
CONCURRENCY

DEPT. COMPUTER AND INFORMATION

SCIENCE (IDA)

LINKÖPINGS UNIVERSITET

LECTURE V
TDDI11 Embedded

Software

OUTLINE

• Why concurrency?

• Foreground / background vs. multi-tasking systems

• Concurrent processes and communication

• Scheduling

• Bus scheduling

2

Separate tasks running
independently but sharing data

Difficult to write system using
sequential program model

Concurrent process model
easier

• Separate sequential programs
(processes) for each task

• Programs communicate with
each other

Heartbeat Monitoring System

B[1..4]

Heart-beat

pulse

Task 1:

Read pulse

If pulse < Lo then

 Activate Siren

If pulse > Hi then

 Activate Siren

Sleep 1 second

Repeat

Task 2:

If B1/B2 pressed then

 Lo = Lo +/– 1

If B3/B4 pressed then

 Hi = Hi +/– 1

Sleep 500 ms

Repeat

Set-top Box

Input

Signal

Task 1:

Read Signal

Separate Audio/Video

Send Audio to Task 2

Send Video to Task 3

Repeat

Task 2:

Wait on Task 1

Decode/output Audio

Repeat

Task 3:

Wait on Task 1

Decode/output Video

Repeat

Video

Audio

WHY CONCURRENCY?

3

Process1

Process2

Process3

Process4

Processor A

Processor B

Processor C

Processor D C
o

m
m

u
n

ic
at

io
n

 B
u

s

(a)

(b)

Process1

Process2

Process3

Process4

General Purpose

Processor

Process1

Process2

Process3

Process4

Processor A

General

Purpose

Processor

C
o

m
m

u
n

ic
at

io
n

 B
u

s

(c)

CONCURRENT PROCESS MODELS:
IMPLEMENTATION

• Sharing global resources

• Management and allocation of resources

• Programming errors difficult to locate

CHALLENGES WITH CONCURRENCY

6

//thread 1

...
if(p){

d = p->data;
}
...

//thread 2

…
...
p = NULL;
...
…

OUTLINE

• Why concurrency?

• Foreground / background vs. multi-tasking systems

• Concurrent processes and communication

• Scheduling

• Bus scheduling
7

• Efficient for small systems of
low complexity

• Infinite loop that call modules
or tasks to perform the
desired operations (also called
task level or super-loop)

• Interrupt Service Routines
(ISRs) handle asynchronous
events (foreground also called
ISR level)

FOREGROUND/BACKGROUND
SYSTEMS

8

/* Background */
void main (void) {

Initialization;
while(1){

read_analog_inputs();
read_discrete_inputs();
perform_monitoring_functions();
perform_control_functions();
update_analog_outputs();
update_discrete_outputs();
scan_keyboard();
handle_user_interface();
update_display();
handle_communication_requests();
...

}
}

/* Foreground */
ISR (void){

//Handle asynchronous event;
...

}

Wait for

Interrupts

Wait for

Interrupts

More important event

Asynchronous events

FOREGROUND/BACKGROUND
SYSTEMS

9

• Critical tasks are handled by ISRs to ensure timeliness

• Information from ISR is not processed until the
background routine gets its turn to execute. This is called
task-level response.

• The worst-case task-level response depends on how long
the background loop is

• High volume and low-cost microcontroller-based
applications (e.g., microwaves, simple telephones,…) are
designed as foreground/background systems

FOREGROUND/BACKGROUND
SYSTEMS

10

• Used in low cost embedded applications

• Memory requirements only depends on your application

• Single stack area for:

• Function nesting

• Local variables

• ISR nesting

• Minimal interrupt latency for bare minimum embedded
systems

FOREGROUND/BACKGROUND:
ADVANTAGES

12

• Background response time is the background execution time

• Non-deterministic, affected by if, for, while ...

• May not be responsive enough

• Changes as you change your code

FOREGROUND/BACKGROUND:
DISADVANTAGES

13

All “tasks” have the “same priority” !

 – Code executes in sequence

 – If an important event occurs it’s handled at the same
priority as everything else!

 – You may need to execute the same code often to avoid
missing an event.

FOREGROUND/BACKGROUND:
DISADVANTAGES

14

• Code is harder to maintain and can become messy

• Imagine the C program as the number of tasks increase!

FOREGROUND/BACKGROUND:
DISADVANTAGES

15

• Each operation in the superloop/background is
broken apart into a task, that by itself runs in
infinite loop

MIGRATE TO MULTI-TASKING
SYSTEMS

16

MIGRATE TO MULTI-TASKING SYSTEMS

17

• Each task is a simple program that thinks it
has the entire CPU to itself, and typically
executed in an infinite loop.

• In the CPU only one task runs at any given
time. This management --- scheduling and
switching the CPU between several tasks --- is
performed by the kernel of the real-time
system

MULTI-TASKING SYSTEM

18

OUTLINE

• Why concurrency?

• Foreground / background vs. multi-tasking systems

• Concurrent processes and communication

• Scheduling

• Bus scheduling
19

CS:EIP

SS:ESP

EAX

EBX

EFlags

Stack Registers

Context of Process 1

CS:EIP

SS:ESP

EAX

EBX

EFlags

Stack Registers

Context of Process N

EACH PROCESS MAINTAINS ITS OWN STACK
AND REGISTER CONTENTS

20

• A context switch from process "A" to process
"B" first saves all CPU registers in context A,
and then reloads all CPU registers from
context B.

• Since CPU registers includes SS:ESP and
CS:EIP, reloading context B reactivates
process B's stack and returns to where it left
off when it was last suspended.

CONTEXT SWITCHING

21

• Processes need to communicate data and
signals to solve their computation problem
• Processes that do not communicate are just

independent programs solving separate problems

• Basic example: producer/consumer
• Process A produces data items, Process B

consumes them

• E.g., A decodes video packets, B display decoded
packets on a screen

• How do we achieve this communication? Two
basic methods:
• Shared memory

• Message passing

processA()

{

 //Decode packet

 //Communicate

 //packet to B

}

void processB()

{

 // Get packet

 // from A

 // Display it

}

Encoded video

packets

Decoded video

packets

To display

COMMUNICATION AMONG
PROCESSES

22

• Processes read and write shared variables

• No time overhead, easy to implement

• But, hard to use – mistakes are common

• Example: buggy producer(A)/consumer(B)

• Share buffer[N], count (# of valid data items in buffer)

• processA produces data items and stores in buffer

• processB consumes data items from buffer

• Error when both update count concurrently.

• Say count is 3:

• A loads count into register R1 (R1 = 3)

• A increments R1 (R1 = 4)

• B loads count into register R2 (R2 = 3)

• B decrements R2 (R2 = 2)

• A stores R1 back to count in memory (count = 4)

• B stores R2 back to count in memory (count = 2)

• count now has incorrect value of 2

SHARED MEMORY

23

01: data_type buffer[N];
02: int count = 0;

03: void processA() {
04: int i;
05: while(1) {
06: produce(&data);
07: while(count == N);/*loop*/
08: buffer[i] = data;
09: i = (i + 1) % N;
10: count = count + 1;
11: }
12: }

13: void processB() {
14: int i;
15: while(1) {
16: while(count == 0);/*loop*/
17: data = buffer[i];
18: i = (i + 1) % N;
19: count = count - 1;
20: consume(&data);
21: }
22: }

23: void main() {
24: create_process(processA);
25: create_process(processB);
26: }

• Data explicitly sent from one process to another

• Sending process performs special operation, send

• Receiving process must perform special operation,
receive, to receive the data

• Both operations must explicitly specify which
process it is sending to or receiving from

• Safer model, but less flexible

MESSAGE PASSING

24

void processA() {
while(1) {

produce(&data)
send(B, &data);
/* region 1 */
receive(B, &data);
consume(&data);

}
}

void processB() {
while(1) {

receive(A, &data);
transform(&data)
send(A, &data);
/* region 2 */

}
}

Back to Shared Memory: Mutual Exclusion

Certain sections of code should not be performed concurrently

• Critical section: section of code where simultaneous updates, by multiple
processes to a shared memory location, can occur

When a process enters the critical section, all other processes must
be locked out until it leaves the critical section.

Mutex:

• A shared object used for locking and unlocking segment of shared data

• Disallows read/write access to memory it guards

• Multiple processes can perform lock operation simultaneously, but only
one process will acquire lock

• All other processes trying to obtain lock will be put in blocked state until
unlock operation performed by acquiring process when it exits critical
section

• These processes will then be placed in runnable state and will compete
for lock again 25

SHARED MEMORY (REV.)

26

25: void processB() {
26: int i;
27: while(1) {
28: while(true){
29: count_mutex.lock();
30: if(count > 0){
31: count_mutex.unlock();
32: break;
33: }
34: count_mutex.unlock();
35: };
36: data = buffer[i];
37: i = (i + 1) % N;
38: count_mutex.lock();
39: count = count - 1;
40: count_mutex.unlock();
41: consume(&data);
42: }
43: }

01: data_type buffer[N];
02: int count = 0;
03: mutex count_mutex;

04: void processA() {
05: int i;
06: while(1) {
07: produce(&data);
08: while(true){
11: count_mutex.lock();
09: if(count < N){
13: count_mutex.unlock();
14: break;
15: }
16: count_mutex.unlock();
17: };
18: buffer[i] = data;
19: i = (i + 1) % N;
20: count_mutex.lock();
21: count = count + 1;
22: count_mutex.unlock();
23: }
24: }

Deadlock: A condition where 2 or more processes are blocked waiting
for the other to unlock critical sections of code

Example with 2 different critical sections:

• 2 locks needed (mutex1, mutex2)

• Following execution sequence produces deadlock

• A executes lock operation on mutex1 (and acquires it)

• B executes lock operation on mutex2(and acquires it)

• A/B both execute in critical sections 1 and 2, respectively

• A executes lock operation on mutex2

• A blocked until B unlocks mutex2

• B executes lock operation on mutex1

• B blocked until A unlocks mutex1

• DEADLOCK!

A possible solution: locking of numbered mutexes in increasing order,
unlocking in decreasing order.

(this is typically combined with two-phase locking to ensure
serializability: acquire locks in 1st phase only, release locks in 2nd
phase)

DEADLOCKS IN CONCURRENT PROGRAMMING

28

01: mutex mutex1, mutex2;

02: void processA() {
03: while(1) {
04: …
05: mutex1.lock();
06: /* critical section 1 */
07: mutex2.lock();
08: /* critical section 2 */
09: mutex2.unlock();
10: /* critical section 1 */
11: mutex1.unlock();
12: }
13: }

14: void processB() {
15: while(1) {
16: …
17: mutex2.lock();
18: /* critical section 2 */
19: mutex1.lock();
20: /* critical section 1 */
21: mutex1.unlock();
22: /* critical section 2 */
23: mutex2.unlock();
24: }
25: }

Manually rewrite processes as a single sequential program
• Less overhead (no operating system)

• More complex/harder to maintain

• Ok for simple examples, but extremely difficult for complex examples

Can use multitasking operating system

• Much more common

• Operating system schedules processes, allocates storage, interfaces to peripherals, etc.

• Real-time operating system (RTOS) can guarantee execution rate constraints are met

SUMMARY: MULTIPLE PROCESSES
SHARING SINGLE PROCESSOR

29

OUTLINE

• Why concurrency?

• Foreground / background vs. multi-tasking systems

• Concurrent processes and communication

• Scheduling

• Bus scheduling

30

IMPLEMENTATION: PROCESS SCHEDULING

• Must meet timing requirements when multiple concurrent

processes implemented on single general-purpose processor

• Scheduler

– Special process that decides when and for how long each process is

executed

– Implemented as preemptive or non-preemptive scheduler

31

PREEMPTIVE VS NON-PREEMPTIVE

• Time-Preemptive

– Determines how long a process executes before preempting to allow

another process to execute

– Time quantum: predetermined amount of execution time preemptive

scheduler allows each process (may be 10s to 100s of milliseconds long)

– Determines which process will be next to run

• Non-preemptive

– Only determines which process is next after current process finishes

execution

32

STATIC VS DYNAMIC SCHEDULING

Static (off-line)

• Makes scheduling decision at compile time and off-line.

• Complete a priori (i.e., before hand) knowledge of the task set and its
constraints is available

• Suitable for hard/safety-critical system

Dynamic (on-line)

• Partial task set knowledge

• Suitable for soft/best-effort systems, mixed criticality systems

33

SCHEDULING APPROACHES

• Cyclic executives

• Fixed priority scheduling

• RM - Rate Monotonic

• DM - Deadline Monotonic Scheduling

• Dynamic priority scheduling

• EDF - Earliest Deadline First

• LSF - Least Slack First

34

CYCLIC EXECUTIVE

35

PRIORITY-BASED SCHEDULING

• Every task has an associated priority

• Run task with the highest priority

• At every scheduling decision moment

• Examples:

• Rate Monotonic (RM)

• Static priority assignment

• Earliest Deadline First (EDF)

• Dynamic priority assignment

• And many others …

36

SCHEDULABILITY TEST

• Test to determine whether a feasible schedule exists

• Sufficient

• + if test is passed, then tasks are definitely schedulable

• - if test is not passed, we don’t know

• Necessary

• + if test is passed, we don’t know

• - if test is not passed, tasks are definitely not schedulable

• Exact

• sufficient & necessary at the same time

37

RATE MONOTONIC

• Each process is assigned a (unique) priority based on its period; the shorter

the period, the higher the priority

• Assumes the “Simple task model”

• Fixed priority scheduling

• Pre-emptive

• Unless stated otherwise

38

EXAMPLE 1

Assume we have the following task set (not scheduled yet …)

39

EXAMPLE 1 (CONT’D)

Scheduled with RM

40

SCHEDULABILITY TEST FOR RM

Sufficient, but not necessary:

 σ𝑖=1
𝑁 𝐶𝑖

𝑇𝑖
≤ 𝑁 (2 Τ1 𝑁 − 1)

 Necessary, but not sufficient:

 σ𝑖=1
𝑁 𝐶𝑖

𝑇𝑖
≤ 1

41

EXAMPLE 2

Taskset P1 P2 P3

Period (Ti) 20 50 30

WCET (Ci) 7 10 5

Is this schedulable?

42

EXAMPLE 3
Taskset

Gantt chart:

43

OPTIMALITY OF RM

Rate Monotonic is optimal among fixed priority

schedulers if we assume the “Simple Process

Model” for the tasks (e.g., no resource sharing,

deadlines equal to periods, free context switch)

45

WHAT TO DO IF NOT
SCHEDULABLE

• Change the task set utilisation

• by reducing Ci

• code optimisation

• faster processor

• Increase Ti for some process

• If your program and environment allows it

46

RM CHARACTERISTICS

• Easy to implement.

• Drawback:

• May not give a feasible schedule even if processor is

idle at some points.

47

EARLIEST DEADLINE FIRST
(EDF)

• Always runs the process that is closest to its deadline.

• Dynamic priority scheduling

• Priority evaluated at run-time

• Assumes the “Simple task model” (e.g., no resource

sharing, deadlines equal to periods, free context switch)

• Pre-emptive

• Unless stated otherwise

48

SCHEDULABILITY TEST FOR
EDF

Utilisation test: Necessary and sufficient

(exact!)

෍

𝑖=1

𝑁
𝐶𝑖
𝑇𝑖
≤ 1

49

OPTIMALITY OF EDF

EDF is optimal among dynamic priority schedulers

if we assume the “Simple Process Model” for the

tasks

50

DOMINO EFFECT

51

EDF VS. RM

• EDF can handle tasksets with higher processor utilisation.

• EDF has simpler exact analysis

• RMS can be implemented to run faster at run-time

52

OUTLINE

• Why concurrency?

• Foreground / background vs. multi-tasking systems

• Concurrent processes and communication

• Scheduling

• Bus scheduling

53

54

• So far we have studied the scheduling analysis on one
processor

• However, as systems become more complex, multiple
processors exist on a system

• Multiprocessor systems on chips (MPSoCs) in mobile
devices, automotive electronics

• The different processors exchange messages over a
communication bus!

BUS SCHEDULING

54

• Tasks have different activation rates and execution demands

• Each computation/communication element has a different
scheduling/arbitration policy

ECU

Communication Bus

ECU ECU

C
o

m
m

. C
o

n
tr

o
lle

r

Round Robin Fixed Priority EDF

In
p

u
t

Ev
en

ts Output Events

▪ Timing Properties?
▪ End-to-end delay?

SYSTEM-LEVEL TIMING ANALYSIS PROBLEM

55

57

• When multiple processors want to transmit data at the same
time, how is the contention resolved?

• Using a bus arbitration policy, i.e. determine who gets priority

• Examples of arbitration policies

• Time Division Multiple Access, Round Robin, Fixed Priority …

Processor 1 Processor 2 Processor 3

Communication Bus

BUS ARBITRATION POLICIES

57

P1 P2 P3 P1 P2 P3
time

Bus period

P2 P1 P3
time

P1, P3 arrive

P1 starts
transmission

Time-triggered arbitration policy

(Non preemptive) Event-triggered arbitration policy

P1 > P2 > P3

P3 starts
transmission

TIME/EVENT-TRIGGERED ARBITRATION

58

Timer

Bus

interrupt polling

interfaces
to sensor/
actuator

Time-Triggered Policy:
• Only interrupts from the timer are allowed
• Events CANNOT interrupt
• Interaction with environment through polling
• Schedule is computed offline, deterministic behavior

at runtime
• Example: Time Division Multiple Access (TDMA) policy

BUS ARBITRATION POLICIES

59

Timer

Bus

interrupt
interrupt

interfaces
to sensor/
actuator

Event-Triggered Policy:
• Interrupts can be from the timer or from external

events
• Interaction with environment through interrupts
• Schedule is dynamic and adaptive
• Response times ‘can’ be unpredictable
• Example: Fixed Priority scheduling policy

BUS ARBITRATION POLICIES

60

P1 P2 P3 P1 P2 P3
time

Bus period

Worst-case response time of P1

COMPUTING RESPONSE TIMES IN TIME-
TRIGGERED SYSTEMS

61

62

P2 P1 P3
time

P1, P3 arrive

P1 starts
transmission P1 > P2 > P3

P3 starts
transmission

Worst-case response time of P1

Worst-case response time of P3

COMPUTING RESPONSE TIMES IN EVENT-
TRIGGERED SYSTEMS

62

63

TWO WELL-KNOWN BUS PROTOCOLS

63

• Time-Triggered Bus Protocols:

• Time-Triggered Protocol (TTP) – used in avionics

• Based on Time Division Multiple Access (TDMA) policy

• Event-Triggered Bus Protocols:

• Controller Area Network (CAN) – widely used for chassis control systems

and power train communication

• Based on fixed priority scheduling policy

64

TIME-TRIGGERED VS EVENT-TRIGGERED:
SUMMARY

• Both have their advantages and disadvantages

64

Time-Triggered Event-Triggered

Response Times ×

Bus Utilization ×

Flexibility ×

Composability ×

	Slide 1
	Slide 2: Outline
	Slide 3: Why concurrency?
	Slide 5: Concurrent process models: implementation
	Slide 6: Challenges with concurrency
	Slide 7: Outline
	Slide 8: Foreground/Background systems
	Slide 9
	Slide 10: Foreground/Background systems
	Slide 12: Foreground/Background: Advantages
	Slide 13: Foreground/Background: Disadvantages
	Slide 14: Foreground/Background: Disadvantages
	Slide 15: Foreground/Background: Disadvantages
	Slide 16: Migrate to multi-tasking systems
	Slide 17
	Slide 18: Multi-tasking system
	Slide 19: Outline
	Slide 20: Each process maintains its own stack and register contents
	Slide 21: Context switching
	Slide 22: Communication among processes
	Slide 23: Shared Memory
	Slide 24: Message Passing
	Slide 25
	Slide 26: Shared Memory (Rev.)
	Slide 28: DEADLOCKS in concurrent programming
	Slide 29: Summary: Multiple processes sharing single processor
	Slide 30: Outline
	Slide 31: Implementation: process scheduling
	Slide 32: Preemptive vs non-preemptive
	Slide 33: Static vs dynamic scheduling
	Slide 34: Scheduling Approaches
	Slide 35: Cyclic Executive
	Slide 36: Priority-based scheduling
	Slide 37: Schedulability Test
	Slide 38: Rate Monotonic
	Slide 39: Example 1
	Slide 40: Example 1 (cont’d)
	Slide 41: Schedulability test for RM
	Slide 42: Example 2
	Slide 43: Example 3
	Slide 45: Optimality of RM
	Slide 46: What to do if not schedulable
	Slide 47: RM characteristics
	Slide 48: Earliest Deadline First (EDF)
	Slide 49: Schedulability test for EDF
	Slide 50: Optimality of EDF
	Slide 51: Domino Effect
	Slide 52: EDF vs. RM
	Slide 53: Outline
	Slide 54: Bus scheduling
	Slide 55: System-Level Timing Analysis Problem
	Slide 57: Bus Arbitration Policies
	Slide 58: Time/EVENT-triggered arbitration
	Slide 59: Bus Arbitration Policies
	Slide 60: Bus Arbitration Policies
	Slide 61: Computing Response Times in Time-triggered systems
	Slide 62: Computing Response Times in Event-triggered Systems
	Slide 63: Two well-known bus protocols
	Slide 64: Time-Triggered Vs Event-Triggered: Summary

