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Simple elevator controller

• Request Resolver resolves
various floor requests into
single requested floor

• Unit Control moves elevator 
to this requested floor

“Move the elevator either up 

or down to reach the 

requested floor. Once at the 

requested floor, open the 

door for at least 10 seconds, 

and keep it open until the 

requested floor changes. 

Ensure the door is never 

open while moving. Don’t 

change directions unless 

there are no higher requests 

when moving up or no lower 

requests when moving 

down…”

Partial English description
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INTRODUCTORY EXAMPLE: 
AN ELEVATOR CONTROLLER
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ELEVATOR CONTROLLER:
A SEQUENTIAL PROGRAM MODEL 
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Sequential program model

void UnitControl() 

{

   up = down = 0; open = 1;

   while (1) {

      while (req == floor);

      open = 0;

      if (req > floor) { up = 1;}

      else {down = 1;}

      while (req != floor);

      up = down = 0;

      open = 1;

      delay(10);

   }

}

void 

RequestResolver() 

{

   while (1) 

   ...

      req = ...

   ...

}

void main() 

{

   Call concurrently:

      UnitControl() and

      RequestResolver()

}

Inputs: int floor; bit b1..bN; up1..upN-1;dn2..dnN;

Outputs: bit up, down, open;

Global variables: int req;

“Move the elevator either up 

or down to reach the 

requested floor. Once at the 

requested floor, open the 

door for at least 10 seconds, 

and keep it open until the 

requested floor changes. 

Ensure the door is never 

open while moving. Don’t 

change directions unless 

there are no higher requests 

when moving up or no lower 

requests when moving 

down…”

Partial English description
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• Trying to capture this behavior as sequential program is a bit awkward

• Instead, we might consider an FSM model, describing the system as:

• Possible states

• E.g., Idle, GoingUp, GoingDn, DoorOpen

• Possible transitions from one state to another based on input

• E.g., req > floor

• Actions that occur in each state

• E.g., In the GoingUp state, u,d,o,t = 1,0,0,0 (up = 1, down, open, 
and timer_start = 0)

FINITE-STATE MACHINE (FSM) MODEL
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• The system is described as a set of states

• Each state is a representation of what the system looks like now and 
how it got there

• Each state reacts in a specific way to every possible input event, 
leading to a new state via a transition
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STATE MACHINE
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• There are two kinds of state machines

• Mealy and Moore

• Both are finite state machines

• Both can capture regular expressions

• Note: Finite state machines and finite automata are used 
interchangeably

MEALY AND MOORE
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MOORE MACHINES

A Moore machine is a tuple 𝑄, Σ, Γ, Δ, 𝐻, 𝑞0  consisting in:

1. a finite set 𝑄 of states where q0 is the start state

2. an alphabet Σ of input letters

3. an alphabet Γ of output characters

4. a mapping Δ associating a state in Q to each pair in 𝑄 × Σ

5. a mapping 𝐻 associating an output in Γ to each state in 𝑄

7

(𝑞, σ) 𝑞’     where 𝑞, 𝑞′ ∈ 𝑄 and 𝜎 ∈ Σ
Δ: transition

𝑞 𝑜     where 𝑞 ∈ 𝑄 and o ∈ Γ
𝐻: output



Example:  states = {q0,q1,q2,q3}          ={a,b}             ={0,1}

Old state         Output by the                      New state

                             old state             After input a     After input b 

    → 𝑞0                       1                            q1                                  q3

         q1                       0                            q3                                  q1

         q2                       0                            q0                                  q3

         q3                       1                            q3                                  q2

q0/1 q1/0

b

b
q3/1q2/0

a b

a

b
aa a b a b

1 0 0 1 0

EXAMPLE OF A MOORE 
MACHINE
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When does the machine output 1?

q1/0 q3/1
b

b a

q0/0

a

b
q2/0

a

b

a

Input a a a b a b b a a b b

State q0 q1 q2 q2 q3 q1 q0 q0 q1 q2 q3 q0

Output 0 0 0 0 1 0 0 0 0 0 1 0

ANOTHER MOORE 
MACHINE
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A Mealy machine is a tuple 𝑄, Σ, Γ, Δ, 𝑞0 consisting in:

• a finite set of 𝑄 of states where 𝑞0 is the start state

• an alphabet  of input letters

• an alphabet  of output characters

• a finite set of transitions Δ that indicate, for each 
state and letter of the input alphabet, the state to go 
to next and the associated output.

MEALY MACHINE
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(𝑞, σ) (𝑞’, 𝑜)     where 𝑞, 𝑞′ ∈ 𝑄, 𝜎 ∈ Σ and o ∈ Γ

𝑞
σ/o

𝑞’



q1
q3

b/1

b/0
a/0

q0

a/0

b/0
q2

a/0

b/0

a/0

MEALY MACHINE EXAMPLE
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AN EXTENDED FINITE STATE 
MACHINE
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FSMD extends FSM with Data: complex data types and variables for storing 
data

An FSMD is a tuple 𝑄, Σ, Γ, 𝑉, Δ, 𝐻, 𝑞0 :

1. Q is a finite set of states

2. Σ is the set of possible inputs

3. Γ is the set of possible outputs

4. 𝑉 is a set of variables

5. Δ associates a state to any triple in 𝑆 × Σ × 𝑉

6. 𝐻 represents actions: it associates an output and values to 𝑉 for each state

System state completely described by the current state and values of all 
variables

Idle

GoingUp

req > floor

req < floor

!(req > floor) 

!(timer < 10)

req < floor

DoorOpen

GoingDn

req > floor

u,d,o, t = 1,0,0,0

u,d,o,t = 0,0,1,0

u,d,o,t = 0,1,0,0

u,d,o,t = 0,0,1,1

u is up, d is down, o is open

req == floor

!(req<floor)

timer < 10

t is timer_start



req > floor

!(req > floor) 

u,d,o, t = 1,0,0,0

u,d,o,t = 0,0,1,0

u,d,o,t = 0,1,0,0

u,d,o,t = 0,0,1,1

u is up, d is down, o is open

req < floor

req > floor

req == floor

req < floor

!(req<floor)

!(timer < 10)

timer < 10

t is timer_start

Idle

GoingUp

DoorOpen

GoingDn

DESCRIBING A SYSTEM AS 
A STATE MACHINE
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Sequential program model

void UnitControl() 

{

   up = down = 0; open = 1;

   while (1) {

      while (req == floor);

      open = 0;

      if (req > floor) { up = 1;}

      else {down = 1;}

      while (req != floor);

      up = down = 0;

      open = 1;

      delay(10);

   }

}

void RequestResolver() 

{

   while (1) 

   ...

      req = ...

   ...

}

void main() 

{

   Call concurrently:

      UnitControl() and

      RequestResolver()

}

Inputs: int floor; bit b1..bN; up1..upN-1; dn2..dnN;

Outputs: bit up, down, open;

Global variables: int req;

State machine model



1. List all possible states

2. Declare all variables

3. For each state, list possible transitions, with 
conditions, to other states

4. For each state and/or transition, list 
associated actions

5. For each state, ensure exclusive and complete 
exiting transition conditions
• No two exiting conditions can be true at same 

time. Otherwise, nondeterministic state machine

• One condition must be true at any given time

req > floor

!(req > floor) u,d,o, t = 1,0,0,0

u,d,o,t = 0,0,1,0

u,d,o,t = 0,1,0,0

u,d,o,t = 0,0,1,1

u is up, d is down, o is open

req < floor

req > floor

req == floor

req < floor

!(req<floor)

!(timer < 10)

timer < 10

t is timer_start

Idle

GoingUp

DoorOpen

GoingDn

DESCRIBING A SYSTEM 
AS A STATE MACHINE
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• Different thought process used with each model

• State machine:
• Encourages designer to think of all possible states and transitions 

among states based on all possible input conditions

• Sequential program model:

• Designed to transform data through series of instructions that may 
be iterated and conditionally executed

STATE MACHINE VS. SEQUENTIAL 
PROGRAM MODEL
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• Despite benefits of state machine model, most popular 
development tools use sequential programming language

• C, C++, Java, Ada, VHDL, Verilog, etc.

• Development tools are complex and expensive, therefore not easy to 
adapt or replace

• Two approaches to capturing state machine model with sequential 
programming language

• Front-end tool approach

• Language subset approach

CAPTURING STATE MACHINES IN 
SEQUENTIAL PROGRAMMING 

LANGUAGE
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LANGUAGE SUBSET APPROACH

UnitControl state machine in 

sequential programming language

req > floor

!(req > floor) u,d,o, t = 1,0,0,0

u,d,o,t = 0,0,1,0

u,d,o,t = 0,1,0,0

u,d,o,t = 0,0,1,1

u is up, d is down, o is open

req < floor

req > floor

req == floor

req < floor

!(req<floor)

!(timer < 10)

timer < 10

t is timer_start

Idle

GoingUp

DoorOpen

GoingDn

#define IDLE 0
#define GOINGUP 1
#define GOINGDN 2
#define DOOROPEN 3
void UnitControl() {

int state = IDLE;
while (1) {

switch (state) {
IDLE: up=0; down=0; open=1; timer_start=0;

if (req==floor) {state = IDLE;}
if (req > floor) {state = GOINGUP;}
if (req < floor) {state = GOINGDN;}
break;

GOINGUP: up=1; down=0; open=0; timer_start=0;
if (req > floor) {state = GOINGUP;}
if (!(req>floor)) {state = DOOROPEN;} 
break;

GOINGDN: up=1; down=0; open=0; timer_start=0;
if (req < floor) {state = GOINGDN;}
if (!(req<floor)) {state = DOOROPEN;} 
break;

DOOROPEN: up=0; down=0; open=1; timer_start=1;
if (timer < 10) {state = DOOROPEN;}
if (!(timer<10)){state = IDLE;}
break;



Another Model for state-based 
specification

• Uses Hierarchies and Concurrency to 
eliminate clutter and clarify the structure

Allows states to be grouped together

HIERARCHICAL/CONCURRENT 
STATE MACHINE MODEL
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• Statecharts define a 
language for HCFSMs

• Two groups are

• OR

• AND

GROUPS IN STATECHART 
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• The machine goes to s4 from s1, s2, s3
• Statechart captures this by having one state 

around s1, s2, and s3

EXAMPLE OF OR
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• A single transition out of s123 means that on 
event i2, all states go to s4.

• The OR state allows transitions between its own 
internal states

EXAMPLE OF OR
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The traditional model has many transitions 
• Between states
• Going out of all states
• One initial transition

EXAMPLE OF AND GROUP
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a b



• The statechart has an AND state called sab
• sab has two components sa and sb
• When the machine enters the state sab, it is 

simultaneously in both sa and sb
• We must know both sa and sb to know sab

EXAMPLE OF AND
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a b



• The name of states reveal their relations
• s1-3 corresponds to sab in s1 and in s3
• When the machine enters the state sab, it is 

simultaneously in both sa and sb

EXAMPLE OF AND
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a b



• Both models describe the same behavior but the 
statechart is much simpler, cleaner and easier to 
understand

EXAMPLE OF AND

a b
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EXAMPLE OF HCFSM MODELING

▪ FireMode 

▪ When fire is true, move elevator to 
1st floor and open door

Without hierarchy

Idle

GoingUp

req>floor

req<floor

!(req>floor)

timeout(10)

req<floor

DoorOpen

GoingDn

req>floor

u,d,o = 1,0,0

u,d,o = 0,0,1

u,d,o = 0,1,0

req==floor
!(req<floor)

fire

fire
fire

fire

FireGoingDn

floor>1

u,d,o = 0,1,0

u,d,o = 0,0,1

!fire

FireDrOpen

floor==1

fire

u,d,o = 0,0,1

UnitControl

– w/o hierarchy: Getting messy!

– w/ hierarchy: Simple!



EXAMPLE OF HCFSM MODELING

▪ FireMode 

▪ When fire is true, move elevator to 
1st floor and open door

Without hierarchy

Idle

GoingUp

req>floor

req<floor

!(req>floor)

timeout(10)

req<floor

DoorOpen

GoingDn

req>floor

u,d,o = 1,0,0

u,d,o = 0,0,1

u,d,o = 0,1,0

req==floor
!(req<floor)

fire

fire
fire

fire

FireGoingDn

floor>1

u,d,o = 0,1,0

u,d,o = 0,0,1

!fire

FireDrOpen

floor==1

fire

u,d,o = 0,0,1

UnitControl

NormalMode

FireMode

fire!fire

UnitControl

ElevatorController

RequestResolver

...

With concurrent RequestResolver

– w/o hierarchy: Getting messy!

– w/ hierarchy: Simple!

FireGoingDn

floor>1

u,d,o = 0,1,0

FireDrOpenfloor==1

fire

FireMode

u,d,o = 0,0,1

With hierarchy

Idle

GoingUp

req>floor

req<floor

!(req>floor)

timeout(10)

req<floor

DoorOpen

GoingDn

req>floor

u,d,o = 1,0,0

u,d,o = 0,0,1

u,d,o = 0,1,0

req==floor
!(req>floor)

u,d,o = 0,0,1

NormalMode

UnitControl

!fire

fire



FSM LAB ON STM32L562
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STATE MACHINE FOR THE GAME
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while (1){
...

//Update State on entry
if(State != PreviousState){

switch(State){
case WELCOME:
Initialize_Board(BoardState);
...
break;

case BLUE_QUESTION:
Touch = 0;
...
break;

case BLUE_ANSWER:
Valid = Check_Move_Validity(…);
break;
...

} //update state
}//on entry

// transitions
switch(State){

case WELCOME:
PreviousState = WELCOME;
if(Button){

State = EXIT;
}else if(Touch){

State = BLUE_QUESTION;
}
break;

case BLUE_QUESTION:
PreviousState = BLUE_QUESTION;
if(Button){

State = EXIT;
}else if(Touch){

State = BLUE_ANSWER;
}
break;
...

}// transitions

STATE MACHINE FOR THE GAME



VERIFICATION
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TS

Behavior of TS Check for 

property !

System

Model 

extraction

Semantics

THE VERIFICATION SETTING
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TRAIN GATE EXAMPLE

• On the model checker UPPAAL

• You can download it from http://uppaal.org/

• Several demos of timed systems, the train gate 

controller is one of them

• You can do simulation and verification

45

http://uppaal.org/
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