
ARCHITECTURES AND PLATFORMS

1. Architecture Selection: The Basic Trade-offs

2. General Purpose vs. Application-Specific Processors

3. Processor Specialisation

4. ASIP Design Flow

5. Tool Support for Processor Specialisation

6. Application Specific Platforms

7. IP-Based Design (Design Reuse)

8. Reconfigurable Systems

1 of 36



System model

Prototype

Informal Specification, 
Constraints

Functional 
SimulationModeling

Testing

Arch. Selection

MappingSystem 
architecture

Estimation

Mapped and 
scheduled model

Scheduling

OK

not OK

OK
Fabricationnot OK

Formal 
Verification

Softw. model

not OK
Simulation

Formal 
Verification

Hardw. model

Softw. Generation Hardw. Synthesis

Softw. blocks Hardw. blocks

Simulation

Simulation

2 of 36



3 of 36

Architecture Selection and Mapping

n Select underlying hardware structure on which to run the modelled system.

n Map the functionality captured by the system over the components of the 
selected architecture.

Functionality includes processing and communication.



Architecture Selection

Build customised architecture strictly optimized for the application.

Use general purpose, existing platform and map the application on it.

or something in-between

General
Purpose
vs.
Application 
Specific

4 of 36



Architecture Selection

Build customised architecture strictly optimized for the application.

Use general purpose, existing platform and map the application on it.

Use programmable processors running software.

Use dedicated electronics
fixed 
reconfigurable

or something in-between

or both

General
Purpose
vs.
Application 
Specific

5 of 36

Software 
vs.
Hardware



Architecture Selection

Build customised architecture strictly optimized for the application.

Use general purpose, existing platform and map the application on it.

Use programmable processors running software.

Use dedicated electronics
fixed 
reconfigurable

Monoprocessor

Multiprocessor
single chip 
multi chip

or something in-between

or both

General
Purpose
vs.
Application 
Specific

6 of 36

Software 
vs.
Hardware

Mono vs. Multipr. 
Single vs. Multichip



Architecture Selection
The trade-offs:

r Performance (high speed, low power consumption)

Application specific

General purpose

Hardware
Reconfigurable 
hardware

Software

high

low

high

7 of 36

low



Architecture Selection
The trade-offs:

r Performance (high speed, low power consumption)

r Flexibility (how easy it is to upgrade or modify)

General purpose 

Application specific

Application specific

General purpose

Hardware
Reconfigurable 
hardware

Software

high

low

high

low

high Software high

low
Reconfigurable 
hardware

Hardware low
8 of 36



Architecture Selection

flexibility

en
er

gy
 

co
ns

um
e

d

low

low

med.

med.

high

high

or
de

ro
f 

m
ag

ni
tu

d
e

or
de

ro
f 

m
ag

ni
tu

d
e ASIC

FPGA

9 of 36

ASIP

GP proc.



General Purpose vs. Application Specific 
Processors

n Both GP processors and ASIPs (application specific instruction set 
processors) can be RISCs, CISCs, DSPs, microcontrollers, etc.

r GP processors
- Neither instruction set nor microarchitecture or memory system are 

customised for a particular application or family of applications

r ASIPs

- Instruction set, microarchitecture and/or memory system are 
customised for an application or family of applications.

Results in better performance and reduced power consumption.

10 of 36



11 of 36

What Makes an ASIP “Specific”?

n Instruction set (IS) specialisation

r Exclude instructions which are not used
- reduces instruction word length (fewer bits needed for encoding);
- keeps controller and data path simple.

r Introduce instructions, even “exotic” ones, which are specific to the 
application: combinations of arithmetic instructions (multiply-
accumulate), small algorithms (encoding/decoding, filter), vector 
operations, string manipulation or string matching, pixel operations, etc.

- reduces code size Þ reduced memory size, memory bandwidth, 
power consumption, execution time.

- increases speed.



12 of 36

What Makes an ASIP “Specific”?

n Function unit and data path specialisation

r Once an application specific IS is defined, this IS can be implemented 
using a specific data path and specific function units.

- Adaptation of word length.

- Adaptation of register number.

- Adaptation of functional units
Highly specialised functional units can for string matching and 
manipulation, pixel operation, arithmetics, and even complex units 
to perform certain sequences of computations (co-processors).



13 of 36

What Makes an ASIP “Specific”?
n Memory specialisation

r Number and size of memory banks.

r Number and size of access ports.

- They both influence the degree of parallelism in memory access.
- Having several smaller memory blocks (not one big) increases 

parallelism and speed, and reduces power consumption.
- Sophisticated memory structures can increase cost and bandwidth 

requirement.

r Cache configuration:

- separate instruction/data?
- associativity
- cache size
- line size



14 of 36

What Makes an ASIP “Specific”?

n Interconnect specialization

r Interconnect of functional modules and registers.

r Interconnect to memory and cache.

- How many internal buses?

- What kind of protocol?

- Additional connections increase the potential of parallelism.



15 of 36

What Makes an ASIP “Specific”?

n Interconnect specialization

r Interconnect of functional modules and registers.

r Interconnect to memory and cache.

- How many internal buses?

- What kind of protocol?

- Additional connections increase the potential of parallelism.

n Control specialisation

r Centralised control or distributed (globally asynchronous)?

r Pipelining?

r Out of order execution?

r Hardwired or microprogrammed?



ASIP Design Flow

Algorithm(s)

Simulator

Processor 
Architecture

Compiler

Performance 
numbers

16 of 36



ASIP Design Flow

Algorithm(s)

Simulator

Processor 
Architecture

Compiler

Performance 
numbers

n In order to be able to generate a specialised architecture you need:

r Retargetable compiler

r Configurable simulator

17 of 36



Retargetable Compiler

Object code

n An automatically retargetable compiler can be used for a range of different 
target architectures.

The actual code optimization and code generation is done by the compiler, 
based on a description of the target processor architecture. This description 
is formulated in a, so called, “architecture description language”.

AlgorithmProcessor 
Architecture

Retargetable 
Compiler

18 of 36



Configurable Simulator

Simulator

Processor 
Architecture

Performance 
numbers

Object code

n Such a simulator can be configured for 
a particular architecture (based on an 
architecture description)

19 of 36

n The most important output produced by 
the simulator is performance numbers:

r throughput
r delay
r power/energy consumption



20 of 36

Application Specific Platforms
n Not only processors but also hardware platforms can be specialised for 

classes of applications.

The platform will define a certain communication infrastructure (buses and 
protocols), certain processor cores, peripherals, accelerators commonly 
used in the particular application area, and basic memory structure.



Application Specific Platforms
n Not only processors but also hardware platforms can be specialised for 

classes of applications.

The platform will define a certain communication infrastructure (buses and 
protocols), certain processor cores, peripherals, accelerators commonly 
used in the particular application area, and basic memory structure.

µProc. 
Core1 DMA Memory Bridge

Peripheral
Recon-

figurable 
logic

System bus

Peripheral bus

CacheµProc. 
Core2

µProc. 
Core3

Peripheral

21 of 36



Application Specific Platforms

Design space exploration for platform definition:

Platform 
Architecture

Mapping/ 
Compiling

Simulator

Performance 
numbers

Applications

22 of 36



Instantiating a Platform

Simulator

Platform 
Instance

Mapping/ 
Compiling

Performance 
numbers

Application

n Once we have an application, the chip to implement on will not be designed
as a collection of independently developed blocks, but will be an instance of
an application specific platform.

Platform 
Architecture

23 of 36



Instantiating a Platform
n Once we have an application, the chip to implement on will not be designed

as a collection of independently developed blocks, but will be an instance of
an application specific platform.

Simulator

Platform 
Instance

Mapping/ 
Compiling

Performance 
numbers

Application

Platform 
Architecture

r The hardware platform will 
be refined by

- determining memory 
and cache size;

- identifying the particu-
lar cores, peripherals;

- adding specific ASICs, 
accelerators;

- determining the amount 
of reconfigurable logic.

24 of 36



25 of 36

System Platforms

n What we discussed about are hardware platforms.

n The hardware platform is delivered together with a software layer: 
hardware platform + software layer = system platform.

r Software layer:
- real-time operating system
- device drivers
- network protocol stack
- compilers

r The software layer creates an abstraction of the hardware platform (an 
application program interface) to be seen by the application programs.



26 of 36

IP-Based Design (Design Reuse)

n The key concept in order to increase designers’ productivity is reuse.

In order to manage the complexity of current large designs we do not start
from scratch but reuse as much as possible from previous designs, or use
commercially available pre-designed IP blocks.

IP: intellectual property.

n Some people call this IP-based design, core-based design, reuse techniques: 
The process of producing a system design by reusing existing components.



27 of 36

IP-Based Design

What are the blocks (cores) we reuse?

r interfaces, encoders/decoders, filters, memories, timers, 
microcontroller-cores, DSP-cores, RISC-cores, GP processor-cores.

r A core is a design block which is larger than a typical RTL component.



IP-Based Design

Core 1 Core 2 Core 3

Library 
Vendor A

Interconnection bus/switch

Library 
Vendor B

µprocessor

Library 
Vendor C

In
te

rfa
ce

I/O

glue glue glue

glue

Core 4

28 of 36



Types of Cores

n Hard cores: are fully designed, placed, and routed by the supplier.

A completely validated layout with definite timing

rapid integration low flexibility

29 of 36



Types of Cores

n Hard cores: are fully designed, placed, and routed by the supplier.

A completely validated layout with definite timing

n Firm cores: technology-mapped gate-level netlists.

rapid integration low flexibility

less predictability flexibility during 
place and route

30 of 36



Types of Cores

n Hard cores: are fully designed, placed, and routed by the supplier.

A completely validated layout with definite timing

n Firm cores: technology-mapped gate-level netlists.

n Soft cores: synthesizable RTL or behavioral descriptions.

rapid integration low flexibility

less predictability flexibility during 
place and route

much work with
integration and
verification.

maximal flexibility

31 of 36



Reconfigurable Systems

n Programmable Hardware Circuits:
r They implement arbitrary combinational or sequential circuits

and can be configured by loading a local memory that determines 
the interconnection among logic blocks.

r Reconfiguration can be applied an unlimited number of times.

n Main applications:

r Software acceleration
r Prototyping

32 of 36



Reconfigurable Systems

Dynamic reconfiguration:

---------------

---------------

---------------

µProcessor Memory

FPGA
Accelerator

33 of 36



Reconfigurable Systems

Dynamic reconfiguration: n Spacial partitioning:
What goes into software(µProcessor) 
and what into hardware (FPGA)?

---------------

---------------

---------------

µProcessor Memory

FPGA
Accelerator

34 of 36



Reconfigurable Systems

Dynamic reconfiguration:

---------------

---------------

---------------

µProcessor Memory

FPGA
Accelerator

at t1

at t2

at t3

at t4

temporally

35 of 36

partiti
oned

n Temporal partitioning:
At which moment to download which 
module into the FPGA?



Reconfigurable Systems

System on Chip with reconfigurable datapath:

Reconfigurable 
datapath

On
chip
mem.

CPU

C code

Profiling & 
Kernel 

extraction

Hw/Sw 
partitioning

Kernels

C codeDatapath 
synthesis

36 of 36



Example from Texas Instruments (Radar 
ASIP platform)

37 of 36AWR1843 Single-chip 76-GHz to 81-GHz automotive radar sensor integrating DSP, MCU and radar accelerator



Example from Texas Instruments (Radar 
ASIP platform)

38 of 36

Different platform instantiation with higher-speed 
interfaces (Ethernet), Security, and Lock Step CPU

AWR2944 Automotive second-generation, 76-GHz to 81-GHz, high-performance SoC for corner and long-range radar


