© N o o &~ W N

ARCHITECTURES AND PLATFORMS

. Architecture Selection: The Basic Trade-offs

General Purpose vs. Application-Specific Processors
Processor Specialisation

ASIP Design Flow

Tool Support for Processor Specialisation
Application Specific Platforms

IP-Based Design (Design Reuse)

Reconfigurable Systems

1 of 36

Constraints

e *Cnformal Spec_:ificationD‘
y

\L

Modeling |<«——| Functional
* W Simulation

N Formal
Verification

(T>[Arch. Selection < System model -

Y

System

N

archltecture Map*ping
| Estlmatlon 4 Scheduling

-y
—
—
—
~ -
—

(" Softw. moderj—;
\

Softw. Generation

—--
—
—

—
—_—
—

y OK

not OK Fabrication

> OK

Qcheduled mOdJ\ Simulation

Formal
Verification

Simulation

<—<Hardw. modeD
Y

Hardw. Synthesis

Simulation

-« Hardw. blocks)

Tesh Prototype/

J

2 of 36

Architecture Selection and Mapping

Select underlying hardware structure on which to run the modelled system.

Map the functionality captured by the system over the components of the
selected architecture.

Functionality includes processing and communication.

3 of 36

Architecture Selection

General [Use general purpose, existing platform and map the application on it.
Purpose

VS. < or something in-between

Application

Specific |Build customised architecture strictly optimized for the application.

4 of 36

Architecture Selection

General [Use general purpose, existing platform and map the application on it.
Purpose

VS. < or something in-between

Application

Specific |Build customised architecture strictly optimized for the application.

(Use programmable processors running software.
Software
VS. < or both
Hardware fixed

| Use dedicated electronics

reconfigurable

5 of 36

Architecture Selection

General [Use general purpose, existing platform and map the application on it.
Purpose

VS. < or something in-between

Application

Specific |Build customised architecture strictly optimized for the application.

(Use programmable processors running software.
Software

VS. 4 or both

Hardware fixed

reconfigurable

_Use dedicated electronics {

Monoprocessor

Mono vs. Multipr.

Single vs. Multichip single chip

Multiprocessor { multi chip

\

6 of 36

Architecture Selection

The trade-offs:

0 Performance (high speed, low power consumption)

Application specific A high Hardware A high

Reconfigurable
General purpose low hardware

Software low

7 of 36

Architecture Selection
Ihe trade-offs:

0 Performance (high speed, low power consumption)

Application specific A high Hardware A high
Reconfigurable
General purpose low hardware
Software low

0 Flexibility (how easy it is to upgrade or modify)

General purpose high Software A high

Reconfigurable

Application specific low hardware

Hardware low

8 of 36

Architecture Selection

>N
e
A=
o
P
9
[
1)
O
o® === ——-" c
(a I o)
O o £
_ S_Q |||||||||||| -
_ < _
| |
_
| _
! |
! |
_ _ A to
| | G’ - @
_ o !
| _ = £
_ _ "
_ _
_ _ m
o >
| | 43
_ _ _’ O
_ |
- p i i i i
awnsuod G D 2
ABisua < = -
9 9

pnjiubew pnjuBbew
Jo J9p.io Jo J9p.io

9 of 36

General Purpose vs. Application Specific
Processors

m Both GP processors and ASIPs (application specific instruction set
processors) can be RISCs, CISCs, DSPs, microcontrollers, etc.

0 GP processors

- Neither instruction set nor microarchitecture or memory system are
customised for a particular application or family of applications

0 ASIPs

- Instruction set, microarchitecture and/or memory system are
customised for an application or family of applications.

|

Results in better performance and reduced power consumption.

10 of 36

What Makes an ASIP “Specific”?

m Instruction set (IS) specialisation

0 Exclude instructions which are not used

- reduces instruction word length (fewer bits needed for encoding);
- keeps controller and data path simple.

0 Introduce instructions, even “exotic” ones, which are specific to the
application: combinations of arithmetic instructions (multiply-

accumulate), small algorithms (encoding/decoding, filter), vector
operations, string manipulation or string matching, pixel operations, etc.

- reduces code size = reduced memory size, memory bandwidth,
power consumption, execution time.

- increases speed.

11 of 36

What Makes an ASIP “Specific”?

= Funct it and data patl alisati

g Once an application specific IS is defined, this IS can be implemented
using a specific data path and specific function units.

Adaptation of word length.
Adaptation of register number.

Adaptation of functional units

Highly specialised functional units can for string matching and
manipulation, pixel operation, arithmetics, and even complex units
to perform certain sequences of computations (co-processors).

12 of 36

What Makes an ASIP “Specific”?

. alisati

g Number and size of memory banks.

a9 Number and size of access ports.

They both influence the degree of parallelism in memory access.

Having several smaller memory blocks (not one big) increases
parallelism and speed, and reduces power consumption.

Sophisticated memory structures can increase cost and bandwidth
requirement.

0 Cache configuration:

separate instruction/data?
associativity

cache size

line size

13 of 36

What Makes an ASIP “Specific”?

m Interconnect specialization

o Interconnect of functional modules and registers.
d Interconnect to memory and cache.

- How many internal buses?

- What kind of protocol?

- Additional connections increase the potential of parallelism.

14 of 36

What Makes an ASIP “Specific”?

m Interconnect specialization

o Interconnect of functional modules and registers.
d Interconnect to memory and cache.

- How many internal buses?

- What kind of protocol?

- Additional connections increase the potential of parallelism.

m Control specialisation

0 Centralised control or distributed (globally asynchronous)?
7 Pipelining?
0 Out of order execution?

0 Hardwired or microprogrammed?

15 of 36

ASIP Design Flow

Processor :
Architectu re}\ /< Algorlthm(s))
Compiler

|

Simulator

Performance
numbers

16 of 36

ASIP Design Flow

Processor
Architecture

Compiler

|

Simulator

Performanc

numbers

7 Retargetable compiler

0 Configurable simulator

,/<Algorithm(s))

©

In order to be able to generate a specialised architecture you need:

17 of 36

Retargetable Compiler

Processor
Architecture
Retargetable

Compiler

/C Algorithm)

l

<Object code>

m An automatically retargetable compiler can be used for a range of different

target architectures.

The actual code optimization and code generation is done by the compiler,
based on a description of the target processor architecture. This description
is formulated in a, so called, “architecture description language”.

18 of 36

Configurable Simulator

s Such a simulator can be configured for
a particular architecture (based on an
architecture description)

Processor
Architecture

Object code
<) > m The most important output produced by

i the simulator is performance numbers:
Simulator a7 throughput
0 delay

Performance 0 power/energy consumption
numbers

19 of 36

Application Specific Platforms

m Not only processors but also hardware platforms can be specialised for
classes of applications.

The platform will define a certain communication infrastructure (buses and
protocols), certain processor cores, peripherals, accelerators commonly
used in the particular application area, and basic memory structure.

20 of 36

Application Specific Platforms

Not only processors but also hardware platforms can be specialised for
classes of applications.

The platform will define a certain communication infrastructure (buses and

protocols), certain processor cores, peripherals, accelerators commonly

used in the particular application area, and basic memory structure.

-

\
uProc. || uProc. || uProc. || cach DMA M i
Core3 || Core2 || Core1 ache errilory Bridge
System bus
Peripheral bus I ¢ I
_ Recon-
Peripheral | | figurable| | Peripheral
logic
J

21 of 36

Application Specific Platforms

Platform i ~ati
Architecture Appllcatlonsﬁ
Mapping/

Compiling

:

‘ Simulator

:

Performance)
numbers

22 of 36

Instantiating a Platform

m Once we have an application, the chip to implement on will not be designed
as a collection of independently developed blocks, but will be an instance of
an application specific platform.

(Platform)
Archi’lecture
Platform C At
Instance Application)
Mapping/
Compiling
Simulator

Performance
numbers

23 of 36

Instantiating a Platform

m Once we have an application, the chip to implement on will not be designed
as a collection of independently developed blocks, but will be an instance of
an application specific platform.

Platform d The h-ardware platform will
Architecture be refined by
- determining memory
and cache size;

ﬁ]lgtt;%gg Application > - identifying the particu-
Mapping/ lar cores, peripherals;

Compiling - adding specific ASICs,
l accelerators;
Simulator - determining the amount

of reconfigurable logic.

Performance
numbers

24 of 36

System Platforms

m What we discussed about are hardware platforms.

m The hardware platform is delivered together with a software layer:
hardware platform + software layer = system platform.

0 Software layer:
- real-time operating system
- device drivers
- network protocol stack
- compilers

0 The software layer creates an abstraction of the hardware platform (an
application program interface) to be seen by the application programs.

25 of 36

IP-Based Design (Design Reuse)

m The key concept in order to increase designers’ productivity is reuse.

In order to manage the complexity of current large designs we do not start
from scratch but reuse as much as possible from previous designs, or use
commercially available pre-designed IP blocks.

IP: intellectual property.

m Some people call this IP-based design, core-based design, reuse techniques:
The process of producing a system design by reusing existing components.

26 of 36

IP-Based Design

What are the blocks (cores) we reuse?

0 interfaces, encoders/decoders, filters, memories, timers,
microcontroller-cores, DSP-cores, RISC-cores, GP processor-cores.

0 A coreis a design block which is larger than a typical RTL component.

27 of 36

IP-Based Design

Libra Libra
(:VendJyA:> (ZVendJ?éi)
__________________ - e
Com1 <« » Core2 |«——» Core3 :
I
I
i
& T
I
Interconnection bus/switch H‘g /O
o e
glue — |
I
Core 4 :
pprocessor | ~ _ |
Library

CVendor C

28 of 36

Types of Cores

m Hard cores: are fully designed, placed, and routed by the supplier.

}

A completely validated layout with definite timing

}

rapid integration low flexibility

29 of 36

Types of Cores

m Hard cores: are fully designed, placed, and routed by the supplier.

}

A completely validated layout with definite timing

}

rapid integration low flexibility

m Firm cores: technology-mapped gate-level netlists.

}

less predictability flexibility during
place and route

30 of 36

Types of Cores

m Hard cores: are fully designed, placed, and routed by the supplier.

}

A completely validated layout with definite timing

}

rapid integration low flexibility

m Firm cores: technology-mapped gate-level netlists.

}

less predictability flexibility during
place and route

m Soft cores: synthesizable RTL or behavioral descriptions.

!

much work with maximal flexibility
integration and
verification.

31 of 36

Reconfigurable Systems

m Programmable Hardware Circuits:

7 They implement arbitrary combinational or sequential circuits
and can be configured by loading a local memory that determines
the interconnection among logic blocks.

0 Reconfiguration can be applied an unlimited number of times.

= Main applications: |
0 Software acceleration -

0 Prototyping

3 £1E]

3 3B
L ; _E &H_
- fi-E

H
|

| T
|

E

32 of 36

Reconfigurable Systems

. . fiquration:

IR t t
— ¢

__________ f FPGA
--------------- - Accelerator

33 of 36

Reconfigurable Systems
Rynamic reconfiguration: = Spacial partitioning:

What goes into software(uProcessor)
and what into hardware (FPGA)?

FPGA
Accelerator

34 of 36

Reconfigurable Systems
Rynamic reconfiguration: » Temporal partitioning:

At which moment to download which
module into the FPGA?

FPGA
Accelerator

35 of 36

Reconfigurable Systems

Syst Chip witl fiqurable datapath:

On
<> chip
mem.

<> CPU

—}

Reconfigurable

datapath

ca

Profiling &
Kernel
extraction

Y

C Kernels)
Y

Hw/Sw
partitioning

/ \
Datapath

synthesis C code

Y

36 of 36

Example from Texas Instruments (Radar

ASIP platform)

LNA IF ADC 1
LNA IF ADC | Digital
Front-end
LNA IF ADC I (Decimation
filter chain)
LNA IF ADC |
| ADC
{ AP Buffer
Synth Ramp
PA Ao x$ (20 GHz) Generator
Y PA | Ad | Radio (BIST)
| processor
6 - -
(For RF Calibration
——1—~<GPADC | & Selftest —TI
programmed)
| ProgRAM | Data
= Osc VMON Temp & ROM RAM
| Radio processor
sub-system
RF/Analog sub-system | (T1 programmed)

Bus Matrix

Serial Flash interface

QSPI
Cortex R4F
@ 200MHz Py Optional External
MCU interface
(User programmable)
SPI/ 12C PMIC control
Prog RAM Data RAM Boot
(512kB*) (192kB*) ROM DCAN
Primary communication
CANFD interfaces (automotive)
DMA | | ot teerepemaenis
UARTSs
Main sub-system
Test/ JTAG for debug/
(Customer programmed) Debug development
— —— — Mailbox _—— Y — — — — —
LVDS High-speed ADC ou.tput
interface (for recording)
HIL High-speed input for
C674x DSP hardware-in-loop verification
@ 400/600 MHz
L1P L1D
(32kB) | (32kB) L2 (256kB)
DMA CRC
Radar Data Memory

DSP sub-system

(Customer programmed)

1024 kB*

*Up to 512kB of Radar Data Memory can be switched to the Main R4F program and data RAMs

AWR1843 Single-chip 76-GHz to 81-GHz automotive radar sensor integrating DSP, MCU and radar accelerator

37 of 36

Example from Texas Instruments (Radar

ASIP platform)

Different platform instantiation with higher-speed

interfaces (Ethernet), Security, and Lock Step CPU

/1
‘1
1
’
L

Sub-System

Y LNA IF ADC I
\(LNA IF ADC ! Digital
\(| Front-end
LNA IF ADC (Decimation
| Filter Chain)
\(LNA IF ADC i
L % AD |
| ADC
Buffer
% AD | — |
x4 Synth 1 Ramp
(20 GHz)] Generator
PA A® — |
I Radio (BIST)
% AdD | | Processor
(For RF Calibration
| & Self-Test —TI
Programmed)
| ProgRAM | Data
&ROM RAM
= Osc. VMON Temp GPADC Radio Processor

RF/Analog Sub-System

(Tl Programmed)

Bus Matrix

AN

Radar Hardware Accelerator
(FFT. Log mag, and others)

AWR2943 - 2.0MB/
AWR2944 - 2. 5MB

A I
/| /ePADC 2
4 4 T
Main Sub-System /" [~ ao Serial Flash Interface
(Customer Programmed) ’,' K '.
1
7 S Optional External
4 } MCU Interf
ARM Cortex-R5F ; rerace
1 T
(Lock Step)» p SPI/ 2C PMIC Control
@ 300 MHz / \
1 1
1 +
g Primary Communication
Prog | Data | L1Data LZ,RAM CAN'[‘IFD Interfaces (Automotive)
T
Cache | Cache | RAM)
16KB | 16kB | 128kB® | 60KBY Debu For Debug
n UARTs
Il T
DMA y Test/! JTAG for Debug/
Hardware Security Debug Development
Module ® Q\ H
Ethern& 100Mbps Alternate Data
Communication Interface
— < Mailbox b — — — — — — [— — — — —
DSP Sub-System
(Customer Programmed)
C66x DSP Core Aurora High-Speed ADC Output
@ 360 MHz LVDS Interface (for Recording)
High-Speed Interface to
a2 A enable playback of the
captured data
L1P L1D L2
(32KB) | (32KB) (384KB)
DMA CRC Radar Data Memory®

AWR2944 Automotive second-generation, 76-GHz to 81-GHz, high-performance SoC for corner and long-range radar

38 of 36

