APPENDIX E

The libepc Library

The functions provided in libepc are intended to make it easy to start writing embedded
applications. The library provides processor and PC hardware initialization (including
the Interrupt Descriptor Table), console 1/O, timer access, sound, heap management,
and more.

Unlike the functions in libc, those in libepc never use the ROM BIOS or expect an
operating system. For example, something as simple as the putchar library function of
libc requires support from an operating system like MS/DOS or MS/Windows, which in
turn relies on the ROM BIOS. Since neither is likely to be available in most embedded
systems, the display output routines found in libepc write directly to the display buffer.

In some cases, functions in libepe duplicate services found in the standard C run-
time library (libc). The corresponding libc fountains assume a desktop {rather than
embedded) application environment, and reference objects in other libc modules that
cause the linker to include a large amount of unnecessary or inappropriate code. The
alternative implementations of those functions provided by libepc are self contained
and eliminate this problem.!

The following data types are defined in libepc.h and appear in the function
descriptions given in this appendix:

typedef int BOOL ;

typedef unsigned char BYTES ;
typedef unsigned short int WORD16 ;
typedef unsigned Tong int DWORD32 ;
typedef unsigned Tong Tong int .. QWORD64 ;
typedef signed Tong int "FIXED32 ;
typedef signed long long int FIXEDG4 ;
typedef void {*ISR) (void) ;

Source code for all functions in libepc is provided on the CD that comes with
this text.

MEMORY LAYOUT AND INITIALIZATION

The IBM-PC partitions the address space into three regions: “conventional memory”
(0-640KB), “reserved” memory {640KB to 1MB), and “extended” memory {above
1MB).

'Note that to cause the linker to use the libepe versions instead of those in libc, you must list ibepc.a
on the linker command line before libc.a.

247

248 Appendix E The libepc Library

4—— Top of memory
Extended

memory heap space
Reserved :
memory :
é heap space !
uninitialized statics
bss i
Conventional stack space (32KB) ;
thermoty < imitialized statics } data |
\
{0-9FFFF) :
program code text
S 4—— Address 0 ' ‘[

Conventional memory is subdivided into three major areas: the code space (known .
as ‘text’), initialized ‘data,” and uninitialized data (called ‘bss’). The bss contains all '
uninitialized static objects and a program stack of 32KB. Any remaining conventional
memory and all of extended memory are used for the heap.

Execution of the embedded application begins at address zero. Interrupts remain
disabled throughout the initialization process, which ends with a call to function main.
Initialization performs the following tasks:

1. Puts the processor into protected mode, establishes a flat memory model with
all segments starting at address zero, and sets all segment sizes 1o 4GB,
(init-cpu.asm)

2. Sets all uninitialized statics within the bss to zeroes, and (optionally) copies the
contents of any ROM data into RAM. (inft-crt.c)

3. Initializes the 8259 Programmable Interrupt Controller (init8259.¢) {

4. Initializes the 8253 Programmable Timer to provide DRAM refresh and a
100-tick-per-second interrupt. (int8253.¢)

5. Creates and initializes an Interrupt Descriptor Table (init-idt.c)

DISPLAY FUNCTIONS {DISPLAY.C)

The contents of the display is a two-dimensional array of cells organized into rows and
columns. Rows are numbered from 0 (top of screen) to 24 (bottom of screen); columns
are numbered from 0 (left side of screen) to 79 (right side of screen). Each cell contains
two bytes; the first holds the ASCIH representation of the displayed character, and the
second holds the display attributes for that character cell:

7 6 5

Background Color Foreground Color

Display Functions (display.c) 249

The display functions in libepc write directly to the display buffer. These functions
make no call to the ROM BIOS, nor do they rely on the existence of an operating

system.

Proiotype:

Description:

Interrupts:

FPrototype:

Description:

Interrupts:

Prototype:

Description:

Interrupts:

Prototype:

Description.

Interrupts:

Prototype:

Description:

Interrupts:

Prototype:

Description:

Interrupts:

Prototype:

Description:

Interrupts:

WORD16 *Cell{int row, int ceol) ;

Returns a pointer to a position in the display buffer specified by
‘row’ and ‘col’.

Unaffected.

void ClearScreen(BYTE8 atth) ;
Frases the display and sets the attribute bytes of every character
position to the value specified by “attb’. Does not affect the current

cursor position,
Unaffected.

int GetCursorCol(void) ;
Returns the current colurn position of the cursor.
Unaffected.

int GetCursorRow(void) ;
Returns the current row position of the cursor.
Unaffected.

void PutAttb(BYTE8 attb, int cells) ;

Changes the attribute bytes of a number of character cells starting at
the current cursor position. Does not affect the current cursor position.
The new attribute value is specified by ‘attb’, and the number of cells
is specified by ‘cells’.

Unaffected,

void PutChar(char ch) ;

Displays a single ASCII character (ch) at the current cursor position.
Automatically advances the current cursor position and properly
interprets CR and LF. Display attributes of the text are not affected by
this function (see function PutAtth).

Unaffected.

void PutCharAt{char ch, +int row, int col) ;

Displays a single ASCII character (ch) at a specific display position
(row, col) using the current display attribute previously stored at that
position. Does not affect the current cursor position.

Unatfected.

250 Appendix E The libepc Library

Prototype:

Description:

Interrupts:

Prototype:

Description:

Interrupts:

Prototype:

Description.

Interrupis:

Prototype:

Description.

Interrupts:

void PutString(char *string) ; _
Displays a NUL-terminated string of characters starting at the current
cursor position. Automatically advances the current cursor position and
properly interprets CR and LE Display attributes of the text are not
affected by this function (see function PutAtth).

Unaffected.

void PutUnsigned(unsigned n, int b, int w) ;

Displays the unsigned value ‘n’ as a base ‘b’ number right justified
and zero filled in a field of at least ‘w’ characters at the current cursor
position.

Unaffected.

void SetCursorPosition(int row, tint col) ;
Sets the current row and column position of the cursor.
Disabled on entry; restored to previous state on return.

void SetCursorVisible(BOOL visible) ;

Controls visibility of the IBM-PC cursor. If the argument is TRUE
{non-zero), the cursor will be made visible; if the argument is FALSE
{zero}, the cursor is made invisible,

Disabled on entry; restored to previous state on return.

WINDOW FUNCTIONS (WINDOW.C)

The following functions may be used to manage multiple text windows in separate areas
of the physical display. Each window maintains its own logical cursor. Overlapping
windows are not supported. '

Prototype:

Description:

Interrupts:

Prototype:

Description:

Interrupis:

WINDOW *WindowCreate(char *title, int row_first, int
row_last, +int col_first, int col_last) ;

Paints an empty window on the display. Creates a window control block
and returns a pointer to it; this pointer must be used in any other
window function. Multiple windows may be defined. If “title” is NULL,
no border is drawn, and the writeable area is given by the other
parameters;, otherwise, a titled border is drawn with the other
parameters defining the position of the border.

Unaffected.

void WindowErase (WINDOW *w) ;
Erases the contents of the specified window.
Unaffected.

Prototype:

Description:

Interrupts:

Prototype:

Description:

Interrupts:

Prototype:

Description:

Interrupis:

Prototype:

Description:

Interrupts:

Keyhoard Functions {(keyboard.c) 251

void WindowSelect (WINDOW *w) ;

Positions the display’s physical cursor at the window’s logical cursor
position.

Unatfected.

void WindowSetCursor(WINDOW *w, int row, int col) ;
Positions the window’s logical cursor; does not affect the physical cursor
of the display.

Unaffected.

void WindowPutChar (WINDOW *w, char ch) ;

Displays a single character at the window’s logical cursor position and
advances the cursor.

Unaffected.

vold WindowPutString(WINDOW *w, char *str) ;

Displays a character string at the window’s logical cursor position and
advances the cursor.

Unaffected.

KEYBOARD FUNCTIONS (KEYBOARD.C)

Every key on the IBM-PC keyboard issues two interrupts: one when the key is
pressed, and a second when the key is released. Each action is represented by a
“scan code” that is read from the keyboard data buffer by an interrupt service rou-
tine (ISR) and is placed in a queue. The two scan codes for the press and release of
the same key differ only by the value of bit 7; bit 7 is clear (0) on a press, and set (1)

on a release.

The keyboard functions in libepc access the keyboard hardware directly. These
functions make no call to the ROM BIOS, nor do they rely on the existence of an
operating system.

FPrototype:

Description:

Interrupts:

Prototype:

Description:

Interrupts:

BYTES GetScanCode(void) ;
Returns scan code from the queune.
Disabled on entry; restored to previous state on return.

BOOL ScanCodeRdy{void) ;

Returns TRUE (1) if a scan code is available in the queue; returns
FALSE (0) otherwise.

Disabled on entry; restored to previous state on return.

252 Appendix E The libepc Library

Prototype: WORD16 ScanCode2Ascii(BYTES code) ;

Description: Converts a scan code into a byte pair, with the LSByte containing the
ASCII representation of the key and the MSByte containing the scan
code. Keeps track of keyboard shift states (Shift, CapsLock, Ctrl, Alt,

and NumLock).
Interrupts: Unatfected.
Prototype: BOOL SetsKybdState(BYTES code) ;

Description: Uses a scan code to update keyboard shift states (Shift, CapsLock, Ctrl,
Alt,and NumLock). Returns TRUE (1) if the scan code affects the shift
states; otherwise, has no effect and returns FALSE (0). :

Interrupts: Unaffected.

SPEAKER FUNCTIONS (SPEAKER.C)

Prototype: void Sound(int hertz)
Description: Produces tones on the PC speaker. If *hertz’ is greater than zero, it turns
on the speaker and starts generating a tone whose frequency is speci
by ‘hertz’; a zero or negatlve value turns off the speaker.
Interrupts: Disabled while programming timer port to produce the desi
frequency; interrupts are restored to their previous state befor
function returns.

TIMER FUNCTIONS (TIMER.C, CYCLES.ASM)

Prototype: QWORD64 CPU_Clock_Cycles(void) ; :
Description: Returns a 64-bit count of CPU clock cycles since the proc S8
reset, This function uses the RDTSC (Read Time-Stamp. €
instruction of the Intel Pentium. It will not work on a 486 or3
may also not work on any nonlntel processor.
Interrupts: Unaffected.

Prototype: DWORD32 Milliseconds(void) ;

Description: Returns the 32-bit unsigned count of milliseconds that h
since program execution began,

Interrupts: Enables interrupts.

Prototype: DWORD32 Now_Plus(int seconds) ; _
Description: Calculates and returns the 32-bit unsigned count that wi
system timer some number of seconds in the future,
‘seconds’. The timer runs at 1000 ticks per second.

Interrupts: Enables interrupts.

INTERRUPT VECTOR ACCESS FUNCTIONS (INIT-IDT.C)

Interrupt Vector Access Functions (init-idt.c) 253

An Interrupt Descriptor Table (IDT) is built during initialization and is filled with links
to a set of default Tnterrupt Service Routines (ISRs) for interrupt vectors (0-255. The
functions described in the following table provide support for installing custom
replacements for these ISRs (note that interrupt vectors 0-31 are reserved by Intel for
processor {raps and exceptions; their default ISRs simply display appropriate error

messages and halt):

INT# | Intel Usage INT# | Intel Usage
0 Divide by zero 11 Segment not present
1 Debug exception 12 Stack fauit
2 NMI 13 General protection
3 One byte interrupt 14 Page fauit
4 Interrupt on overflow 15 Iniel Reserved
5 Array bounds error 16 Math error
6 Invalid opcode 17 Alignment check
7 Math not available i8 Machine check
8 Double fault i9 SIMD fleating-point except
9 Math segment overflow 20-3% | Intel reserved
10 Invalid TSS

Another 16 vectors are used for the IBM-PC hardware interrupt request (IRQ)
lines; their default ISRs simply clear the interrupt request and return. The initialization
code initialized the 8259 Programmable Interrupt Confroller so that it assigns these
hardware IRQ lines to the last 16 interrupt vectors in the table (240-255):

IRQ# | INT#| IBM-PCUsage IRQ# | INT# ; IBM-PCUsage
0 240 | System timer 8 248 Real-time clock
1 241 ! Keyboard 9 249 | Redirected IRQ2
2 242 | Redirected 10 250 | Reserved
3 243 | COMZ/COM4 11 251 | Reserved
4 244 | COM1/COM3 12 252 | PS/2Mouse
5 245 | Reserved 13 253 | Math coprocessor
6 246 | Floppy disk 14 254 | Hazd disk
7 247 | Parallel port 15 255 | Reserved

The remaining interrupt vectors initially point to an ISR that merely displays

“Unassigned Interrupt” and halts.

Prototype:
Description:

ISR GetISR{int int_numb)
Returns the entry-point address of an ISR from the Interrupt

¥

Descriptor Table (IDT). The interrupt vector number specified by the
‘int_numb’ selects the TDT entry that provides the address.

Interrupts: Unaffected.

254 Appendix E The libepc Library

Prototype:

Description:

Interrupts:
Note:

Prototype:

Description:

Interrupts:

DYAMIC MEMORY ALLOCATION FUNCTIONS (HEAP.C)

Prototype:

Description:

Interrupits:

Prototype:
Description:

Interrupts:

FIXED POINT (FIXEDPT.ASM)

These functions provide limited support for fixed-point math using 32.-bi_t' and
operands, with an equal number of bits allocated to the integral and fractional

int IRQ2INT(int irg_numb) ;

Returns the interrupt vector number that is assigned to the
corresponding hardware IRQ line (0-15) specified by ‘irq_numb’.
Unaffected.

Use of this function is preferred to hard-coding a constant for the
interrupt vector number of a hardware IRQ line; using this function
protects you against a possible reassignment of the hardware vectors as
the result of some future modification of the file INIT-IDT.C.

void SetISR(int int_numb, ISR isr) ;
Stores a pointer to an ISR into the Interrupt Descriptor Table (IDT).
The interrupt vector number is specified by ‘int_numb’, and a pointer
to the ISR is given by ‘ist’, '
Unaffected.

void *malloc(unsigned long int bytes) ; : -
Identical to the traditional Clibrary function of the same name, except
that this implementation is self contained; that is, it makes no referencs
to objects or functions defined in other modules.
Temporarily disabled during certain critical sections within the func-
tion; original state of interrupt system is restored at end of critica
sections.

void free(void *block) ; Co
Identical to the traditional C library function of the same name, exc
that this implementation is self contained; that is, it makes no ref:
to objects or functions defined in other modules.
Temporarily disabled during certain critical sections within the fir

tion; original state of interrupt system is restored at end of_
sections,

interfunction Jumps (setjmp.asm) 255

The smaller 16.16 format provides a significant speed improvement over that of the
32.32 format, but the latter offers much greater range and precision,

Prototype:

Description:

Interrupts:

Prototype:

Description:.

Interrupis:

Prototype:

Description.

Interrupis:

Prototype:

Description:

Interrupis:

Prototype:

Description:

Interrupts:

FPrototype:

Description:

Interrupts:

Prototype:

Description:

Interrupts:

FIXED32 Inverse32(FIXED32 denominator) ; ,
Returns the 32-bit inverse of a 32-bit fixed-point operand. No error
checking is performed.

Unaffected.

FIXED32 Product32

(FIXED3Z multiplier, FIXED32 multiplicand) ;

Returns the 32-bit product of two 32-bit fixed-point operands. No error
checking is performed.

Unaffected.

FIXED64 Product&4d

(FIXED64 multiplier, FIXED64 multiplicand) ;

Returns the 64-bit product of two 64-bit fixed-point operands. No error
checking is performed.

Unaffected.

FIXED32 Quotient32

(FIXED32 dividend, FIXED32 divisor) ;

Returns the 32-bit quotient of two 32-bit fixed-point operands. No error
checking is performed,

Unaffected.

FIXED32 Sqrt32{FIXED32 radical) ;
Returns the 32-bit square root of a 32-bit fixed-point operand. No error

checking is performed.
Unaffected.

TERFUNCTION JUMPS (SETIMP.ASM)

int setimp(imp_buf) ;

Identical to the traditional C library function of the same name, except
that this implementation is self contained; that is, it makes no reference
to objects or functions defined in other modules.

Unaffected.

void longijmp(jmp_buf, int) ;

Identical to the traditional C library function of the same name, except
that this implementation is self contained; that is, it makes no reference
to objects or functions defined in other modules.

Unaffected.

256 Appendix E The libepc Library

MISCELLANEOUS FUNCTIONS (INIT-CRT.C)

Prototype: void *LastMemoryAddress{void) ;
Description: Returns a pointer to the last byte of physical memory.
Interrupts: Unaffected.

