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OUTLINE

• Why concurrency?

• Foreground / background vs. multi-tasking systems

• Concurrent processes and communication

• Scheduling

• Bus scheduling
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Separate tasks running 
independently but sharing data

Difficult to write system using 
sequential program model

Concurrent process model 
easier

• Separate sequential programs 
(processes) for each task

• Programs communicate with 
each other

Heartbeat Monitoring System

B[1..4]

Heart-beat 

pulse

Task 1:

Read pulse

If pulse < Lo then

    Activate Siren

If pulse > Hi then

    Activate Siren

Sleep 1 second

Repeat

Task 2:

If B1/B2 pressed then

    Lo = Lo +/– 1

If B3/B4 pressed then

    Hi = Hi +/– 1

Sleep 500 ms

Repeat

Set-top Box

Input 

Signal

Task 1:

Read Signal

Separate Audio/Video

Send Audio to Task 2

Send Video to Task 3

Repeat

Task 2:

Wait on Task 1

Decode/output Audio

Repeat

Task 3:

Wait on Task 1

Decode/output Video

Repeat

Video

Audio

WHY CONCURRENCY?

3



Process1

Process2

Process3

Process4

Processor A

Processor B

Processor C

Processor D C
o

m
m

u
n

ic
at

io
n

 B
u

s

(a)

(b)

Process1

Process2

Process3

Process4

General Purpose 

Processor

Process1

Process2

Process3

Process4

Processor A

General 

Purpose 

Processor

C
o

m
m

u
n

ic
at

io
n

 B
u

s

(c)

CONCURRENT PROCESS MODELS: 
IMPLEMENTATION



• Sharing global resources

• Management and allocation of resources

• Programming errors difficult to locate

CHALLENGES WITH CONCURRENCY
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//thread 1

...
if(p){

d = p->data;
}
...

//thread 2

…
...
p = NULL;
...
…



OUTLINE

• Why concurrency?

• Foreground / background vs. multi-tasking systems

• Concurrent processes and communication

• Scheduling

• Bus scheduling
7



• Efficient for small systems of 
low complexity

• Infinite loop that call modules 
or tasks to perform the 
desired operations (also called 
task level or super-loop)

• Interrupt Service Routines 
(ISRs) handle asynchronous 
events (foreground also called 
ISR level)

FOREGROUND/BACKGROUND 
SYSTEMS
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/* Background */
void main (void) {

Initialization;
while(1){

read_analog_inputs();
read_discrete_inputs();
perform_monitoring_functions();
perform_control_functions();
update_analog_outputs();
update_discrete_outputs();
scan_keyboard();
handle_user_interface();
update_display();
handle_communication_requests();
...

}
}

/* Foreground */
ISR (void){

//Handle asynchronous event;
...

}



Wait for 

Interrupts

Wait for 

Interrupts

More important event

Asynchronous events

FOREGROUND/BACKGROUND 
SYSTEMS
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• Critical tasks are handled by ISRs to ensure timeliness

• Information from ISR is not processed until the 
background routine gets its turn to execute. This is called 
task-level response.

• The worst-case task-level response depends on how long 
the background  loop is

• High volume and low-cost microcontroller-based 
applications  (e.g., microwaves, simple telephones,…) are 
designed as foreground/background systems

FOREGROUND/BACKGROUND
SYSTEMS

10



• Used in low cost embedded applications

• Memory requirements only depends on your application

• Single stack area for:

• Function nesting

• Local variables

• ISR nesting

• Minimal interrupt latency for bare minimum embedded 
systems

FOREGROUND/BACKGROUND: 
ADVANTAGES
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• Background response time is the background execution time 

• Non-deterministic, affected by if, for, while ...

• May not be responsive enough

• Changes as you change your code

FOREGROUND/BACKGROUND: 
DISADVANTAGES
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All “tasks” have the “same priority” !

 – Code executes in sequence

 – If an important event occurs it’s handled at the same 
priority as everything else!

 – You may need to execute the same code often to avoid 
missing an event.

FOREGROUND/BACKGROUND: 
DISADVANTAGES
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• Code is harder to maintain and can become messy

• Imagine the C program as the number of tasks increase!

FOREGROUND/BACKGROUND: 
DISADVANTAGES
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• Each operation in the superloop/background is 
broken apart into a task, that by itself runs in 
infinite loop

MIGRATE TO MULTI-TASKING
SYSTEMS
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MIGRATE TO MULTI-TASKING SYSTEMS
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• Each task is a simple program that thinks it 
has the entire CPU to itself, and typically 
executed in an infinite loop.

• In the CPU only one task runs at any given 
time. This  management --- scheduling and 
switching the CPU between several tasks --- is 
performed by the kernel of the real-time 
system

MULTI-TASKING SYSTEM
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CS:EIP

SS:ESP

EAX

EBX

EFlags

Stack Registers

Context of Process 1

CS:EIP

SS:ESP

EAX

EBX

EFlags

Stack Registers

Context of Process N

EACH PROCESS MAINTAINS ITS OWN STACK 
AND REGISTER CONTENTS
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• A context switch from process "A" to process 
"B" first saves all CPU registers in context A, 
and then reloads all CPU registers from 
context B.

• Since CPU registers includes SS:ESP and 
CS:EIP, reloading context B reactivates
process B's stack and returns to where it left
off when it was last suspended.

CONTEXT SWITCHING
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• Processes need to communicate data and 
signals to solve their computation problem
• Processes that do not communicate are just 

independent programs solving separate problems

• Basic example: producer/consumer
• Process A produces data items, Process B 

consumes them

• E.g., A decodes video packets, B display decoded 
packets on a screen

• How do we achieve this communication? Two 
basic methods:
• Shared memory

• Message passing

processA()

{

 //Decode packet

 //Communicate

 //packet to B 

}

void processB() 

{

 // Get packet

 // from A

 // Display it

}

Encoded video 

packets

Decoded video 

packets

To display

COMMUNICATION AMONG 
PROCESSES

22



• Processes read and write shared variables

• No time overhead, easy to implement

• But, hard to use – mistakes are common

• Example: buggy producer(A)/consumer(B)

• Share buffer[N], count (# of valid data items in buffer)

• processA produces data items and stores in buffer

• processB consumes data items from buffer

• Error when both update count concurrently. 

• Say count is 3:

• A loads count into register R1 (R1 = 3)

• A increments R1 (R1 = 4)

• B loads count into register R2 (R2 = 3)

• B decrements R2 (R2 = 2)

• A stores R1 back to count in memory (count = 4)

• B stores R2 back to count in memory (count = 2)

• count now has incorrect value of 2

SHARED MEMORY
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01: data_type buffer[N];
02: int count = 0;

03: void processA() {
04: int i;
05: while( 1 ) {
06: produce(&data);
07: while( count == N );/*loop*/
08: buffer[i] = data;
09: i = (i + 1) % N;
10: count = count + 1;
11: }
12: }

13: void processB() {
14: int i;
15: while( 1 ) {
16: while( count == 0 );/*loop*/
17: data = buffer[i];
18: i = (i + 1) % N;
19: count = count - 1;
20: consume(&data);
21: }
22: }

23: void main() {
24: create_process(processA);
25: create_process(processB);
26: }



• Data explicitly sent from one process to another

• Sending process performs special operation, send

• Receiving process must perform special operation, 
receive, to receive the data

• Both operations must explicitly specify which
process it is sending to or receiving from

• Safer model, but less flexible

MESSAGE PASSING
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void processA() {
while( 1 ) {

produce(&data)
send(B, &data);
/* region 1 */
receive(B, &data);
consume(&data);

}
}

void processB() {
while( 1 ) {

receive(A, &data);
transform(&data)
send(A, &data);
/* region 2 */

}
}



Back to Shared Memory: Mutual Exclusion

Certain sections of code should not be performed concurrently

• Critical section: section of code where simultaneous updates, by multiple 
processes to a shared memory location, can occur

When a process enters the critical section, all other processes must 
be locked out until it leaves the critical section.

Mutex:

• A shared object used for locking and unlocking segment of shared data

• Disallows read/write access to memory it guards

• Multiple processes can perform lock operation simultaneously, but only 
one process will acquire lock

• All other processes trying to obtain lock will be put in blocked state until 
unlock operation performed by acquiring process when it exits critical 
section

• These processes will then be placed in runnable state and will compete 
for lock again 25



SHARED MEMORY (REV.)
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25: void processB() {
26: int i;
27: while( 1 ) {
28: while( true ){
29: count_mutex.lock();
30: if(count > 0){ 
31: count_mutex.unlock();
32: break;
33: }
34: count_mutex.unlock();
35: };
36: data = buffer[i];
37: i = (i + 1) % N;
38: count_mutex.lock();
39: count = count - 1;
40: count_mutex.unlock();
41: consume(&data);
42: }
43: }

01: data_type buffer[N];
02: int count = 0;
03: mutex count_mutex;

04: void processA() {
05: int i;
06: while( 1 ) {
07: produce(&data);
08: while( true ){
11: count_mutex.lock();
09: if(count < N){ 
13: count_mutex.unlock();
14: break;
15: }
16: count_mutex.unlock();
17: };
18: buffer[i] = data;
19: i = (i + 1) % N;
20: count_mutex.lock();
21: count = count + 1;
22: count_mutex.unlock();
23: }
24: }



Deadlock: A condition where 2 or more processes are blocked waiting 
for the other to unlock critical sections of code

Example with 2 different critical sections:

• 2 locks needed (mutex1, mutex2)

• Following execution sequence produces deadlock

• A executes lock operation on mutex1 (and acquires it)

• B executes lock operation on mutex2( and acquires it)

• A/B both execute in critical sections 1 and 2, respectively

• A executes lock operation on mutex2

• A blocked until B unlocks mutex2

• B executes lock operation on mutex1

• B blocked until A unlocks mutex1

• DEADLOCK!

A possible solution: locking of numbered mutexes in increasing order, 
unlocking in decreasing order. 

(this is typically combined with two-phase locking to ensure 
serializability: acquire locks in 1st phase only, release locks in 2nd 
phase)

DEADLOCKS IN CONCURRENT PROGRAMMING
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01: mutex mutex1, mutex2;

02: void processA() {
03: while( 1 ) {
04: …
05: mutex1.lock();
06: /* critical section 1 */
07: mutex2.lock();
08: /* critical section 2 */
09: mutex2.unlock();
10: /* critical section 1 */
11: mutex1.unlock();
12: }
13: }

14: void processB() {
15: while( 1 ) {
16: …
17: mutex2.lock();
18: /* critical section 2 */
19: mutex1.lock();
20: /* critical section 1 */
21: mutex1.unlock();
22: /* critical section 2 */
23: mutex2.unlock();
24: }
25: }



Manually rewrite processes as a single sequential program
• Less overhead (no operating system)

• More complex/harder to maintain

• Ok for simple examples, but extremely difficult for complex examples

Can use multitasking operating system

• Much more common

• Operating system schedules processes, allocates storage, interfaces to peripherals, etc.

• Real-time operating system (RTOS) can guarantee execution rate constraints are met

SUMMARY: MULTIPLE PROCESSES 
SHARING SINGLE PROCESSOR
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IMPLEMENTATION: PROCESS SCHEDULING

• Must meet timing requirements when multiple concurrent 

processes implemented on single general-purpose processor

• Scheduler

– Special process that decides when and for how long each process is 

executed

– Implemented as preemptive or non-preemptive scheduler

31



PREEMPTIVE VS NON-PREEMPTIVE

• Time-Preemptive

– Determines how long a process executes before preempting to allow 

another process to execute

– Time quantum: predetermined amount of execution time preemptive 

scheduler allows each process (may be 10s to 100s of milliseconds long)

– Determines which process will be next to run

• Non-preemptive

– Only determines which process is next after current process finishes 

execution
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STATIC VS DYNAMIC SCHEDULING

Static (off-line)

• Makes scheduling decision at compile time and off-line.

• Complete a priori (i.e., before hand) knowledge of the task set and its 
constraints is available

• Suitable for hard/safety-critical system

Dynamic (on-line)

• Partial task set knowledge

• Suitable for soft/best-effort systems, mixed criticality systems

33



SCHEDULING APPROACHES

• Cyclic executives

• Fixed priority scheduling

• RM - Rate Monotonic 

• DM - Deadline Monotonic Scheduling

• Dynamic priority scheduling

• EDF - Earliest Deadline First

• LSF - Least Slack First

34



CYCLIC EXECUTIVE

35



PRIORITY-BASED SCHEDULING

• Every task has an associated priority

• Run task with the highest priority

• At every scheduling decision moment

• Examples:

• Rate Monotonic (RM)

• Static priority assignment

• Earliest Deadline First (EDF)

• Dynamic priority assignment

• And many others …
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SCHEDULABILITY TEST

• Test to determine whether a feasible schedule exists

• Sufficient

• + if test is passed, then tasks are definitely schedulable

• - if test is not passed, we don’t know 

• Necessary

• + if test is passed, we don’t know

• -  if test is not passed, tasks are definitely not schedulable

• Exact

• sufficient & necessary at the same time

37



RATE MONOTONIC 

• Each process is assigned a (unique) priority based on its period; the shorter 

the period, the higher the priority

• Assumes the “Simple task model”

• Fixed priority scheduling

• Pre-emptive

• Unless stated otherwise
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EXAMPLE 1

Assume we have the following task set (not scheduled yet …)
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EXAMPLE 1 (CONT’D)

Scheduled with RM

40



SCHEDULABILITY TEST FOR RM

Sufficient, but not necessary:

  

  σ𝑖=1
𝑁 𝐶𝑖

𝑇𝑖
≤ 𝑁 (2 Τ1 𝑁 − 1) 

 Necessary, but not sufficient:

   σ𝑖=1
𝑁 𝐶𝑖

𝑇𝑖
≤ 1
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EXAMPLE 2

Taskset  P1 P2 P3

Period (Ti)  20 50 30

WCET (Ci)  7 10 5

Is this schedulable?
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EXAMPLE 3
Taskset

Gantt chart:
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OPTIMALITY OF RM 

Rate Monotonic is optimal among fixed priority 

schedulers if we assume the “Simple Process 

Model” for the tasks (e.g., no resource sharing, 

deadlines equal to periods, free context switch)
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WHAT TO DO IF NOT 
SCHEDULABLE

• Change the task set utilisation 

• by reducing Ci

• code optimisation 

• faster processor

• Increase Ti for some process

• If your program and environment allows it
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RM CHARACTERISTICS

• Easy to implement.

• Drawback:

• May not give a feasible  schedule even if processor is 

idle at some points.
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EARLIEST DEADLINE FIRST 
(EDF)

• Always runs the process that is closest to its deadline.

• Dynamic priority scheduling

• Priority evaluated at run-time

• Assumes the “Simple task model” (e.g., no resource 

sharing, deadlines equal to periods, free context switch)

• Pre-emptive

• Unless stated otherwise
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SCHEDULABILITY TEST FOR 
EDF

Utilisation test: Necessary and sufficient 

(exact!)

෍

𝑖=1

𝑁
𝐶𝑖
𝑇𝑖
≤ 1
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OPTIMALITY OF EDF

EDF is optimal among dynamic priority schedulers 

if we assume the “Simple Process Model” for the 

tasks
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DOMINO EFFECT
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EDF VS. RM

• EDF can handle tasksets with higher processor utilisation.

• EDF has simpler exact analysis

• RMS can be implemented to run faster at run-time
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• So far we have studied the scheduling analysis on one 
processor

• However, as systems become more complex, multiple 
processors exist on a system

• Multiprocessor systems on chips (MPSoCs) in mobile 
devices, automotive electronics

• The different processors exchange messages over a 
communication bus!

BUS SCHEDULING
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• Tasks have different activation rates and execution demands

•  Each computation/communication element has a different 
scheduling/arbitration policy

ECU

Communication Bus

ECU ECU

C
o

m
m

. C
o

n
tr

o
lle

r

Round Robin Fixed Priority EDF

In
p

u
t 

Ev
en

ts Output Events

▪ Timing Properties?
▪ End-to-end delay?

SYSTEM-LEVEL TIMING ANALYSIS PROBLEM

55



57

• When multiple processors want to transmit data at the same 
time, how is the contention resolved?

• Using a bus arbitration policy, i.e. determine who gets priority

• Examples of arbitration policies

• Time Division Multiple Access, Round Robin, Fixed Priority …

Processor 1 Processor 2 Processor 3

Communication Bus

BUS ARBITRATION POLICIES
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P1 P2 P3 P1 P2 P3
time

Bus period

P2 P1 P3
time

P1, P3 arrive

P1 starts 
transmission

Time-triggered arbitration policy

(Non preemptive) Event-triggered arbitration policy

P1 > P2 > P3

P3 starts 
transmission

TIME/EVENT-TRIGGERED ARBITRATION
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Timer

Bus

interrupt polling

interfaces
to sensor/
actuator

Time-Triggered Policy:
• Only interrupts from the timer are allowed
• Events CANNOT interrupt
• Interaction with environment through polling
• Schedule is computed offline, deterministic behavior 

at runtime
• Example: Time Division Multiple Access (TDMA) policy

BUS ARBITRATION POLICIES
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Timer

Bus

interrupt
interrupt

interfaces
to sensor/
actuator

Event-Triggered Policy:
• Interrupts can be from the timer or from external 

events
• Interaction with environment through interrupts
• Schedule is dynamic and adaptive
• Response times ‘can’ be unpredictable
• Example: Fixed Priority scheduling policy

BUS ARBITRATION POLICIES
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P1 P2 P3 P1 P2 P3
time

Bus period

Worst-case response time of P1

COMPUTING RESPONSE TIMES IN TIME-
TRIGGERED SYSTEMS
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P2 P1 P3
time

P1, P3 arrive

P1 starts 
transmission P1 > P2 > P3

P3 starts 
transmission

Worst-case response time of P1

Worst-case response time of P3

COMPUTING RESPONSE TIMES IN EVENT-
TRIGGERED SYSTEMS
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TWO WELL-KNOWN BUS PROTOCOLS

63

• Time-Triggered Bus Protocols:

• Time-Triggered Protocol (TTP) – used in avionics

• Based on Time Division Multiple Access (TDMA) policy

• Event-Triggered Bus Protocols:

• Controller Area Network (CAN) – widely used for chassis control systems 

and power train communication

• Based on fixed priority scheduling policy
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TIME-TRIGGERED VS EVENT-TRIGGERED: 
SUMMARY

• Both have their advantages and disadvantages

64

Time-Triggered Event-Triggered

Response Times ×

Bus Utilization ×

Flexibility ×

Composability ×
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