, 𝑉, Δ, 𝐻, 𝑞0 :

1. Q is a finite set of states

2. Σ is the set of possible inputs

3. Γ is the set of possible outputs

4. 𝑉 is a set of variables

5. Δ associates a state to any triple in 𝑆 × Σ × 𝑉

6. 𝐻 represents actions: it associates an output and values to 𝑉 for each state

System state completely described by the current state and values of all
variables

Idle

GoingUp

req > floor

req < floor

!(req > floor)

!(timer < 10)

req < floor

DoorOpen

GoingDn

req > floor

u,d,o, t = 1,0,0,0

u,d,o,t = 0,0,1,0

u,d,o,t = 0,1,0,0

u,d,o,t = 0,0,1,1

u is up, d is down, o is open

req == floor

!(req<floor)

timer < 10

t is timer_start

req > floor

!(req > floor)

u,d,o, t = 1,0,0,0

u,d,o,t = 0,0,1,0

u,d,o,t = 0,1,0,0

u,d,o,t = 0,0,1,1

u is up, d is down, o is open

req < floor

req > floor

req == floor

req < floor

!(req<floor)

!(timer < 10)

timer < 10

t is timer_start

Idle

GoingUp

DoorOpen

GoingDn

DESCRIBING A SYSTEM AS
A STATE MACHINE

13

Sequential program model

void UnitControl()

{

 up = down = 0; open = 1;

 while (1) {

 while (req == floor);

 open = 0;

 if (req > floor) { up = 1;}

 else {down = 1;}

 while (req != floor);

 up = down = 0;

 open = 1;

 delay(10);

 }

}

void RequestResolver()

{

 while (1)

 ...

 req = ...

 ...

}

void main()

{

 Call concurrently:

 UnitControl() and

 RequestResolver()

}

Inputs: int floor; bit b1..bN; up1..upN-1; dn2..dnN;

Outputs: bit up, down, open;

Global variables: int req;

State machine model

1. List all possible states

2. Declare all variables

3. For each state, list possible transitions, with
conditions, to other states

4. For each state and/or transition, list
associated actions

5. For each state, ensure exclusive and complete
exiting transition conditions
• No two exiting conditions can be true at same

time. Otherwise, nondeterministic state machine

• One condition must be true at any given time

req > floor

!(req > floor) u,d,o, t = 1,0,0,0

u,d,o,t = 0,0,1,0

u,d,o,t = 0,1,0,0

u,d,o,t = 0,0,1,1

u is up, d is down, o is open

req < floor

req > floor

req == floor

req < floor

!(req<floor)

!(timer < 10)

timer < 10

t is timer_start

Idle

GoingUp

DoorOpen

GoingDn

DESCRIBING A SYSTEM
AS A STATE MACHINE

14

• Different thought process used with each model

• State machine:
• Encourages designer to think of all possible states and transitions

among states based on all possible input conditions

• Sequential program model:

• Designed to transform data through series of instructions that may
be iterated and conditionally executed

STATE MACHINE VS. SEQUENTIAL
PROGRAM MODEL

17

• Despite benefits of state machine model, most popular
development tools use sequential programming language

• C, C++, Java, Ada, VHDL, Verilog, etc.

• Development tools are complex and expensive, therefore not easy to
adapt or replace

• Two approaches to capturing state machine model with sequential
programming language

• Front-end tool approach

• Language subset approach

CAPTURING STATE MACHINES IN
SEQUENTIAL PROGRAMMING

LANGUAGE

18

LANGUAGE SUBSET APPROACH

UnitControl state machine in

sequential programming language

req > floor

!(req > floor) u,d,o, t = 1,0,0,0

u,d,o,t = 0,0,1,0

u,d,o,t = 0,1,0,0

u,d,o,t = 0,0,1,1

u is up, d is down, o is open

req < floor

req > floor

req == floor

req < floor

!(req<floor)

!(timer < 10)

timer < 10

t is timer_start

Idle

GoingUp

DoorOpen

GoingDn

#define IDLE 0
#define GOINGUP 1
#define GOINGDN 2
#define DOOROPEN 3
void UnitControl() {

int state = IDLE;
while (1) {

switch (state) {
IDLE: up=0; down=0; open=1; timer_start=0;

if (req==floor) {state = IDLE;}
if (req > floor) {state = GOINGUP;}
if (req < floor) {state = GOINGDN;}
break;

GOINGUP: up=1; down=0; open=0; timer_start=0;
if (req > floor) {state = GOINGUP;}
if (!(req>floor)) {state = DOOROPEN;}
break;

GOINGDN: up=1; down=0; open=0; timer_start=0;
if (req < floor) {state = GOINGDN;}
if (!(req<floor)) {state = DOOROPEN;}
break;

DOOROPEN: up=0; down=0; open=1; timer_start=1;
if (timer < 10) {state = DOOROPEN;}
if (!(timer<10)){state = IDLE;}
break;

Another Model for state-based
specification

• Uses Hierarchies and Concurrency to
eliminate clutter and clarify the structure

Allows states to be grouped together

HIERARCHICAL/CONCURRENT
STATE MACHINE MODEL

20

A1 z

B

A2 z

x
y

w

Without hierarchy

A1 z

B

A2

x
y

A

w

With hierarchy

C1

C2

x y

C

B

D1

D2

u v

D

Concurrency

• Statecharts define a
language for HCFSMs

• Two groups are

• OR

• AND

GROUPS IN STATECHART

21

A1 z

B

A2 z

x
y

w

Without hierarchy

A1 z

B

A2

x
y

A

w

With hierarchy

C1

C2

x y

C

B

D1

D2

u v

D

Concurrency

• The machine goes to s4 from s1, s2, s3
• Statechart captures this by having one state

around s1, s2, and s3

EXAMPLE OF OR

22

• A single transition out of s123 means that on
event i2, all states go to s4.

• The OR state allows transitions between its own
internal states

EXAMPLE OF OR

23

The traditional model has many transitions
• Between states
• Going out of all states
• One initial transition

EXAMPLE OF AND GROUP

24

a b

• The statechart has an AND state called sab
• sab has two components sa and sb
• When the machine enters the state sab, it is

simultaneously in both sa and sb
• We must know both sa and sb to know sab

EXAMPLE OF AND

25

a b

• The name of states reveal their relations
• s1-3 corresponds to sab in s1 and in s3
• When the machine enters the state sab, it is

simultaneously in both sa and sb

EXAMPLE OF AND

26

a b

• Both models describe the same behavior but the
statechart is much simpler, cleaner and easier to
understand

EXAMPLE OF AND

a b

27

EXAMPLE OF HCFSM MODELING

▪ FireMode

▪ When fire is true, move elevator to
1st floor and open door

Without hierarchy

Idle

GoingUp

req>floor

req<floor

!(req>floor)

timeout(10)

req<floor

DoorOpen

GoingDn

req>floor

u,d,o = 1,0,0

u,d,o = 0,0,1

u,d,o = 0,1,0

req==floor
!(req<floor)

fire

fire
fire

fire

FireGoingDn

floor>1

u,d,o = 0,1,0

u,d,o = 0,0,1

!fire

FireDrOpen

floor==1

fire

u,d,o = 0,0,1

UnitControl

– w/o hierarchy: Getting messy!

– w/ hierarchy: Simple!

EXAMPLE OF HCFSM MODELING

▪ FireMode

▪ When fire is true, move elevator to
1st floor and open door

Without hierarchy

Idle

GoingUp

req>floor

req<floor

!(req>floor)

timeout(10)

req<floor

DoorOpen

GoingDn

req>floor

u,d,o = 1,0,0

u,d,o = 0,0,1

u,d,o = 0,1,0

req==floor
!(req<floor)

fire

fire
fire

fire

FireGoingDn

floor>1

u,d,o = 0,1,0

u,d,o = 0,0,1

!fire

FireDrOpen

floor==1

fire

u,d,o = 0,0,1

UnitControl

NormalMode

FireMode

fire!fire

UnitControl

ElevatorController

RequestResolver

...

With concurrent RequestResolver

– w/o hierarchy: Getting messy!

– w/ hierarchy: Simple!

FireGoingDn

floor>1

u,d,o = 0,1,0

FireDrOpenfloor==1

fire

FireMode

u,d,o = 0,0,1

With hierarchy

Idle

GoingUp

req>floor

req<floor

!(req>floor)

timeout(10)

req<floor

DoorOpen

GoingDn

req>floor

u,d,o = 1,0,0

u,d,o = 0,0,1

u,d,o = 0,1,0

req==floor
!(req>floor)

u,d,o = 0,0,1

NormalMode

UnitControl

!fire

fire

FSM LAB ON STM32L562

30

STATE MACHINE FOR THE GAME

31

32

while (1){
...

//Update State on entry
if(State != PreviousState){

switch(State){
case WELCOME:
Initialize_Board(BoardState);
...
break;

case BLUE_QUESTION:
Touch = 0;
...
break;

case BLUE_ANSWER:
Valid = Check_Move_Validity(…);
break;
...

} //update state
}//on entry

// transitions
switch(State){

case WELCOME:
PreviousState = WELCOME;
if(Button){

State = EXIT;
}else if(Touch){

State = BLUE_QUESTION;
}
break;

case BLUE_QUESTION:
PreviousState = BLUE_QUESTION;
if(Button){

State = EXIT;
}else if(Touch){

State = BLUE_ANSWER;
}
break;
...

}// transitions

STATE MACHINE FOR THE GAME

VERIFICATION

33

TS

Behavior of TS Check for

property !

System

Model

extraction

Semantics

THE VERIFICATION SETTING

42

TRAIN GATE EXAMPLE

• On the model checker UPPAAL

• You can download it from http://uppaal.org/

• Several demos of timed systems, the train gate

controller is one of them

• You can do simulation and verification

45

http://uppaal.org/

	Slide 1
	Slide 2: Introductory example: An elevator controller
	Slide 3: Elevator controller: a sequential program model
	Slide 4: Finite-state machine (FSM) model
	Slide 5: State machine
	Slide 6: Mealy and Moore
	Slide 7: Moore machines
	Slide 8: Example of a Moore machine
	Slide 9: Another Moore machine
	Slide 10: Mealy machine
	Slide 11: Mealy machine example
	Slide 12: An Extended Finite State Machine
	Slide 13: Describing a system as a state machine
	Slide 14: Describing a system as a state machine
	Slide 17: State machine vs. sequential program model
	Slide 18: Capturing state machines in sequential programming language
	Slide 19: Language subset approach
	Slide 20: Hierarchical/Concurrent State Machine Model
	Slide 21: Groups in Statechart
	Slide 22: Example of OR
	Slide 23: Example of OR
	Slide 24: Example of AND Group
	Slide 25: Example of AND
	Slide 26: Example of AND
	Slide 27
	Slide 28
	Slide 29
	Slide 30: FSM LAB on STM32L562
	Slide 31: State Machine for the GAME
	Slide 32: State Machine for the GAME
	Slide 33: Verification
	Slide 42: The Verification Setting
	Slide 45: Train gate example

