EXAM

(Tentamen)

TDDI11

Embedded Software

2019-06-04 kl: 08-12

On-call (jour):

Ahmed Rezine, 013 - 28 1938

Admitted material:

• Dictionary from English to another language

General instructions:

- The assignments are not ordered according to difficulty.
- You may answer in either English or Swedish.
- Read all assignments carefully and completely before you begin.
- Use a new sheet for each assignment and use only one side.
- Before you hand in, order the sheets according to assignment, number each sheet, and fill in AID-number, date, course code and exam code at the top of the page.
- Write clearly. Unreadable text will be ignored.
- Be precise in your statements.
- Motivate clearly all statements and reasoning.
- Explain calculations and solution procedures.
- If in doubt about the question, write down your interpretation and assumptions.
- Grading: U, 3, 4, 5. The **preliminary** grading thresholds for p points are:

$0 \le p < 20$:	U
$20 \le p \le 30$:	3
$31 \le p \le 35$:	4
$36 \le p \le 40$:	5

Question 1, multiple choice. (10 points)

Use the answer sheet at the end of the exam. No motivation or explanation is required for this 10-points question. **Zero or more statements may be correct for each question**. Tick each statement if and only if it is correct. Ticking a wrong statement or missing to tick a correct statement gives 0 points for that question.

- 1a) Standard I/O communication with peripherals
 - 1. Uses usual memory assembly instructions to communicate with peripherals.
 - 2. Uses special I/O instructions to communicate with peripherals.
 - 3. Are UART based.
- 1b) Correctness of a hard-real-time embedded systems
 - 1. Requires that the computed values are correct.
 - 2. Requires that each computation is carried out as soon as the microcontroller is available.
 - 3. Requires no deadlines are missed.
- 1c) What will be the output from the following C program?

```
#include <stdio.h>
int main() {
        int a[5];
        for(int i=0; i < 5; ++i)
            *(a + i)= i + 1;
        printf("%d \n", *(&a[2] - 1));
}</pre>
```

- 1. 0
- 2. 1
- 3. 2
- 1d) What will be the output from the following C program?

1e) What will be the output from the following C program?

```
#include <stdio.h>
int main() {
          printf("%d \n", (1 | 4) & 13);
}
```

1. 1

3. ~1

- 2. 5
- 3. 13

- 1f) Which of the following statements are correct?
 - 1. The foreground/background model can be implemented without extensive support from an operating system.
 - 2. The foreground/background can be used for simple real-time systems.
 - 3. The foreground/background model has problems with scalability and maintainability.
- 1g) A finite state machine capturing the program controlling an embedded system...
 - 1. should have an initial state
 - 2. should be deterministic
 - 3. should have a final state
- 1h) Some advantages of using a message passing approach to concurrency are that ...
 - 1. It allows fast access to shared memory.
 - 2. It solves the deadlock problem.
 - 3. No need for mutexes to protect individual reads and writes to shared variables.
- 1i) What is the Non-Recurring Engineering (NRE) cost of a product?
 - 1. The one-time cost to hire one more engineer.
 - 2. The one-time cost of designing a system.
 - 3. The onc-time cost for an engineer to reproduce a product.
- 1i) Analog-to-digital converters are
 - 1. Typically simpler than digital-to-analog converters.
 - 2. Typically more complex than digital-to-analog converters.
 - 3. Are rarely used in embedded systems.

Question 2. (4 points)

Clearly explain the difference between little and big-endian representations and describe, in a sentence or two, a situation where translating from one representation to the other is needed.

Question 3. (5 points)

Explain the steps involved when I/O programming using interrupt and when using polling. What is the difference between the two of them in terms of required CPU cycles and hardware support? Explain.

Question 4. (6 points)

Consider a task set with three periodic tasks: Task 1 with period T1=6 and execution time C1=1, Task 2 with period T2=4 and execution time C2=2, and task 3 with period T3=3 and execution time C3=1. All three tasks are to run on the same processor using some scheduling algorithm.

- 1. Give the processor utilization ratio in case the tasks are scheduled (1pt)
- 2. Which task would get the highest priority if Rate Monotonic Scheduling (RMS) is used (1pt)

3. Can the tasks be scheduled using preemptive RMS? Explain with a diagram (2pt).

4. Can the tasks be scheduled using preemptive Earliest Deadline First (EDF)? Explain using a diagram (2pt).

Question 5. (5 points)

Give a Mealy machine (outputs associated to transitions, not states) that takes sequences of 0s and 1s as input. The machine should output 1 when it finished reading a non-empty sequence of ones that is of a length that is divisible by 3 (i.e. sequence of 3, 6, 9, 12, ... of consecutive ones followed by a zero). It should output 0 otherwise. Possible runs of your solution:

Input sequence	Output sequence	
01110000	00001000	
11011100	00000010	
11111100	0000010	
11111110	0000000	

Question 6. (5 points)

Describe the sequence of events that occur when a CPU requests a DMA (Direct Memory Access) controller to buffer data, e.g., disk data, to memory. Describe the main advantages compared to interrupt based I/O.

Question 7. (2 points)

The following macros is meant to compute the sum of two numbers. This macro is not well written. We still want to use a similar macro for computing sums of two numbers. Give an example that would compile but not give the intended result. Rewrite the macro to solve the problem you identified.

#define sum(x,y)(x + y)

Question 8. (3 points)

In this question, you can use bit-level operators: e.g., "&" (and), "|" (or), "<<" (shift left), ">>" (shift right), etc. You are not allowed to use loops, additions, divisions, subtractions or multiplications. Write a C function "int is_8_multiple(unsigned short x)" that returns 1 if the 16-bits unsigned x is a multiple of 8 and 0 otherwise.

Answer sheet for question 1. Please hand this paper in together with the answers for the other questions (numbered and with AID number).

	1a)	() 1	()2	()3
--	-----	------	-----	-----

()2

1j)