
TIMED & HYBRID AUTOMATA

1. Restrictions of the synchronous FSM model

2. Timed automata

3. Timed automata as a particular case of hybrid automata

4. Hybrid automata

1 of 36



2 of 36

Restrictions/Assumptions with synchronous FSM

n FSMs react to inputs and generate, as response, outputs.

n The inputs are either present or absent; when inputs are present, the FSM 
reacts and generates outputs.

n Between the time instants when inputs are present, nothing interesting 
occurs; at each instant when inputs occur, a reaction (outputs) is computed 
instantly by the FSM.

n FSMs operate in a sequence of discrete reactions.

n The clock can be explicitly modelled as a FSM delivering ticks for the whole 
system; all transitions in the system are synchronised on this clock tick. 
Time (non-negative integer) is captured counting these clock ticks Þ
discrete time model.



Example FSM: Thermostat

r Signal temperature is received
at certain instants of time from
a sensor;

r When input temperature is 
received and the guard on the 
transition is true, the system 
generates an output.

n Input event: {temperature}
initial state

n Outputs: {heat_on, heat_off}

n States: {S0, S1}

r S0: system cools (heating off)
r S1: system is heating

temperature£18/heat_on

3 of 36

S0 S1

temperature³22/heat_off

n We want to keep the temperature 
close to 20°;

n To avoid chattering (turning on and 
off rapidly, all the time), we allow 
temperature to be inside a band 
(technique called hysteresis).



4 of 36

Timed Automata

n For modeling real-time asynchronous systems, continuous time models are 
the natural representation.

n Real-time systems require measuring the passage of (continuous) time and 
performing actions at specific times.



Timed Automata

n For modeling real-time asynchronous systems, continuous time models are 
the natural representation.

n Real-time systems require measuring the passage of (continuous) time and 
performing actions at specific times.

n In timed automata time is considered a continuous quantity. No global 
synchronisation, in the sense of a unique clock, is assumed.

n Timed automata are an extension of the FSM model which allows modelling 
of certain real-time systems and formal reasoning about time.

r A timed automaton is a finite automaton (similar to a FSM) augmented 
with a finite set of real-valued clocks.

5 of 36



Example: Thermostat with Timed Automata

n Clock: x

n Input event: {temperature}

n Outputs: {heat_on, heat_off}

n States: {S0, S1}

r S0: system cools (heating off)
r S1: system is heating

n We use a single temperature threshold - the desired level of 20°;
To avoid chattering, the heater remains on/off for a minimum required time T.

temperature£20 & x³T, heat_on!, x:=0

S0 S1

temperature³20 & x³T, heat_off!, x:=0

6 of 36

initial state
x:=T



7 of 36

Example: Thermostat with Timed Automata

time

time

time

t

cl
oc

k

T

on off onon off
output

te
m

pe
ra

tu
re

20
0

0

0
x

t

t

input

initial state
temperature£20 & x³T, heat_on!, x:=0

S0 S1

temperature³20 & x³T, heat_off!, x:=0

x:=T



8 of 36

Example: Gate Control System

Specification:

r When the train approaches, it sends signal app at least 2 minutes 
before it enters the crossing; after leaving the crossing it sends signal 
out; it leaves the crossing maximum 5 minutes after signalling app.

r When the controller gets signal app it closes the gate, which takes at 
least 1 minute, but less than 2; then it waits for signal out; when out 
arrives it opens the gate within maximum 1 minute.



Example: Gate Control System

S0 1
R0

R3

9 of 36

R2

x<5 
S

S2

x£5

app!, x:=0

2 £
x < 5

ou
t!,

x£
5

app?, y:=0 R1 y<2

out?, y:=0y£1
o p

en
ed

!,
y£

1

cl
os

ed
!,1
£y

<2

Train Gate controller x, y: clocks

S0: train far away
S : train approaching1
S2: train crossing

R0: controller waiting
R1: train approaching
R2: gate is down
R3: train has left



Example: Gate Control System

n Once the above model is realised, one can formally verify (e.g. using model 
checking tools) properties such as: the train will only be in state S2 
(crossing) when, simultaneously, the gate is in R2 (down).

S0 1
R0

R3

10 of 36

R2

x<5 
S

S2

x£5

app!, x:=0

2 £
x < 5

ou
t!,

x£
5

app?, y:=0 R1 y<2

out?, y:=0y£1
o p

en
ed

!,
y£

1

cl
os

ed
!,1
£y

<2

Train Gate controller x, y: clocks

S0: train far away
S : train approaching1
S2: train crossing

R0: controller waiting
R1: train approaching
R2: gate is down
R3: train has left



Timed Automata: Rules/Properties

n Transitions are instantaneous; time elapses when the automaton is in a state.

S0 1
R0

R3

11 of 36

R2

x<5 
S

S2

x£5

app!, x:=0

2 £
x < 5

ou
t!,

x£
5

app?, y:=0 R1 y<2

out?, y:=0y£1
o p

en
ed

!,
y£

1

cl
os

ed
!,1
£y

<2

Train Gate controller x, y: clocks

S0: train far away
S : train approaching1
S2: train crossing

R0: controller waiting
R1: train approaching
R2: gate is down
R3: train has left



Timed Automata: Rules/Properties

n Transitions are instantaneous; time elapses when the automaton is in a state.

n When a transition occurs clocks can be reset.

S0 1
R0

R3 R2

x<5 
S

S2

x£5

app!, x:=0

2 £
x < 5

ou
t!,

x£
5

app?, y:=0 R1 y<2

out?, y:=0y£1
o p

en
ed

!,
y£

1

cl
os

ed
!,1
£y

<2

Train Gate controller x, y: clocks

S0: train far away
S : train approaching1
S2: train crossing

R0: controller waiting
R1: train approaching
R2: gate is down
R3: train has left

12 of 36



Timed Automata: Rules/Properties

n Transitions are instantaneous; time elapses when the automaton is in a state.

n When a transition occurs clocks can be reset.

n Time passes at the same rate for all clocks.

n When a transition occurs, signals (events) can be generated.

S0 1
R0

R3 R2

x<5 
S

S2

x£5

app!, x:=0

2 £
x < 5

ou
t!,

x£
5

app?, y:=0 R1 y<2

out?, y:=0y£1
o p

en
ed

!,
y£

1

cl
os

ed
!,1
£y

<2

Train Gate controller x, y: clocks

S0: train far away
S : train approaching1
S2: train crossing

R0: controller waiting
R1: train approaching
R2: gate is down
R3: train has left

13 of 36



Timed Automata: Rules/Properties

n Transitions can have associated guards expressed as conditions on clock 
values; the transition can be taken only if the current values of the clocks 
satisfy the guard.

S0 1
R0

R3 R2

x<5 
S

S2

x£5

app!, x:=0

2 £
x < 5

ou
t!,

x£
5

app?, y:=0 R1 y<2

out?, y:=0y£1
o p

en
ed

!,
y£

1

cl
os

ed
!,1
£y

<2

Train Gate controller x, y: clocks

S0: train far away
S : train approaching1
S2: train crossing

R0: controller waiting
R1: train approaching
R2: gate is down
R3: train has left

14 of 36



Timed Automata: Rules/Properties

n Transitions can have associated guards expressed as conditions on clock 
values; the transition can be taken only if the current values of the clocks 
satisfy the guard.

n Transitions can have input signals (events) associated; when the signal 
arrives and the associated guard is satisfied, the transition will be taken.

S0 1
R0

R3 R2

x<5 
S

S2

x£5

app!, x:=0

2 £
x < 5

ou
t!,

x£
5

app?, y:=0 R1 y<2

out?, y:=0y£1
o p

en
ed

!,
y£

1

cl
os

ed
!,1
£y

<2

Train Gate controller x, y: clocks

S0: train far away
S : train approaching1
S2: train crossing

R0: controller waiting
R1: train approaching
R2: gate is down
R3: train has left

15 of 36



Timed Automata: Rules/Properties

n Transitions can have associated guards expressed as conditions on clock 
values; the transition can be taken only if the current values of the clocks 
satisfy the guard.

n Transitions can have input signals (events) associated; when the signal 
arrives and the associated guard is satisfied, the transition will be taken.

n States can have associated invariants, expressed as conditions on the 
clocks; the automaton can stay in that state as long as the invariant is true.

S0 1
R0

R3 R2

x<5 
S

S2

x£5

app!, x:=0

2 £
x < 5

ou
t!,

x£
5

app?, y:=0 R1 y<2

out?, y:=0y£1
o p

en
ed

!,
y£

1

cl
os

ed
!,1
£y

<2

Train Gate controller x, y: clocks

S0: train far away
S : train approaching1
S2: train crossing

R0: controller waiting
R1: train approaching
R2: gate is down
R3: train has left

16 of 36



17 of 36

Timed Automata: Rules/Properties

n Like FSMs, timed automata can be extended with variables.

r Actions on variables can be associated to transitions.
r Guards expressed as conditions on the variables can be associated to 

transitions



18 of 36

Timed Automata: Rules/Properties

n Like FSMs, timed automata can be extended with variables.

r Actions on variables can be associated to transitions.
r Guards expressed as conditions on the variables can be associated to 

transitions

n Timed automata are, by definition, infinite state models: At any time moment, 
the state of the system is defined not only by the actual state in the state 
machine (e.g. S0, S1, etc.), but also by the current values of the clocks!

However, for verification, timed automata admit finite state representations
(by exploiting equivalence relations on certain portions of the state space)!

r Model checking techniques can be used to prove properties of timed 
automata.

r The state explosion problem is more severe than for synchronous con-
current FSMs!



19 of 36

Hybrid Automata

n Timed automata are FSMs with addition of clocks.

n A clock is a continuous variable whose value can be described by the 
differential equation: x·(t) = 1 .



20 of 36

Hybrid Automata

n Timed automata are FSMs with addition of clocks.

n A clock is a continuous variable whose value can be described by the 
differential equation: x·(t) = 1 .

n Timed automata are, in fact, the simplest form of hybrid automata.

n Hybrid automata are FSMs combined with a finite set of continuous variables 
whose values are described by a set of ordinary differential equations.



The Thermostat as a Hybrid Automaton

n In the above model, the equation describing the continuous variable 
representing clock x is made explicit. This model is completely equivalent 
with the one based on Timed Automata.

initial state
temperature£20 & x(t)³T, heat_on!, x(t):=0

21 of 36

temperature³20 & x(t)³T, heat_off!, x(t):=0

x:=T
S0

x·(t) = 1

S1

x·(t) = 1



Hybrid Automata: Rules/Properties

initial state
temperature£20 & x(t)³T, heat_on!, x(t):=0

temperature³20 & x(t)³T, heat_off!, x(t):=0

n Hybrid Automata associate with each state of an FSM a dynamic behavior.
n The dynamic behavior in each state is specified by a state refinement; a state 

refinement describes the dynamics of the outputs as a function of the inputs.

n State refinements are specified as ordinary differential equations.

x:=T
S0

x·(t) = 1

S1

x·(t) = 1

22 of 36



Hybrid Automata: Rules/Properties

initial state
temperature£20 & x(t)³T, heat_on!, x(t):=0

temperature³20 & x(t)³T, heat_off!, x(t):=0

n Hybrid Automata associate with each state of an FSM a dynamic behavior.
n The dynamic behavior in each state is specified by a state refinement; a state 

refinement describes the dynamics of the outputs as a function of the inputs.

n State refinements are specified as ordinary differential equations.

n Transitions can have associated guards, assignments to variables, outputs...
n Hybrid automata are extremely strong in their expressive power; they 

combine discrete and continuous behavior in one single model.

x:=T
S0

x·(t) = 1

S1

x·(t) = 1

23 of 36



Example: Water Tank

v1
x2 
v2

x1

r1

24 of 36

r2

r n Each tank is leaking at constant rate (r1, r2).

n Water is added at a constant rate r.

n One tank is filled at a time; filling switches 
from one tank to the other in zero time.

n The goal is to keep the water volume above v1 
and v2 respectively.

n The current water volme is x1, x2.



Example: Water Tank

x1 

v1
x2 
v2

r1r2

r

x1 £ v1, fill1!

S1

initial state

25 of 36

S2

x2 £ v2, fill2!

x1 ³ v1 & x2 ³ v2

n Inputs: {x1, x2}

n Outputs: {fill1, fill2}

n States: {S1, S2}
r S1: tank 1 is filled
r S2: tank 2 is filled



Example: Water Tank

v1
x2 
v2

x1

r1r2

r

x1(t) £ v1, fill1!

S1

initial state

26 of 36

S2

x·1(t) = r – r1
x·2(t) = –r2 x·2(t) = r – r2

x·1(t) = –r1

x2(t) £ v2, fill2!

x1 (0)³ v1 & x2 (0)³ v2

n Inputs: {x1, x2}

n Outputs: {fill1, fill2}

n States: {S1, S2}
r S1: tank 1 is filled
r S2: tank 2 is filled



Example: Water Tank

v1
x2 
v2

x1

r1r2

r

x1(t) £ v1, fill1!

S1

initial state

27 of 36

S2

x·1(t) = r – r1
x·2(t) = –r2 x·2(t) = r – r2

x·1(t) = –r1

x2(t) £ v2, fill2!

x1 (0)³ v1 & x2 (0)³ v2

n Inputs: {x1, x2}

n Outputs: {fill1, fill2}

n States: {S1, S2}
r S1: tank 1 is filled
r S2: tank 2 is filled

n The system might reach a situation (when 
water level is very close to the target) in 
which the number of switches per time unit 
is continuously increasing (Zeno system).



Example: Water Tank

fil
l2

3210

1.0

0.8

0.6

0.4

0.2

time

vo
lu

m
e

time0
t

Tank_2

28 of 36

Tank_1

fil
l1

fil
l2

 
fil

l1
4

...

This is a simulation considering:
r Leaking rates: r1=r2= 0.5
r Water inflow rate: r= 0.75
r Keep the water above v1=v2=0
r Initial level: x1(0)=0, x2(0)=1

n Since r is too small, both tanks 
will, eventually, become empty.

n As the tanks come close to the 0 
level, the number of switches 
per time unit increases.



29 of 36

Example: Water Tank

fil
l2

43210

1.0

0.8

0.6

0.4

0.2

time

vo
lu

m
e

time0
t

Tank_2
Tank_1

fil
l1

fil
l2

 
fil

l1...

This is a simulation considering:
r Leaking rates: r1=r2= 0.5
r Water inflow rate: r= 0.75
r Keep the water above v1=v2=0
r Initial level: x1(0)=0, x2(0)=1

n Since r is too small, both tanks 
will, eventually, become empty.

n As the tanks come close to the 0 
level, the number of switches 
per time unit increases.

n With such a Hybrid Automata 
model, one can use formal veri-
fication to answer questions 
like: will tank_1 become empty 
before time 7? You cannot ask 
this with a simple timed automa-
ta model (since the flow equa-
tions are not part of the model).



Example: Water Tank
n In order to avoid Zeno behaviour one possible solution is to allow switches 

only after the system spent a minimum amount of time t in a state.

S1 S2

30 of 36

x·1(t) = r – r1
x·2(t) = –r2 x·2(t) = r – r2

x·1(t) = –r1

initial state
x2(t) £ v2&s(t) ³ t, fill2!, s(t):=0

x1 (0)³ v1 & x2 (0)³ v2, s(t):=0

s·(t) = 1 s·(t) = 1

x1(t) £ v1&s(t) ³ t, fill1!, s(t):=0



31 of 36

Hybrid Automata: Final Comments

n Hybrid automata models can be used for simulation and formal verification.

n Hybrid automata, like timed automata, are, by definition, infinite state 
models. However, they admit a finite state representation (by exploiting 
equivalence relations on certain portions of the state space)!

r Model checking techniques can be used to prove properties of hybrid 
automata.

r The state explosion problem is more severe than for timed automata!

n Available frameworks/tools: Ptolemy II, HyTech.



32 of 36

What Modeling Approach to Choose?
n It depends on the characteristics of the system:

r control or data flow dominated;

r synchronous or asynchronous; centralised or distributed;

r how large?

r what aspects related to timing are we interested in?

- - - - - - - - - - - - - - - - - -



33 of 36

What Modeling Approach to Choose?
n It depends on the characteristics of the system:

r control or data flow dominated;

r synchronous or asynchronous; centralised or distributed;

r how large?

r what aspects related to timing are we interested in?

- - - - - - - - - - - - - - - - - -
n It depends on what you intend to do with the model:

r simulation

r formal verification

r automatic synthesis

- - - - - - - - - - - - - - - - - -



34 of 36

What Modeling Approach to Choose?
n It depends on the characteristics of the system:

r control or data flow dominated;

r synchronous or asynchronous; centralised or distributed;

r how large?

r what aspects related to timing are we interested in?

- - - - - - - - - - - - - - - - - -
n It depends on what you intend to do with the model:

r simulation

r formal verification

r automatic synthesis

- - - - - - - - - - - - - - - - - -
n It depends on what tools you have available and which approach you (or 

your company or your boss!) prefer.



35 of 36

What Modeling Approach to Choose?

n Don’t use the “strongest”! Go for exactly that expressive power you need; 
not more!

r Large expressive power:

- Can specify “anything”.
- No formal reasoning possible (or extremely complex).

r Limited expressive power, based on well chosen computation model:

- Only particular systems can be specified.
- Formal reasoning is possible.
- Efficient implementation



36 of 36

Modeling Languages

n The choice of a modeling language is, to a large extent, connected to the 
choice of the modeling approach.

This, because certain modeling languages are strongly connected to a 
particular model of computation:

r Communicating asynchronous state machines: SDL, Lotos

r Synchronous FSM systems: Esterel, StateCharts;

r Dataflow computation: Matlab, Lustre, Silage

r Discrete event: SystemC, VHDL, Verilog


