
2009-03-21

1

TDDI11: Embedded Software

Min Bao

-2-
TDDI11 Embedded Software laboratory 2 of 84

April 2009

Outline

n Part 1

o Lab organization

o Brief introduction of the targeted problems

o Tools

o Assignments

n Part 2

o X86 Review

-3-
TDDI11 Embedded Software laboratory 3 of 84

April 2009

Labs Organization

o 2 lab groups (divided in teams of 2 students)

o 24 hours/lab group (supervised), 12 lab sessions

n 31/3 17-21: Only group A (GRA)

n 2/4 17-21: Only group B (GRB)

n Other times: Both GRA and GRB

o 5 lab assignments

o 2 points (3 ECTS points)

n http://www.ida.liu.se/~TDDI11

n Prepare before coming to the lab !!!

n Follow the instructions EXACTLLY !!!

n You have to show the demo and code in the lab !!!

-4-
TDDI11 Embedded Software laboratory 4 of 84

April 2009

Labs Organization(con’t)

n Register in webreg for the labs

o http://www.ida.liu.se/webreg

n Demo and Codes of 5 assignments have to be
shown in 12 lab sessions (no other time!!)

-5-
TDDI11 Embedded Software laboratory 5 of 84

April 2009

Goals

n Understand data representation at machine level

n Master operations most frequently used in embedded systems

n Understand why and when programming in assembly is
necessary/appropriate

n I/O programming

n Preemptive/Non-preemptive multithreaded programming

-6-
TDDI11 Embedded Software laboratory 6 of 84

April 2009

Embedded Software

n Embedded systems generally serve a single/specific purpose

n In our labs, the embedded software consists of one single
program image that contains

n The application software

n A small real time kernel (labs 4-5)

2009-03-21

2

-7-
TDDI11 Embedded Software laboratory 7 of 84

April 2009

Hardware Architecture: Intel x86

n Dominant architecture for PCs

n No need for specialized single board computers => cheap
development platform

n Studied concepts are to a certain extent independent of the
architecture

n Protected mode of Intel 386 is quite representative for modern
architecture

n Easier transition from programming for general purpose systems to
embedded software development

-8-
TDDI11 Embedded Software laboratory 8 of 84

April 2009

Programming Languages

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

Assembly C C++ Java Other

1998-1999

1999-2000

-9-
TDDI11 Embedded Software laboratory 9 of 84

April 2009

Embedded Software Tool Set

Tool

n Eclipse (programming IDE)

n DJGPP (Windows port of GNU C compiler)

n NASM (assembler)

n Simics (hardware simulator)

Library

n Libepc

Real-time kernel

n Multi-C (non-preemptive real-time kernel)

n µC/OS-II (preemptive real-time kernel)

-10-
TDDI11 Embedded Software laboratory 10 of 84

April 2009

Embedded Software Tool Set (cont’d)

Re-Entrant Library:
(libepc)

L
in

k
e
r (ld

)
L
in

k
e
r (ld

)

Real-Time Kernel:

(Multi-C, µC/OS-II)

L
o
ca

to
r

L
o
ca

to
r

ROM
"Burner"

ROM
"Burner"

Object Files Executable
Image File

ROM
Image File

Compiler
(DJGPP)

Compiler
(DJGPP)

Assembler
(NASM)

Assembler
(NASM)

Read-Write
Memory
(RAM)

Read-Write
Memory
(RAM)

Read-Only
Memory
(ROM)

Read-Only
Memory
(ROM)

Program
Initialization

C code

ASM code

-11-
TDDI11 Embedded Software laboratory 11 of 84

April 2009

Hello World example

#include "libepc.h"
int main(int argc, char *argv[]) {

PutString("Hello world\r\n");
return 0;

}

hello.c

gcc -Wall -I c:\program files\...\libepc -c hello.c
Compile the C code with djgpp

ld hello.o -Tlink.cmd -Map link.map
Link object files in one executable file

hello.o

embedded.bin

Building steps

-12-
TDDI11 Embedded Software laboratory 12 of 84

April 2009

Running Hello World (1)

copy embedded.bin a:
Copy executable file on a disketteembedded.bin

copyboot a:
Add boot sector

Hello World

Reboot system
from diskette

bootload.bin

Run Example on Target (Non-Emulated) Architecture

2009-03-21

3

-13-
TDDI11 Embedded Software laboratory 13 of 84

April 2009

Hello World

Running Hello World (2)

copydisk -b bootload.bin -o floppy.img embedded.bin
Create image file of the boot diskette

embedded.bin bootload.bin

floppy.img

simics targets/x86-440bx/dredd-floppy-install.simics
Run Simics to emulate x86 architecture (bootable from diskette)

simics> flp0.insert-floppy A floppy.img
Boot the emulated architecture from diskette image file

Simics x86

Run Example on Emulated Architecture

-14-
TDDI11 Embedded Software laboratory 14 of 84

April 2009

Assignment 1: Measuring processor speed

Goal: Write a program that computes and displays the clock
rate of an Intel x86 CPU

Solution: Compute the number of CPU clock cycles that pass
during a given time interval

n Use libepc library functions

o Now_Plus: used for measuring time

o CPU_Clock_Cycles: used for measuring cycles

-15-
TDDI11 Embedded Software laboratory 15 of 84

April 2009

Assignment 1: Measuring processor speed

n Now_Plus

n Now_Plus(0) returns a 32-bit integer.

n Now_Plus(int n) returns the 32-bit integer that
Now_Plus(0) would return if called n seconds from the moment
when Now_Plus(int n) is called.

n CPU_Clock_Cycles

n Returns the value stored in a 64-bit counter that is incremented at
the processor clock rate

ClockRate = (CPU_Clock_Cyclesn- CPU_Clock_Cycles0) / timen

-16-
TDDI11 Embedded Software laboratory 16 of 84

April 2009

Assignment 2: Mixing C and Assembly

Goals:

n Understand data representation at machine level

n Understand bit manipulation

n Learn to use C and assembly in the same program.

n Become aware of performance issues.

-17-
TDDI11 Embedded Software laboratory 17 of 84

April 2009

Assignment 2: Mixing C and Assembly

Problem:

n Multiplication of 64-bit values on a 32-bit architecture

Solution:

n Software emulation

void llmultiply(unsigned long long int A, unsigned long long int B,

unsigned char* AmulB);

Requirements:

n ASM implementation

n C implementation, with compiler optimization

n C implementation, without compiler optimization

-18-
TDDI11 Embedded Software laboratory 18 of 84

April 2009

Assignment 2: 64-bit Multiplication

void llmultiply(

unsigned long long int A,

unsigned long long int B,

unsigned char* AmulB) {

A = AH*232 + AL

B = BH*232 + BL

return A * B = AH * BH * 264 + (AH * BL + AL * BH) * 232 + AL * BL

}

2009-03-21

4

-19-
TDDI11 Embedded Software laboratory 19 of 84

April 2009

Assignment 2: 64-bit Multiplication

A * B = AH * BH * 264 + (AH * BL + AL * BH) * 232 + AL * BL

- implemented using operations on 32 bits
n Four integer multiplications (MUL)

n register shift (e.g. SHL, SAR)

n integer additions (ADD, ADC)

AH (32bit) AL (32bit)

BH (32bit) BL (32bit)

128bit = 16 bytes

A*B

A (64bit)

B (64bit)

-20-
TDDI11 Embedded Software laboratory 20 of 84

April 2009

Assignment 2: 64-bit Multiplication

gcc -Wall -Ic:\program files\...\libepc -O3 -c llmultiply.c
Compiling the C code with optimisation

gcc -Wall -Ic:\program files\...\libepc -O0 -c llmultiply.c
Compiling the C code without optimisation

Makefile.common
CFLAGS = -Wall -O0 $(INCLUDES)
CFLAGS = -Wall -O3 $(INCLUDES)

-21-
TDDI11 Embedded Software laboratory 21 of 84

April 2009

Assignment 3: I/O Programming

Goal:

n Become aware of the various ways to communicate
with the peripherals. Understand the advantages and
disadvantages of each.

Problem: write a program that

n reads characters typed on the keyboard and sends the
characters on the serial interface.

n displays characters read remotely from the serial
interface

-22-
TDDI11 Embedded Software laboratory 22 of 84

April 2009

Assignment 3: I/O Programming

>Hello World

<Hello World

WRITE on serial interface: Polling READ from serial interface: Interrupt

-23-
TDDI11 Embedded Software laboratory 23 of 84

April 2009

Assignment 3: I/O Programming

Polling:

n continuously checks the peripheral to detect if it has
changed state.

7 6 5 4 3 2 1 0

LSR (Line Status Register) THR (Transmitter Holding Register)
RBR (Receiver Buffer Register)

RBF (Receive Buffer Full)
Overrun Error
Parity Error
Framing Error
Break Detected
THRE (Transmitter Holding RegisterEmpty)
Transmitter Empty
FIFO Error

-24-
TDDI11 Embedded Software laboratory 24 of 84

April 2009

Assignment 3: I/O Programming

Interrupt Driven Communication:

n Instead of the processor interrogating the peripheral,
the peripheral notifies the processor if its state has
changed.

n The peripheral asserts a signal that interrupts the execution
of the processor.

n The execution jumps to a predefined address where the
Interrupt Service Routine (ISR) resides. The ISR implements
the response to the interrupt.

Advantage: the processor works with the peripheral
only when needed.

2009-03-21

5

-25-
TDDI11 Embedded Software laboratory 25 of 84

April 2009

Assignment 4: Non-preemptive
Multithreaded Application

Goals:

o Work with multi-threaded programs.

o Understand non preemption

Problem: Split the implementation of lab 3 into 3

threads

n Read keyboard, print input, send input on serial

n Read serial, print received data

n Display local timestamps

-26-
TDDI11 Embedded Software laboratory 26 of 84

April 2009

Assignment 4: Non-preemptive
Multithreaded Application

Wait? Yield to other

threads

Thread

Initialization

Start

Yes

Scheduler selects highest

priority thread that is ready to

run. If not the current thread,

the current thread is suspended

and the new thread resumed.

Data

Processing

Non-preemptive (Cooperative) Multitasking

You have to call the

yield routine

explicitly!!!

-27-
TDDI11 Embedded Software laboratory 27 of 84

April 2009

Assignment 4: Non-preemptive
Multithreaded Application

n Read keyboard

n print input

n send input on serial

n Read serial line

n print received data

n Display timestamps

Thread_1 Thread_2 Thread_3

n MtCCoroutine(Thread_1());

n MtCCoroutine(Thread_2());

n MtCCoroutine(Thread_3());

Main

Multi-C: real-time non-preemptive kernel

-28-
TDDI11 Embedded Software laboratory 28 of 84

April 2009

Assignment 5: Preemptive
Multithreaded Application

Goal:

o Work with pre-emptive kernels.

o Understand the critical section concept.

Problem:

o Extend the problem in lab 4 to send local timestamps
over the serial(in addition to sending characters)

o Allow preemption

o Fix packet corruption due to preemption

o Count and display how many characters has been

received by remote machine

-29-
TDDI11 Embedded Software laboratory 29 of 84

April 2009

Assignment 5: Preemptive
Multithreaded Application

Problem:

o Send both chat text and timestamps over the serial link

Solution:

o Create packets out of individual bytes

void SendPacket(int type, BYTE8 *bfr, int bytes);

Start Flag Type Byte Count Data Bytes

0xff Byte1...Bytenn0x01

0xff Byte1...Bytenn0x02

Chat packet

Time packet

-30-
TDDI11 Embedded Software laboratory 30 of 84

April 2009

Assignment 5: Preemptive
Multithreaded Application

Problem:

o Allow Preemption

Solution:

o Use µC/OS-II to implement the application

n Event-driven application

n Threads stay suspended until they are activated by an
external event that triggers an interrupt

n Thread communication and synchronisation (semaphores,
queues, mutexes, mailboxes)

2009-03-21

6

-31-
TDDI11 Embedded Software laboratory 31 of 84

April 2009

Assignment 5: Preemptive
Multithreaded Application

Preemptive
Multitasking

Hardware

Interrupt

Thread A

Thread A

Executing

ISR

Context

Switch

Thread B

Thread B

Suspended

Thread A

Suspended

Thread B

Executing

Scheduler selects highest

priority thread that is ready to

run. If not the current

thread, the current thread is

suspended and the new thread

resumed.

Process

Interrupt

Request

IRET

e.g. copy

received data,

and Send out

notification of

availability of

the data

-32-
TDDI11 Embedded Software laboratory 32 of 84

April 2009

Assignment 5: Preemptive
Multithreaded Application

Problem:

o Fix packet corruption due to preemption

n keyboard interrupts can initiate transmission of a chat
packet in the middle of transmitting a time packet

Solution:

o mark the SendPacket as a critical section

OS_EVENT *OSSemCreate(int count); allocates and initializes a semaphore data
structure and returns a pointer to it. The parameter "count" is set to 1 for a Mutex.

OSSemPend(OS_EVENT *semaphore, int timeout, BYTE8 *err); returns
when it acquires the semaphore; if the semaphore is currently owned by another
thread, this function causes the current thread to be suspended while it waits for the
semaphore to be released.

OSSemPost(OS_EVENT *semaphore); causes the current thread to relinquish
ownership of the semaphore.

-33-
TDDI11 Embedded Software laboratory 33 of 84

April 2009

Part 2 X86 Review

n A Programmer’s View of Computer Organization

n X86 Processor architecture

n Intel X86 assembly

o Addressing Modes

o Basic assembly

o Mixed with C

-34-
TDDI11 Embedded Software laboratory 34 of 84

April 2009

Part 2 X86 Review

n A Programmer’s View of Computer Organization

n X86 Processor architecture

n Intel X86 assembly

o Addressing Modes

o Basic assembly

o Mixed with C

-35-
TDDI11 Embedded Software laboratory 35 of 84

April 2009

Input/Output Configurations

I/OI/O CPUCPU MemoryMemory

CPUCPU MemoryMemory I/OI/O

Direct Memory
Access (DMA).

CPU
coordinates
transfer
between I/O
and memory.

-36-
TDDI11 Embedded Software laboratory 36 of 84

April 2009

CPU and Main Memory

Address
Bus

Control

Bus

Data Bus

CPUCPU MemoryMemory

Operations
performed
here.

Operations
performed
here.

Code, Data Operands
and Results are
stored here.

Code, Data Operands
and Results are
stored here.

2009-03-21

7

-37-
TDDI11 Embedded Software laboratory 37 of 84

April 2009

The Central Processing Unit

General Purpose
Registers

General Purpose
Registers

Arithmetic and
Logic Unit (ALU)

Arithmetic and
Logic Unit (ALU)

Program CounterProgram Counter

Instruction
Register

Instruction
Register

Instruction DecoderInstruction Decoder

Memory Address

Register

Memory Address

Register

Memory Data
Register

Memory Data
Register

Data Bus

Address Bus

Control Bus

Control Unit

-38-
TDDI11 Embedded Software laboratory 38 of 84

April 2009

Part 2 X86 Review

n A Programmer’s View of Computer Organization

n X86 Processor architecture

n Intel X86 assembly

o Addressing Modes

o Basic assembly

o Mixed with C

-39-
TDDI11 Embedded Software laboratory 39 of 84

April 2009

History of Intel x86 Architecture

Images of x86 chips: http://www.cpu-collection.de

Processor Year MIPS
CPU

Frequency
Register Size Data Bus Address Space CPU Cache

8086 1978 0.8 8.0 MHz 16 16 1 MB None

286 1982 2.7 12.5 MHz 16 16 16 MB None

386 1985 6.0 20 MHz 32 32 4 GB None

486 1989 20 25 MHz 32 32 4 GB 8 KB L1

Pentium 1993 100 60 MHz 32 64 4 GB 16 KB L1

Pentium Pro 1995 440 200 MHz 32 64 64 GB
16 KB L1;

512 KB L2

Pentium II 1997 466 266 32 64 64 GB
32 KB L1;

512 KB L2

Pentium III 1999 1000 500 32 64 64 GB
32 KB L1;

512 KB L2

-40-
TDDI11 Embedded Software laboratory 40 of 84

April 2009

Operating Modes of Intel IA

n Real-address Mode

Equals 8086 processor, the initial operating mode at start-
up, limited feasture,1MB memory addressable.

n Protected Mode

This mode was originally introduced with the Intel 286,
and later enhanced in the Intel 386. Protected mode
offers greater performance than real mode. All of the
features of the processor are available and a much larger
physical address space.

n System Management Mode

Introduced for 386SL, Implement power management and
system security (not deal with it here)

-41-
TDDI11 Embedded Software laboratory 41 of 84

April 2009

Instruction Format

CISC (Complex Instruction Set Computer)

Operand Fields Example Description

0 CLC Clear the carry flag to 0.

1 INC AX Increment contents of register AX

2 MOV AX,BX Copy contents of BX into AX.

“Source” operand“Destination” operand

-42-
TDDI11 Embedded Software laboratory 42 of 84

April 2009

Instruction Operands

Constant

n Immediate Mode

o Embedded within
representation of
instruction.

Register

n Register Mode

I/O Port

Memory Location

n Real Mode:

Address = RB + RI + constant

n Protected Mode:

Address = R1 + C1 × R2 + C2

2009-03-21

8

-43-
TDDI11 Embedded Software laboratory 43 of 84

April 2009

386 Registers

EAX
EDX
ECX
EBX
ESP
EBP
ESI
EDI

SS
CS
DS
ES
FS
GS

EFLAGS

EIP

386 CPU Memory

32 bit address

32 bit data

Segment

registers

General
Purpose
registers

Instruction
pointer

Flag register

-44-
TDDI11 Embedded Software laboratory 44 of 84

April 2009

General Purpose Registers

31 16 15 0

(E)AX: Accumulator

(E)BX: Base Register

(E)CX: Count Register

(E)DX: Data Register

(E)SP: Stack Pointer

(E)BP: Base Pointer

(E)SI: Source Index

(E)DI: Destination Index

MSW of EAX AH AL

MSW of EBX BH BL

MSW of ECX CH CL

MSW of EDX DH DL

MSW of ESP SP

MSW of EBP BP

MSW of ESI SI

MSW of EDI DI

-45-
TDDI11 Embedded Software laboratory 45 of 84

April 2009

Segment Registers

31 016 15

CS

DS

SS

ES

FS

GS

“Hidden” Part “Visible” Part

Segment Selector
Segment

Base Address,
Limit, and

Access Information
(not used in Real Mode)

Data Segment

Code Segment

Extra Segment

Stack Segment

-46-
TDDI11 Embedded Software laboratory 46 of 84

April 2009

Flags Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 OF DF IF TF SF ZF AF PF CF

Flag Bit Description

Overflow 11 Previous result caused arithmetic overflow.

Direction 10 1 = auto-decrement, 0 = auto-increment.

Interrupt Enable 9 Interrupts are enabled

Trap 8 Single step mode enabled

Sign 7 Previous result was negative

Zero 6 Previous result was zero

Auxiliary Carry 4 Previous result produced a BCD carry

Parity 2 Previous result had even parity

Carry 0 Previous result produced a carry put of MSB

-47-
TDDI11 Embedded Software laboratory 47 of 84

April 2009

Endianness

Byte ordering of 32-bit value

0001 0010 0011 0100 0101 0110 0111 1000

Byte N+3 Byte N+2 Byte N+1 Byte N

32-bit value = 1234567816
32-bit value = 1234567816

In little endian format, the address of a 32-bit

quantity is the same as the address of its least
significant byte.

In little endian format, the address of a 32-bit

quantity is the same as the address of its least
significant byte.

-48-
TDDI11 Embedded Software laboratory 48 of 84

April 2009

The Stack

Instruction
sequence: Address Memory contents

PUSH EBX SS:[ESP+10] value from
EBX(32 bits)

↓↓↓↓

Stack
"grows"
downward.

PUSH AX SS:[ESP+8] value from AX

(16 bits)

PUSH CS SS:[ESP+4] value from CS

(32 bits)

PUSH EDX SS:[ESP] value from EDX
(32 bits)

←←←← Top of stack

High Address

low Address

2009-03-21

9

-49-
TDDI11 Embedded Software laboratory 49 of 84

April 2009

Part 2 X86 Review

n A Programmer’s View of Computer Organization

n X86 Processor architecture

n Intel X86 assembly

o Addressing Modes

o Basic assembly

o Mixed with C

-50-
TDDI11 Embedded Software laboratory 50 of 84

April 2009

Addressing in Real Mode

16-bit segment 0000 16-bit offset

12 MSBs of offset

padded with four 0's

 on the left

4 LSBs

of offset

16-bit Adder

16 MSBs

of result

4 LSBs

of result

20-bit physical address

12MSBs of offset

padded with four
0’s on the left

4LSBs of offset

16MSBs of result
4LSBs of result

-51-
TDDI11 Embedded Software laboratory 51 of 84

April 2009

Immediate and Register Modes

opcode 16-bit operand Operand is embedded within

instruction representation.

Example: MOV AX,12345

 opcode code registers

 AH AL BH BL

 CH CL DH DL

 AX BX CX DX

 Instruction has code to select SI DI SP BP

 register contents as operand DS CS SS ES

Example: MOV AX,CX

-52-
TDDI11 Embedded Software laboratory 52 of 84

April 2009

Memory Operands - Real Mode

BX

BP

None

BX

BP

None

SI

DI

None

SI

DI

None

16-bit

8-bit

None

16-bit

8-bit

None

++

Base Index Constant

20-bit
address

-53-
TDDI11 Embedded Software laboratory 53 of 84

April 2009

Direct Addressing

 opcode 16-bit offset Instruction provides memory

 offset

 operand

Address = RB + RI + constant

Example: MOV AX,[TOTAL]

-54-
TDDI11 Embedded Software laboratory 54 of 84

April 2009

Register Indirect Addressing

Example: MOV AX,[BX]

 opcode code memory

 BX, BP, SI, or DI operand

 Register provides offset

Address = RB + RI + constant

Address = RB + RI + constant
or

2009-03-21

10

-55-
TDDI11 Embedded Software laboratory 55 of 84

April 2009

Based and Indexed Addressing

 opcode code displacement Offset is sum of selected memory

 register and displacement.

Code selects

register to use + operand

 BX, BP, SI, DI Based: BX or BP

 Indexed: SI or DI

Address = RB + RI + constant

Address = RB + RI + constant
or

Example: MOV AX,[BX+3]

-56-
TDDI11 Embedded Software laboratory 56 of 84

April 2009

Based-Indexed Addressing

Address = RB + RI + constant

Example: MOV AX,[BX+SI+3]

opcode code code displacement memory

 BX or BP + operand

 SI or DI

-57-
TDDI11 Embedded Software laboratory 57 of 84

April 2009

Memory Addressing – Protected Mode

n Memory Address on 32 bits => 4 GB address space

n Generalized segmentation concept

n More GPRs can be used for Base,Iindex

-58-
TDDI11 Embedded Software laboratory 58 of 84

April 2009

Memory Addressing in Protected Mode

16-bit Segment Selector16-bit Segment Selector

32-bit offset from effective address calculation32-bit offset from effective address calculation

+

Global Descriptor Table

Segment Start Address

Physical Address (& Length)
of Global Descriptor Table

Physical Address (& Length)
of Global Descriptor Table

Physical
Address

Resides in
Main Memory

Resides in
Main Memory

. . .

GDTR Register

Segment Register

+

32
bits

16
bits

32 bits

32 bits

-59-
TDDI11 Embedded Software laboratory 59 of 84

April 2009

The Flat Memory Model

n GDT configured so that all segments start at physical address
zero and have a size of 4GB. (so, e.g. CS loaded with offset of
the descriptor for code segment)

n There's a one-to-one correspondence between physical
addresses and the 32-bit offsets produced by effective address
calculations.

n Memory looks like a single continuous space, called a linear
address space.

-60-
TDDI11 Embedded Software laboratory 60 of 84

April 2009

Addressing Memory in Protected Mode

Constant

n Immediate Mode

o Embedded within
representation of
instruction.

Register

n Register Mode

I/O Port

Memory Location

n Protected Mode:

Address = R1 + C1 × R2 + C2

2009-03-21

11

-61-
TDDI11 Embedded Software laboratory 61 of 84

April 2009

Effective Address Calculation in
Protected Mode

EAX
EBX
ECX

EDX
ESI

EDI
EBP
ESP

None

EAX
EBX
ECX

EDX
ESI

EDI
EBP
ESP

None

EAX
EBX
ECX

EDX
ESI

EDI
EBP
None

EAX
EBX
ECX

EDX
ESI

EDI
EBP
None

1

2

3

4

1

2

3

4

None

8-bit

16-bit

32-bit

None

8-bit

16-bit

32-bit

++ ×

Base Index Scale Factor Displacement

32-bit
address

-62-
TDDI11 Embedded Software laboratory 62 of 84

April 2009

I/O Port Addressing

An I/O port can be addressed with either an
immediate operand or a value in the DX register.

As I/O port address bus is 12 bits wide,
immediate operand < 4096, and the address >
4096 has to be preload to DX for addressing

-63-
TDDI11 Embedded Software laboratory 63 of 84

April 2009

Data Movement Instructions

MOV dst,src ; dst ← src

LEA reg32,mem ; reg32 ← offset32 (mem)

MOVZX reg32,src ; reg32 ← zero extended src

MOVSX reg32,src ; reg32 ← sign extended src

XCHG dst,src ; temp ← dst

dst ← src

src ← temp

-64-
TDDI11 Embedded Software laboratory 64 of 84

April 2009

Stack Instructions

PUSH src16 ; ESP ← ESP-2, MEM[SS:ESP] ← src16

PUSH src32 ; ESP ← ESP-4, MEM[SS:ESP] ← src32

PUSHF ; ESP ← ESP-4, MEM[SS:ESP] ← EFlags

PUSHA ; Pushes EAX, ECX, EDX, EBX, ESP, EBP, ESI, EDI

POP dst16 ; dst16 ← MEM[SS:ESP], ESP ← ESP+2

POP dst32 ; dst32 ← MEM[SS:ESP], ESP ← ESP+4

POPF ; EFlags ← MEM[SS:ESP], ESP ← ESP+4

POPA ; Pops EDI, ESI, EBP, skip, EBX, EDX, ECX, EAX

-65-
TDDI11 Embedded Software laboratory 65 of 84

April 2009

Arithmetic Instructions

ADD dst,src

ADC dst,src

SUB dst,src

SBB dst,src

INC dst

DEC dst

NEG dst

MUL src ; unsigned

IMUL src ; signed

DIV src ; unsigned

IDIV src ; signed

CBW

CWD/CDQ

CMP dst,src

-66-
TDDI11 Embedded Software laboratory 66 of 84

April 2009

Bitwise Logical Instructions

AND dst,src ; dst ← dst & src

OR dst,src ; dst ← dst | src

XOR dst,src ; dst ← dst ^ src

NOT dst ; dst ← ~dst

TEST dst,src ; dst & src

2009-03-21

12

-67-
TDDI11 Embedded Software laboratory 67 of 84

April 2009

Shift Instructions: opcode reg counter

RCL:

ROL:

SAL:

SHL:

RCR:

ROR:

SAR:

SHR:

0

0 0

CF

-68-
TDDI11 Embedded Software laboratory 68 of 84

April 2009

Conditional Jump Instructions

Signed Tests:

JG/JNLE label

JGE/JNL label

JL/JNGE label

JLE/JNG label

Equality Tests:

JE/JZ label

JNE/JNZ label

Unsigned Tests:

JA/JNBE label

JAE/JNB label

JB/JNAE label

JBE/JNA label

Other Tests:

JC, JNC, JO, JNO, JS,

JNS, JPO, JNP, JCXZ

-69-
TDDI11 Embedded Software laboratory 69 of 84

April 2009

Jump Instructions

Compare Mnemonic(s) Jump if . . . Determined by . . .

equality
JE (JZ) Equal (Zero) ZF==1

JNE (JNZ) Not Equal (Not Zero) ZF==0

unsigned

JB (JNAE) Below (Not Above or Equal) CF==1

JBE (JNA) Below or Equal (Not Above) CF==1 || ZF==1

JAE (JNB) Above or Equal (Not Below) CF==0

JA (JNBE) Above (Not Below or Equal) CF==0 && ZF==0

signed

JL (JNGE) Less than (Not Greater than or Equal) SF!=OF

JLE (JNG) Less than or Equal (Not Greater than) SF!=OF || ZF==1

JGE (JNL) Greater than or Equal (Not Less than) SF==OF

JG (JNLE) Greater than (Not Less than or Equal) SF==OF && ZF==0

-70-
TDDI11 Embedded Software laboratory 70 of 84

April 2009

Other Jump Instructions

Unconditional:

JMP label

JMP regptr

JMP memptr

Loops (count in register ECX):

LOOP short-label

LOOPE/LOOPZ short-label

LOOPNE/LOOPNZ short-label

-71-
TDDI11 Embedded Software laboratory 71 of 84

April 2009

NASM syntax

L1: MOV EAX,[RESULT+2] ; load selected table element

Label
Field

Label
Field

Operation
Field

Operation
Field

Operand
Fields

Operand
Fields

Comment
Field

Comment
Field

-72-
TDDI11 Embedded Software laboratory 72 of 84

April 2009

Example: Break and End of Loop

for (;;) top_of_for: ...
{

... ...
if (...) break ; JMP end_of_for
... ...

} JMP top_of_for
end_of_for: ...

2009-03-21

13

-73-
TDDI11 Embedded Software laboratory 73 of 84

April 2009

Examples: WHILE loop, IF-THEN-ELSE

while (x < 1000) top_of_while: CMP DWORD [x],1000
{ JNL end_of_while ; >=

... ...
} JMP top_of_while

end_of_while:

if (x > y) MOV EAX,[x] ; x > y ?

{ CMP EAX,[y]
x = 0 ; JNG L1 ; x<=y jump

} MOV DWORD [x],0 ; then: x = 0 ;

else JMP L2 ; skip over else
{ L1: MOV DWORD [y],0 ; else: y = 0 ;

y = 0 ; L2: ...
}

-74-
TDDI11 Embedded Software laboratory 74 of 84

April 2009

Example: Loop With JECXZ and LOOP

MOV ECX,[iteration_count]
JECXZ loop_exit ; jump if ECX is zero.

top_of_loop:
...
<Register ECX: N, N-1, ... 1>

...
LOOP top_of_loop ; decrement ECX & jump if NZ

loop_exit:

-75-
TDDI11 Embedded Software laboratory 75 of 84

April 2009

Interfacing C and Assembly

Register(s) Usage in C functions

EAX Functions return all pointers and integer values up to 32-bits in this register.

EDX and EAX
Functions return 64-bit values (long long ints) in this register pair. (Note:

EDX holds bits 63-32, EAX holds bits 31-0).

EBP
Used to access: (1) The arguments that were passed to a function when it

was called, and (2) any automatic variables allocated by the function.

EBX, ESI,

EDI, EBP,

DS, ES, SS.

These registers must be preserved by functions written in assembly

language. Any of these registers that the function modifies should be

pushed on entry to the function and popped on exit.

EAX, ECX,
EDX, FS, GS

"Scratch" registers. These registers may be used without preserving their
current content.

DS, ES, SS,

EBP, ESP

Used to reference data. If modified by a function, the current contents of

these registers must be preserved on entry and restored on return.

-76-
TDDI11 Embedded Software laboratory 76 of 84

April 2009

Function Calls and Return

n CALL instruction used by caller to invoke the function

o Pushes the return address onto the stack.

n RET instruction used in function to return to caller.

o Pops the return address off the stack.

-77-
TDDI11 Embedded Software laboratory 77 of 84

April 2009

Examples of Functions in Assembly

C prototype: void Disable_Ints(void) ;

Example

usage:
 Disable_Ints() ;

Generated

code:
 CALL _Disable_Ints

NASM

source code

for the
function:

_Disable_Ints:

 CLI ; Disables interrupt system
 RET ; Return from function

Function Call with no Parameters and No Return Values

-78-
TDDI11 Embedded Software laboratory 78 of 84

April 2009

Examples of Functions in Assembly

Function Call with no Parameters and 8-bit Return Values

C prototype: BYTE8 LPT1_Status(void) ;

Example
usage:

 status = LPT1_Status() ;

Generated
code:

 CALL _LPT1_Status ; returns status in EAX
 MOV [_status],AL

NASM source
code for the

function:

_LPT1_Status:
 MOV DX,03BDh ; Load DX w/hex I/O adr
 XOR EAX,EAX ; Pre-Zero rest of EAX
 IN AL,DX ; Get status byte from port.
 RET ; Return from function.

2009-03-21

14

-79-
TDDI11 Embedded Software laboratory 79 of 84

April 2009

Parameter Passing for Function Calls

n Parameters are pushed onto stack prior to CALL.

o gcc pushes parameters in reverse order.

o 8/16-bit parameters are extended to 32-bits

n Caller should remove parameters after function
returns.

-80-
TDDI11 Embedded Software laboratory 80 of 84

April 2009

Examples of Functions in Assembly

Function Call with 2 Parameters and No Return Values

Function call
w/parameters: Byte2Port(0x3BC, data) ;

Code generated by the
compiler:

PUSH DWORD [_data] ; Push 2nd param
MOV EAX,03BCh ; Push 1st param
PUSH EAX
CALL _Byte2Port ; Call the function.

ADD ESP,8 ; Remove params

-81-
TDDI11 Embedded Software laboratory 81 of 84

April 2009

Examples of Functions in Assembly

Function Call with a 64-bit Parameter

C Assembly

/* signed or unsigned */
long long data ;
...

Do_Something(data) ;
...

PUSH DWORD [_data+4]
PUSH DWORD [_data]
CALL _Do_Something

ADD ESP,8

-82-
TDDI11 Embedded Software laboratory 82 of 84

April 2009

Retrieving Parameters from Stack

_Swap:

MOV ECX,[ESP+4] ; Copy parameter p1 to ECX

MOV EDX,[ESP+8] ; Copy parameter p2 to EDX

MOV EAX,[ECX] ; Copy *p1 into EAX

XCHG EAX,[EDX] ; Exchange EAX with *p2

MOV [ECX],EAX ; Copy EAX into *p1

RET ; Return from this function

nMust access parameters without actually removing them from the stack!
nCan’t use POP instructions to access parameters.

n Parameters expect to be removed from the stack later by the caller

n RET instruction expects return address to be on top of the stack

p2

p1

ESP

Ret address

-83-
TDDI11 Embedded Software laboratory 83 of 84

April 2009

Polled Serial Input

_Serial_Input:

MOV DX,02FDh ; DX ß Status Port Address

SI1: IN AL,DX ; Read Input Status Port

TEST AL,00000001B ; Check the “Ready” Bit

JZ SI1 ; Continue to wait if not ready

MOV DX,02F8h ; Else load DX with Data Port Address

XOR EAX,EAX ; Pre-clear most significant bits of EAX

IN AL,DX ; Read Data Port

RET ; return to caller with data in EAX

-84-
TDDI11 Embedded Software laboratory 84 of 84

April 2009

Interrupt Service Routine for Serial Input

_Serial_Input_ISR:

STI ; Enable higher priority interrupts

PUSH EAX ; Preserve contents of EAX and EDX.

PUSH EDX
MOVDX,02FDh ; Retrieve the data and clear the request.

IN AL,DX

MOV [_serial_data],AL ; Save the data away
MOVAL,00100000b ; Send EOI (end-of-interrupt)command to

OUT 20h,AL ; Programmable Interrupt Controller

POP EDX ; Restore original contents of the registers

POP EAX
IRET ; Restore EIP and EFlags.

2009-03-21

15

-85-
TDDI11 Embedded Software laboratory 85 of 84

April 2009

Review

n Lab material available at

o http://www.ida.liu.se/~TDDI11

n Register in webreg for the labs

o http://www.ida.liu.se/webreg

n Be Well Prepared for the labs

n Demo and Codes of 5 assignments have to be

shown in 9 lab sessions (no other time!!)

