
INTRODUCTION

DEPT. COMPUTER AND INFORMATION SCIENCE (IDA)

LINKÖPINGS UNIVERSITET

LECTURE I
TDDI11 Embedded

Software

COURSE INFORMATION

• Examiner: Ahmed Rezine

• Assistants: Xiaopeng Teng, Anton Hagel

• Administrator: Hanan Mohsen

• Lectures (8) and Computer lab sessions (13)

• Credits: 6 ECTS (Exam 2 ECTS, Labs 4 ECTS)

2

UPDATES

• See TDDI11 > Feedback & Updates (liu.se)

3

https://www.ida.liu.se/~TDDI11/info/updates.en.shtml

LABS

0 . Warm up

1. Bit manipulation in C

2. Mixing C and assembly

3. I/O: polling versus interrupt driven

4. Preemptive threading

5. State machines

4

LABS

• Work in pairs. Register before April 7th on Webreg

• (see “labs” under course homepage)

• Each pair solves the labs together.

• Solutions should be individual to each pair.

• Completed lab demonstration during scheduled lab sessions

• Both students in the pair are “present” and can answer all questions

about any part of the solution

5

LECTURES

6

1. Introduction to embedded systems. Why C language?

2. Bit manipulation, mixing C and assembly

3. Pointers, structures and endianness

4. I/O programming

5. Concurrency and communication

6. State machines

7. Embedded design

8. Exam preparation

MATERIAL

❑Course homepage: Main source of information. E.g.,

pdf lectures, labs instructions

❑Additional literature on subject:

https://www.ida.liu.se/~TDDI11/info/literature.en.shtml

7

http://www.ida.liu.se/~TDDI11/
https://www.ida.liu.se/~TDDI11/info/literature.en.shtml

COMPUTING SYSTEMS

• Computing systems are everywhere

• Most of us think of “desktop” computers

• PC’s, laptops, servers

• But there’s another type of computing system

• Far more common...

8

EMBEDDED SYSTEMS

• Computing systems embedded within electronic devices

• Billions of units produced yearly, versus millions of desktop units

• 50 or more per automobile with up to 100 million lines of code

• Nearly any computing system other than a desktop computer

9

10

SIGNIFICANCE

11

EMBEDDED SYSTEMS EVOLUTION

• Present

• 79% of all the processors are used in embedded

systems

• E.g., high-end cars contain more than 100 processors

• Future: Post-PC era

❑ Cyber-physical systems

❑ Internet of things

❑ Wearables and implants to talk to ”cloud”

❑ Brain machine interfaces and body area networks 12

WHAT IS AN EMBEDDED SYSTEM?

❑An embedded system is a:

❑ Special-purpose computer system, part of a larger

system which it controls.

❑ Computing unit that interacts with the physical

environment, via inputs and outputs

13

COMPONENTS OF AN EMBEDDED SYSTEM

❑ Input (Sensors)

❑ Switches and buttons

❑ Light, humidity, temperature

❑ Microphone, camera

14

❑ Output (Actuators)

❑ LED

❑ Motor controller

❑ Display

❑ Relay

❑ Microcontroller

Sensors convert physical
phenomena into digital input.

Actuators convert outputs to
physical phenomena.

MICROCONTROLLER
A programmable component that

reads digital inputs and writes

digital outputs according to some

internally-stored program

15

MICROCONTROLLER

• Capable of running software (e.g., C program)

• In this abstraction: 8 inputs and outputs – used by C program as

implicit global variables

• This example shows an infinite while loop (repeat statements

infinitely)

16

COMPLEXITY

❑ Physical reality is unpredictable

❑ Multiple functionalities often result in

concurrency

❑ Current trends:

❑ Connecting devices together (Internet of Things)

❑ Adaptive, autonomous and learning systems

17

CRITICALITY

❑ Many of the application areas are safety-critical

❑ Automotive, Avionics, Medicine, …

❑ Interaction with physical reality means

❑ Reactivity (fast response time)

❑ Real-time (guaranteed response time)

❑ Reliability

❑ We expect devices to ”just work”

❑ Cannot fix software after shipping
18

FUNCTIONAL VS. NON-FUNCTIONAL
REQUIREMENTS

❑ Functional requirements:

❑ output as a function of input.

❑ Non-functional requirements:

❑ time required to compute output;

❑ size, weight, etc.;

❑ power consumption;

❑ reliability;

❑ etc. 19

EMBEDDED VS. REAL-TIME SYSTEMS

❑ Real-time system:

The correctness of the system behavior depends not only on

the logical results of the computations, but also on the

physical instant at which these results are produced

❑ Hard real-time: missing deadline causes failure

❑ Soft real-time: missing deadline results in degraded

performance

❑ A real-time system is not necessarily embedded

❑ An embedded system is not necessarily real-time
20

SUMMARY
• Embedded system definition

• Special-purpose. All around us: transportation, medical

equipment, home appliances, ...

• Interacts with physical environment through inputs and

outputs

• Challenges:

• Complexity: multiple algorithms, concurrency

• Scarcity of resources: cost, power, size, weight,...

• Criticality: safety-critical, real-time, reliable
21

LECTURES

22

1. Introduction to embedded systems. Why C language?

2. Bit manipulation, mixing C and assembly

3. Pointers, structures and endianness

4. I/O programming

5. Concurrency and communication

6. State machines

7. Embedded design

8. Exam preparation

C FOR EMBEDDED SYSTEMS

The Course covers C constructs that are frequently used in

embedded software development:

– Preprocessor directives: Informs the compiler about the hardware

– Mixing C and assembly: Often a necessity in embedded systems

– Pointers: Used to access memory and input and output devices

– Bit manipulation: Used to handle hardware-level details, input and

output

– Structures, unions: In the context of pointers and bit manipulation

C or C++ knowledge is a prerequisite for this course
23

HISTORY OF C

• Designed and developed by Dennis Ritchie in beginning of 70s at

Bell Labs.

• Used to develop UNIX (with Ken Thompson)

• Used to write modern operating systems

• Hardware independent (portable)

24

C STANDARDIZATION

• Many slight variations of C existed, and were incompatible

• Committee formed to create an "unambiguous, machine-

independent" definition

• Standard created in 1989 (ISO C), updated in 1999 (C99), in

2011 (C11) and in 2018 (C18).

25

WHY USE C FOR WRITING
EMBEDDED SOFTWARE?

• Small and simple to learn

• Available for almost all currently used processors

• C is a very “low-level” high-level language

• It gives embedded programmers a high degree of

hardware control without sacrificing the benefits of high-

level languages

26

PREPROCESSING DIRECTIVES

•Preprocessing
– Occurs before a program is compiled

– Inclusion of other files

– Definition of symbolic constants and macros

– Conditional compilation of program code

– Conditional execution of preprocessor directives

•Format of preprocessor directives
– Lines begin with #

27

THE #INCLUDE PREPROCESSOR DIRECTIVE

▪ Copy of a specified file included in place of the directive

▪ #include <filename>

Searches standard library for file

Use for standard library files

• #include "filename"

Searches current directory, then standard library

Use for user-defined files

• Used for:

• Programs with multiple source files to be compiled together

• Header file – has common declarations and definitions
(structures, function prototypes)

#include statement in each file

28

THE #DEFINE PREPROCESSOR DIRECTIVE

• #define

– Preprocessor directive used to create symbolic constants and macros

– Symbolic constants

• When program compiled, all occurrences of symbolic constant
replaced with replacement text

– Format

#define identifier replacement-text

– Example:

#define PI 3.14159

– Everything to right of identifier replaces text

#define PI = 3.14159

• Replaces “PI” with "= 3.14159”

29

Symbolic constants

THE #DEFINE PREPROCESSOR DIRECTIVE

• Macro

– Operation defined in #define

– A macro with arguments has its arguments substituted
for replacement text, when the macro is expanded

– Performs a text substitution – no data type checking

– The macro

#define CIRCLE_AREA(x) (PI * (x) * (x))

would cause

area = CIRCLE_AREA(4);

to become

area = (3.14159 * (4) * (4));
30

EXAMPLES: PITFALLS
It is left as an exercise to find out what (may) become
wrong with the definition below:

 reference:

 http://gcc.gnu.org/onlinedocs/cpp/macros.html

31

#define POW(x) x*x

#define CIRCLE_AREA(x) PI * x * x

#define RECTANGLE_AREA(x, y) x * y

http://gcc.gnu.org/onlinedocs/cpp/Macros.html

CONDITIONAL COMPILATION

• Control preprocessor directives and compilation

• sizeof, enumeration constants cannot be evaluated in preprocessor directives

• Structure similar to if

#if ! defined (NULL)

 #define NULL 0

#endif

• Determines if symbolic constant NULL has been defined

– If NULL is defined, defined (NULL) evaluates to 1

– If NULL is not defined, this function defines NULL to be 0

• Every #if must end with #endif

• #ifdef short for #if defined(name)

• #ifndef short for #if !defined(name)

32

CONDITIONAL COMPILATION, CONT.

• Use for commenting out code

• C does not allow nested comments
/* First layer

 /* Second layer */

*/

• You can use the #if .. #endif combination to cause the
preprocessor to avoid compiling any portion of your code
by using a condition that will never be true.

#if 0

code commented out

#endif

– To enable code, change 0 to 1 33

CONDITIONAL COMPILATION, CONT.

•Other statements

–#elif – equivalent of else if in an if statement

–#else – equivalent of else in an if statement

34

CONDITIONAL COMPILATION, CONT.

• Debugging

#define DEBUG 1

#if DEBUG

 printf(…);

#endif

– Defining DEBUG to 1 enables code

– After code corrected, remove #define statement

– Debugging statements are now ignored

35

THE #ERROR PREPROCESSOR DIRECTIVES

•#error tokens

– Tokens are sequences of characters separated by spaces

• "I like C" has 3 tokens

– Displays a message with specified tokens as an error message

– Stops preprocessing and prevents program compilation

• The directive ‘#error’ causes the preprocessor to report a fatal

error. The tokens forming the rest of the line following ‘#error’

are used as the error message.

◼E.g.,

#if !defined(FOO) && defined(BAR)

 #error "BAR requires FOO."

 #endif

36

THE # AND ## OPERATORS

•#

– Causes a replacement text token to be converted to a
string surrounded by quotes

– The statement

#define HELLO(x) printf(“Hello, ” #x “\n”);

would cause

HELLO(John)

to become

printf(“Hello, ” “John” “\n”);

37

THE # AND ## OPERATORS, CONT.

•##
– Concatenates two tokens

– The statement

#define TOKENCONCAT(x, y) x ## y

would cause

TOKENCONCAT(O, K)

to become

OK

38

PREDEFINED SYMBOLIC CONSTANTS

•Useful predefined symbolic constants

– Cannot be used in #define or #undef

39

Symbolic

constant

Description

__LINE__ The line number of the current source code line (constant integer)

__FILE__ The path or name of the file (e.g., “/usr/local/include/myheader.h”)

__DATE__ The date the source file is compiled (e.g., “Jan 19 2001”)

__TIME__ Time the source file is compiled (e.g., “08:22:17").

EXAMPLES: MACRO DEFINITION AND USE

40

#define SIZE 128

#define POW(x) ((x)*(x))

#define DEBUG(format, ...) printf(format, ## __VA_ARGS__)

#define DUMP(int_var) printf(”%s = %d\n”, #int_var, int_var)

#define WHERE printf(”’%s’ at %d\n”, __FILE__, __LINE__)

int main(){

 int array[SIZE];

 POW(array[0] + array[1]);

 /* Disable all DEBUG by changing macro */

 DEBUG(”%s\n”, ”I reached the top”);

 /* Easy to get nice print of variable. */

 DUMP(array[4]);

 /* Prints file and line. */

 WHERE;

}

	Slide 1: Introduction
	Slide 2: Course information
	Slide 3: updates
	Slide 4: Labs
	Slide 5: Labs
	Slide 6: Lectures
	Slide 7: Material
	Slide 8: Computing systems
	Slide 9: Embedded systems
	Slide 10
	Slide 11: Significance
	Slide 12: Embedded systems evolution
	Slide 13: What is an embedded system?
	Slide 14: Components of an embedded system
	Slide 15: Microcontroller
	Slide 16: Microcontroller
	Slide 17: Complexity
	Slide 18: Criticality
	Slide 19: Functional vs. non-functional requirements
	Slide 20: Embedded vs. real-time systems
	Slide 21: Summary
	Slide 22: Lectures
	Slide 23: C for Embedded Systems
	Slide 24: History of C
	Slide 25: C standardization
	Slide 26: Why use C for writing embedded software?
	Slide 27: Preprocessing directives
	Slide 28: The #include preprocessor directive
	Slide 29: The #define preprocessor directive
	Slide 30: The #define preprocessor directive
	Slide 31: Examples: Pitfalls
	Slide 32: Conditional compilation
	Slide 33: Conditional compilation, cont.
	Slide 34: Conditional compilation, cont.
	Slide 35: Conditional compilation, cont.
	Slide 36: The #error preprocessor directives
	Slide 37: The # and ## operators
	Slide 38: The # and ## operators, cont.
	Slide 39: Predefined symbolic constants
	Slide 40: Examples: Macro definition and use

