
EXAM
(Tentamen)

TDDI11
Embedded Software

2022-06-03

On-call (jour):
Ahmed Rezine 013-28 19 38.

General instructions:

• The questions are not ordered according to difficulty.

• You may answer in either English or Swedish.

• It is recommended to read all questions completely before you begin.

• Use a new sheet for each question and use only one side.

• Before you hand in, order the sheets according to the questions, number each sheet,
and fill in your AID-number, date and course code at the top of the page.

• Write clearly. Unreadable text will be ignored.

• Be precise in your statements.

• Clearly motivate all statements and reasoning.

• Explain calculations and solution procedures.

• If in doubt about the question, write down your interpretation and assumptions.

• Grading: U, 3, 4, 5. The preliminary grading thresholds for p points are:

 0 ≤ p < 20: U
 20 ≤ p ≤ 30: 3
 31 ≤ p ≤ 35: 4
 36 ≤ p ≤ 40: 5

Question 1. (10 points)
Use the answer sheet at the end of the exam. No motivation or explanation is required for
this 10-points question. Zero or more statements may be correct for each sub-
question. Tick each statement if and only if it is correct. Ticking a wrong statement
or missing to tick a correct statement gives 0 points for that sub-question.

1a) Memory-mapped I/O communication with peripherals

1. Can be used in polling-based I/O communication (i.e., Programmed I/O).
2. Uses usual memory assembly instructions to communicate with peripherals.
3. Uses special I/O instructions to communicate with peripherals.

1b) An I2C bus:

1. Is a serial bus.
2. Can make use of parity bits.
3. Can only be used between two components.

1c) A soft-real-time embedded system

1. Uses software instead of hardware as in hard-real-time systems.
2. May be correct even if it misses some deadlines.
3. Is not a real time system.

1d) What will be the output from the following C program?

int main() {
 int a[4];
 for(int i=0; i < 4; ++i)
 a[i]= 2*i;
 printf("%d \n", *(a + *(a + 1)));
}

1. 2
2. 4
3. 8

1e) What will be the output from the following C program?

int main() {
 printf("%d \n", (1 + 2) || 4);
}

1. 0
2. 1
3. 7

1f) What will be the output from the following C program?

int main() {
 printf("%d \n", (1 + 2) | 4);
}

1. 0
2. 1
3. 7

1g) The background loop (or super-loop) in a foreground/background model
1. Is an infinite loop that calls the different modules of the system.
2. Cannot be used in the presence of interrupts.
3. Should not include, for a given iteration, more than one call to a given module.

1h) Using a programming model based on finite state machines to capture embedded
programs:

1. Is recommended because it encourages the programmer to systematically think
about the possible transitions.

2. Cannot be done with a sequential programming language like C and is therefore
never used in practice.

3. Requires a programming environment that supports drawing circles for states and
arrows for transitions.

1i) Using a message passing approach to concurrency:
1. Can be used even for processes running on the same machine.
2. Can still result in deadlocks.
3. Avoids simultaneous writes to the same variable.

1j) Concurrent engineering:

1. Makes several teams compete to deliver the best product.
2. Builds cross-functional teams.
3. Eases information sharing.

Question 2. (5 points)
The multi-tasking based approach and the foreground/background based approach are
two different approaches to concurrency. Explain the two approaches and give an
advantage and a disadvantage of each one of them.

Question 3. (5 points)
You are asked to add labels to the transitions of the Mealy machine given in Figure 1 at
the end of the exam according to the following description. Read all paragraphs in this
Question 3 before attempting to complete the Mealy machine. The Mealy machine is
used to detect deadlocks involving two tasks T1 and T2. You can think of the Mealy
machine as a finite state machine describing a program running in a monitor task that
executes concurrently with T1 and T2. You are not asked to describe the tasks T1 and T2.
They may run different code, may have nested loops, if-statements and I/O instructions.

The tasks T1 and T2 share two resources: Ra and Rb. The tasks need exclusive accesses
to Ra and Rb. The monitor-task monitors acquisitions and releases of resources Ra and
Rb by the tasks T1 and T2. The monitor-task does not influence the behaviors of T1
and T2, it only “follows” the calls to acquire and release the resources to check if a
deadlock occurred. A deadlock occurs when both tasks try each to acquire a resource

already acquired by the other task. The Mealy machine has an input alphabet Σ and an
output alphabet Γ, where:

• Σ = {acq1(𝑎), acq1 (𝑏), acq2(𝑎), acq2(𝑏), 𝑟𝑒l1 (𝑎), 𝑟𝑒l1 (𝑏), 𝑟𝑒l2(𝑎),𝑟𝑒l2(𝑏)}, with
acq1 (𝑎) stands for T1 acquiring resource Ra and 𝑟𝑒l2(𝑏) stands for T2
releasing resource Rb, and

• Γ = {ok, dk}: ok stands for “ok behavior” and dk stands for “detected deadlock”.
A task needs to acquire a resource before it can use it. More specifically, T1 needs to call
the method T1.acq(Ra) to acquire resource Ra (in this case, the input acq1 (𝑎) is sent to
the Mealy machine at the beginning of the call to the acq method). If the resource is
available (i.e., not used by another task), the method T1.acq(Ra) succeeds and T1 is
considered to have the resource. At this point, if T2 wants to acquire Ra, it will call
T2.acq(Ra) (hence sending the input acq2(𝑎) to the Mealy machine). In this scenario,
the method T2.acq(Ra)would block (i.e., place T2 in a FIFO queue associated to Ra
and “hang” waiting for the resource Ra to be released). The resource Ra is released when
T1 calls T1.rel(Ra) (sending the input 𝑟𝑒l1(𝑎) to the Mealy machine). After the
release, the oldest request for the resource returns (in this scenario giving T2 access to
Ra). We say that acq is blocking (since it will block until the resource is acquired to the
calling task) and that rel is not blocking. The inputs in Σ are generated in a similar
manner for the other resource. We assume tasks do not try to acquire a resource if they
already have it, and that they do not try to release a resource if they do not have it. You do
not need to add transitions for these situations. Both resources are initially available.

Intuitively, the Mealy machine is meant to monitor any such tasks T1 and T2 and output
“ok” as long as it did not witness a deadlock. As soon as it witnesses a deadlock (even
after an arbitrary number of “ok” steps), the Mealy machine should output “𝑑𝑘” for
deadlock and get to a state that does not have any outgoing transitions1. In Figure 1, there
are 4 such states that correspond to detected deadlocks. The machine has a unique initial
state and may change state only when one of the two tasks tries to acquire or to release a
resource. The machine does not change state when the tasks execute other instructions.
Again, you should not care about the codes of tasks T1 and T2, just about possible input
sequences over Σ and corresponding sequences of outputs over Γ.
Your Mealy machine should capture possible sequences over Σ that could be generated by
arbitrary tasks T1 and T2 satisfying these descriptions. Recall the tasks do not try to
acquire a resource if they already have it, and do not try to release a resource if they do
not have it. Observe the sequences can be arbitrary long. You should decorate all
transitions. The Machine should be deterministic. It is ok if the machine misses some
sequences. Possible runs of your solution (need to be captured by your machine):

Input sequence Output sequence

acq2(𝑏) 𝑟𝑒l2(𝑏) acq2(𝑏) acq2(𝑎) 𝑟𝑒l2(𝑎) 𝑟𝑒l2(𝑏)... ok ok ok ok ok ok...

acq1 (𝑏) 𝑟𝑒l1(𝑏) acq2(𝑎) acq1 (𝑏) 𝑟𝑒l2(𝑎) 𝑟𝑒l1(𝑏)... ok ok ok ok ok ok...

acq1 (𝑎) 𝑟𝑒l1 (𝑎) acq1(𝑎) acq2(𝑏) acq2(𝑎) acq1 (𝑏)... ok ok ok ok ok dk...

1In a real system, the deadlock would be handled by restarting some of the tasks, but this is not considered
here.

Question 4. (5 points)
Assume an embedded system where an “unsigned int” with 32 bits b31…b2b1b0 is used to
represent the hours, minutes and seconds: the first 6 bits b5b4b3b2b1b0 are used for the
seconds (in 0-59), the 6 bits b11b10…b7b6 for the minutes (in 0-59) and bits b16b15…b13b12
for the hours (in 0-23). Write a C function:

unsigned int tick (unsigned int current)

that returns an unsigned short that captures adding one second to the input “current”. Of
course, when the number of seconds is 59, then adding one second results in 0 seconds
and one more minutes. Adding one minute when the number of minutes is 59 results in 0
minutes and one more hour. Adding one hour when the number of hours is 23 results in 0
hours.

Question 5. (5 points)

Explain why maintainability and upgrades are simpler for interrupt based I/O compared
to programmed I/O.

Question 6. (10 points)

Consider a task set with three periodic tasks: task T1 with execution time 1 and period 3;
task T2 with execution time 2 and period 12; and task T3 with execution time 4 and
period 8. All three tasks are ready to run from the beginning and are supposed to run on
the same single processor using some scheduling algorithm.

1. Give the processor utilization ratio in case the tasks are scheduled. (1pt)
2. Can the tasks be scheduled using Preemptive RMS? Explain with a diagram

using 24 time-units from 0 (inclusive) to 24 (exclusive) (3pts)
3. Can the tasks be scheduled using Non-Preemptive Earliest Deadline First (EDF)?

Explain with a diagram using 24 time-units from 0 (inclusive) to 24
(exclusive) (3pts)

4. Can the tasks be scheduled using Preemptive Earliest Deadline First (EDF)?
Explain with a diagram using 24 time-units from 0 (inclusive) to 24
(exclusive) (3pts)

Answer sheet for question 1. Please hand this paper in together with the answers for
the other questions (numbered and with AID number).

1a) () 1 () 2 () 3

1b) () 1 () 2 () 3

1c) () 1 () 2 () 3

1d) () 1 () 2 () 3

1e) () 1 () 2 () 3

1f) () 1 () 2 () 3

1g) () 1 () 2 () 3

1h) () 1 () 2 () 3

1i) () 1 () 2 () 3

1j) () 1 () 2 () 3

𝑎𝑐𝑞1
(𝑎)/𝑜𝑘 𝑟𝑒𝑙1(𝑏)/𝑜𝑘

𝑟𝑒𝑙1(𝑎)/𝑜𝑘

𝑟𝑒 𝑙2(𝑏)/𝑜𝑘

𝑟𝑒𝑙2 (𝑎)/𝑜𝑘
𝑎𝑐𝑞2

(𝑏)/𝑜𝑘

𝑎𝑐𝑞2
(𝑎)/𝑜𝑘

𝑎𝑐𝑞1
(𝑏)/𝑜𝑘

initial

Figure 1. Sketch of a Mealy Machine for Question 6.

