
SYNCHRONOUS FSMs & SYNCHRONOUS
LANGUAGES

1. FSM and Extended FSM models

2. The State Explosion Problem

3. Hierarchical Concurrent FSMs

4. Time and Synchrony

5. Synchronous/Reactive Languages

6. How to Implement a Synchronous System? Problems.

1 of 81

2 of 81

Finite State Machines

n The system is characterised by explicitly depicting its states as well as the
transitions from one state to another.

n One particular state is specified as the initial one

n States and transitions are in a finite number.

n Transitions are triggered by input events.

n Transitions generate outputs.

n FSMs are suitable for modeling control dominated reactive systems (react on
inputs with specific outputs)

FSM Example-1

Elevator controller

n Input events: {r1, r2, r3}

r ri: request from floor i.

n Outputs: {d2, d1, n, u1, u2}

r di: go down i floors
r ui: go up i floors
r n: stay idle

n States: {S1, S2, S3}

r Si: elevator is at floor i.

S1

S3

S2
r2/u1

input event output

r /d1 1

r2/n

r3/n

r1/n

r 2/
d 1

r 3/
u 1

r3 /u
2r1 /d

2initial state

3 of 81

4 of 81

Extended Finite State Machines

n Variables can be associated to the FSM.

r Changes to variables specified as actions associated to transitions.
r Extended FSMs are suitable for systems which are both control and

computation intensive.

n Guards (expressed as conditions) may be specified for transitions: The
transition is performed when the associated event(s) occur and if the
associated guard is true

FSM Example-1 Modified

Elevator controller with extended FSM

n We associate to the FSM a variable storing the current floor.

S

ri[curr_floor < i]/curr_floor:=i;ui-curr_floor

ri[curr_floor > i]/curr_floor:=i;dcurr_floor-i

ri[curr_floor = i]/n

initial state curr_floor:=1

input event guard action&output

5 of 81

FSM Example-1 Modified

Elevator controller with extended FSM

n We associate to the FSM a variable storing the current floor.

n You might wonder: Do we really have one single state of the system?

S

ri[curr_floor < i]/curr_floor:=i;ui-curr_floor

ri[curr_floor > i]/curr_floor:=i;dcurr_floor-i

ri[curr_floor = i]/n

initial state curr_floor:=1

input event guard action&output

6 of 81

FSM Example-1 Modified

Elevator controller with extended FSM

n We associate to the FSM a variable storing the current floor.

n You might wonder: Do we really have one single state of the system?
Of course not!

The global system state is now encoded in the FSM state and the value of the
associated variable.

S

ri[curr_floor < i]/curr_floor:=i;ui-curr_floor

ri[curr_floor > i]/curr_floor:=i;dcurr_floor-i

ri[curr_floor = i]/n

initial state curr_floor:=1

input event guard action&output

7 of 81

FSM Example-2

Parking counter

n Input events: {in, out}

r in: car enters;
r out: car leaves.

n Outputs: {1, 2, 3, ... N}

r i: display value i

n States: {S0, S1, S2, ... SN}

r Si: i cars in the parking.

S0 S1 S2 S3 ...

8 of 81

initial state
in&!out/1 in&!out/2 in&!out/3

out&!in/0 out&!in/1 out&!in/2

SN

out&!in/N-1

in&!out/N

FSM Example-2

Parking counter with extended FSM

n We associate to the FSM a variable c storing the number of cars.

S

in&!out[c < N]/c:=c+1;c

9 of 81

initial state c:=0

out&!in[c > 0]/c:=c-1;c

10 of 81

State Explosion

n Complex systems tend to have very large number of states. This particularly
is the case in the presence of concurrency.
The phenomenon is called state explosion.

n Every global state of a concurrent system must be represented individually
Þ interleaving of independent actions leads to exponential number of states.

n Expressing such a system as a FSM (or extended FSM) is very difficult.

State Explosion
Example
After starting the system, it waits simultaneously for event a followed by x, and
event b followed by y. Events can arrive in any order, except that x follows a and
y follows b. Once the events are received, output o is emitted. Then the system
waits for the reset signal r to return into the initial state.

n Input events: {a, b, x, y, r}

n Output: {o}

n States: {S0, S1, ..., S8}

wait for a
wait for x

wait for b
wait for y

emit o
wait for r

11 of 81

State Explosion

S0

S1 S2

S4 S5

S3

S6 S7

a&!b
a&b

b&!a
x&

!b

x&b

b

y&!a

y&
a

ax&y/o

x/o

y/o

b&!x a&!y

x&
!y

y&!x

initial state

r

wait for a
wait for x

wait for b
wait for y

emit o
wait for r

S8
12 of 81

State Explosion

S0

S1 S2

S4 S5

S3

S6 S7

a&!b
a&b

b&!a
x&

!b

x&b

b

y&!a

y&
a

ax&y/o

x/o

y/o

b&!x a&!y

x&
!y

y&!x

initial state

r

wait for a
wait for x

wait for b
wait for y

emit o
wait for r

a

S8
13 of 81

State Explosion

S0

S1 S2

S4 S5

S3

S6 S7

a&!b
a&b

b&!a
x&

!b

x&b

b

y&!a

y&
a

ax&y/o

x/o

y/o

b&!x a&!y

x&
!y

y&!x

initial state

r

wait for a
wait for x

wait for b
wait for y

emit o
wait for r

a b

S8
14 of 81

State Explosion

S0

S1 S2

S4 S5

S3

S6 S7

a&!b
a&b

b&!a
x&

!b

x&b

b

y&!a

y&
a

ax&y/o

x/o

y/o

b&!x a&!y

x&
!y

y&!x

initial state

r

wait for a
wait for x

wait for b
wait for y

emit o
wait for r

a b x

S8
15 of 81

State Explosion

S0

S1 S2

S4 S5

S3

S6 S7

a&!b
a&b

b&!a
x&

!b

x&b

b

y&!a

y&
a

ax&y/o

x/o

y/o

b&!x a&!y

x&
!y

y&!x

initial state

r

wait for a
wait for x

wait for b
wait for y

emit o
wait for r

a b x y

S8
16 of 81

State Explosion

S0

S1 S2

S4 S5

S3

S6 S7

a&!b
a&b

b&!a
x&

!b

x&b

b

y&!a

y&
a

ax&y/o

x/o

y/o

b&!x a&!y

x&
!y

y&!x

initial state

r

wait for a
wait for x

wait for b
wait for y

emit o
wait for r

a b x y r

S8
17 of 81

State Explosion

S0

S1 S2

S4 S5

S3

S6 S7

a&!b
a&b

b&!a
x&

!b

x&b

b

y&!a

y&
a

ax&y/o

x/o

y/o

b&!x a&!y

x&
!y

y&!x

initial state

r

wait for a
wait for x

wait for b
wait for y

emit o
wait for r

S8
18 of 81

State Explosion

S0

S1 S2

S4 S5

S3

S6 S7

a&!b
a&b

b&!a
x&

!b

x&b

b

y&!a

y&
a

ax&y/o

x/o

y/o

b&!x a&!y

x&
!y

y&!x

initial state

r

wait for a
wait for x

wait for b
wait for y

emit o
wait for r

b

S8
19 of 81

State Explosion

S0

S1 S2

S4 S5

S3

S6 S7

a&!b
a&b

b&!a
x&

!b

x&b

b

y&!a

y&
a

ax&y/o

x/o

y/o

b&!x a&!y

x&
!y

y&!x

initial state

r

wait for a
wait for x

wait for b
wait for y

emit o
wait for r

b (y a)

S8
20 of 81

State Explosion

S0

S1 S2

S4 S5

S3

S6 S7

a&!b
a&b

b&!a
x&

!b

x&b

b

y&!a

y&
a

ax&y/o

x/o

y/o

b&!x a&!y

x&
!y

y&!x

initial state

r

wait for a
wait for x

wait for b
wait for y

emit o
wait for r

b (y a) x

S8
21 of 81

State Explosion

S0

S1 S2

S4 S5

S3

S6 S7

a&!b
a&b

b&!a
x&

!b

x&b

b

y&!a

y&
a

ax&y/o

x/o

y/o

b&!x a&!y

x&
!y

y&!x

initial state

r

wait for a
wait for x

wait for b
wait for y

emit o
wait for r

b (y a) x r

S8
22 of 81

23 of 81

Hierarchical Concurrent Finite State Machines

n There are two important mechanisms that reduce the size of an FSM model:

1. Hierarchy

2. Concurrency

Important

r Using Hierarchy and concurrency we only reduce the size of the
graphical or textual model; the intrinsic complexity - the number of
states of the actual system - cannot be reduced.

r However, the difficulty of realising the model is drastically reduced.

24 of 81

Hierarchical Concurrent Finite State Machines

Hierarchy

r A single state S can represent an enclosed state machine F:

Being in state S means that state machine F is active Þ the system is
in one of the states of the state machine F (or states).

25 of 81

Hierarchical Concurrent Finite State Machines

Hierarchy

r A single state S can represent an enclosed state machine F:

Being in state S means that state machine F is active Þ the system is
in one of the states of the state machine F (or states).

Concurrency

r Two or more state machines are viewed as being simultaneously active
Þ the system is in one state of each parallel state machine
simultaneously (and states).

Hierarchical Concurrent Finite State Machines
Statecharts is a graphical language for hierachical concurrent FSMs

Y
A B

D

C

G

H

Ia

E
c/x

F
b

a

x d/o

e

concurrency

26 of 81

hi
er

ac
hy

Hierarchical Concurrent Finite State Machines
Statecharts is a graphical language for hierachical concurrent FSMs
n System enters state Y Þ it will be in both A and B.

Y
A B

D

C

G

H

Ia

27 of 81

E
c/x

F
b

a

x d/o

e

Hierarchical Concurrent Finite State Machines
Statecharts is a graphical language for hierachical concurrent FSMs
n System enters state Y Þ it will be in both A and B.
n A consists of D and C; C is initial state for A.

D consists of E and F; E is initial state for D.
n B consists of G, I, and H; H is initial state for B.

Y
A B

D

C

G

H

Ia

28 of 81

E
c/x

F
b

a

x d/o

e

Hierarchical Concurrent Finite State Machines
Statecharts is a graphical language for hierachical concurrent FSMs
n System enters state Y Þ it will be in both A and B.
n A consists of D and C; C is initial state for A.

D consists of E and F; E is initial state for D.
n B consists of G, I, and H; H is initial state for B.

Y
A B

D

C

G

H

Ia

E
c/x

F
b

a

x d/o

e

Entering Y, the system
will be simultaneously
in C and H;

29 of 81

Hierarchical Concurrent Finite State Machines

Y
A B

D

C

G

H

Ia

30 of 81

E
c/x

F
b

a

x d/o

e

a

Hierarchical Concurrent Finite State Machines

Y
A B

D

C

G

H

Ia

31 of 81

E
c/x

F
b

a

x d/o

e

a e

Hierarchical Concurrent Finite State Machines

Y
A B

D

C

G

H

Ia

32 of 81

E
c/x

F
b

a

x d/o

e

a e a

Hierarchical Concurrent Finite State Machines

Y
A B

D

C

G

H

Ia

33 of 81

E
c/x

F
b

a

x d/o

e

a e a c

Hierarchical Concurrent Finite State Machines

Y
A B

D

C

G

H

Ia

34 of 81

E
c/x

F
b

a

x d/o

e

a e a c d

Hierarchical Concurrent Finite State Machines

Y
A B

D

C

G

H

Ia

35 of 81

E
c/x

F
b

a

x d/o

e

a e a c d e

Hierarchical Concurrent Finite State Machines

Y
A B

D

C

G

H

Ia

36 of 81

E
c/x

F
b

a

x d/o

e

a e a c d e b

Hierarchical Concurrent Finite State Machines

Y
A B

D

C

G

H

Ia

37 of 81

E
c/x

F
b

a

x d/o

e

a e a c d e b c

Hierarchical Concurrent Finite State Machines
Our earlier example, now using Statecharts:

wait for a
wait for x

wait for b
wait for y

emit o
wait for r

A B

[in V & in Z]/o

C

T
a

U
x

V

38 of 81

X
b

Y
y

Z

r

Hierarchical Concurrent Finite State Machines

wait for a
wait for x

wait for b
wait for y

emit o
wait for r

A B

[in V & in Z]/o

C

T
a

U
x

V

39 of 81

X
b

Y
y

Z

r

a

Hierarchical Concurrent Finite State Machines

wait for a
wait for x

wait for b
wait for y

emit o
wait for r

a b

A B

40 of 81

[in V & in Z]/o

C

T
a

U
x

V

X
b

Y
y

Z

r

Hierarchical Concurrent Finite State Machines

wait for a
wait for x

wait for b
wait for y

emit o
wait for r

a b y

A B

41 of 81

[in V & in Z]/o

C

T
a

U
x

V

X
b

Y
y

Z

r

Hierarchical Concurrent Finite State Machines

wait for a
wait for x

wait for b
wait for y

emit o
wait for r

a b y a

A B

[in V & in Z]/o

C

T
a

U
x

V

42 of 81

X
b

Y
y

Z

r

Hierarchical Concurrent Finite State Machines

wait for a
wait for x

wait for b
wait for y

emit o
wait for r

a b y a x

A B

43 of 81

[in V & in Z]/o

C

T
a

U
x

V

X
b

Y
y

Z

r

Hierarchical Concurrent Finite State Machines

wait for a
wait for x

wait for b
wait for y

emit o
wait for r

a b y a x r

A B

44 of 81

[in V & in Z]/o

C

T
a

U
x

V

X
b

Y
y

Z

r

45 of 81

FSMs: Time and Synchrony

n (hierarchical concurrent) FSMs are synchronous models.

r The synchrony hypothesis:
The time is a sequence of instants (clock ticks) between which nothing
interesting occurs. In each instant, some events (inputs) occur in the
environment, and a reaction (output) is computed instantly by the
modelled design.

- Computation and internal communication (between the FSMs
composing the system) take no time (compare to Discrete Event,
where components can have arbitrary delays!).

- Events are either simultaneous (occur at the same clock tick) or one
strictly precedes the other (as opposed to dataflow and Petri Nets
where we only have a partial order of events).

FSMs: Time and Synchrony

input events output eventsinternal events

synchronized: input events are at the
same time with the internal and
output events generated as response.

46 of 81

FSM1 FSM2

47 of 81

FSMs: Time and Synchrony

Question

Is the synchronous model sufficiently realistic to be used in practice?

FSMs: Time and Synchrony

Question

Is the synchronous model sufficiently realistic to be used in practice?

Answer

For some applications yes!
It is the case when the following assumption is true:

The reaction time of the system (including internal communication) is
neglectable compared to the rate of external events.

48 of 81

Why Do We Like Synchronous Models?

n A set of communicating, concurrent FSMs behaves exactly like one
equivalent FSM.

Models are deterministic.
It is possible to formally reason about models and to formally check
properties of the model. This is important for safety critical applications.

n It is possible to efficiently synthesise (compile) synchronous models to
hardware or software.

49 of 81

50 of 81

Why Do We Not Like Synchronous Models?

n Reasoning, verification and synthesis based on synchronous models are
meaningful and correct only as long as:

1. A completely synchronous implementation of the whole system is
possible.

2. We are sure that for the implemented system the assumption is true:
The reaction time of the system (including internal communication) is
neglectable compared to the rate of external events.

n Implementing large models as synchronous systems is expensive and often
technically impossible.

51 of 81

Synchronous/Reactive Languages

n Synchronous/reactive languages describe systems as a set of concurrently
executing synchronized activities.

r Communication is through signals.
r Signals are either present or absent at a certain tick.
r The presence of a signal is called an event.

n These language are semantically equivalent to the (extended hierarchical
concurrent) FSM model !!!

n Esterel is a well known synchronous/reactive language. Every Esterel model
can be compiled to an extended FSM.

Esterel Example

The Esterel program corresponding to the example described earlier as a FSM
and, in Statecharts, as a hierarchical concurrent FSM:

wait for a
wait for x

wait for b
wait for y

emit o
wait for r

module Example
input A, X, B, Y, R;
output O;
loop

[await A; await X || await B; await Y]
emit O;
await R

end loop
end module

52 of 81

Esterel Example
S0

S1 S2

S4 S5

S3

S8

a&!b
a&b

b&!a
x&

!b

x&b

b
y&!a

y&
a

ax&y/o

x/o

y/o

b&!x a&!y

x&
!y

y&!x

r

S6 S7
module Example
input A, X, B, Y, R;
output O;
loop

[await A; await X || await B; await Y]
emit O;
await R

end loop
end module

53 of 81

Esterel Example

module Example
input A, X, B, Y, R;
output O;
loop

[await A; await X || await B; await Y]
emit O;
await R

end loop
end module

A B

[in V & in Z]/o

C

T
a

U
x

V

54 of 81

X
b

Y
y

Z

r

How to implement a synchronous system?
A synchronous model (concurrent FSMs):

FSM1 FSM2

FSM3

55 of 81

How to implement a synchronous system?
A synchronous model (concurrent FSMs):

FSM1 FSM2

FSM3

Y
A B

E

D

H

K

Ja

F
c/x

G
b

a

x d/y

e

L

M

x y/o

C

56 of 81

How to implement a synchronous system?
A synchronous model (concurrent FSMs):

FSM1 FSM2

FSM3

Y
A B

E

D

H

K

Ja

F
c/x

G
b

a

x d/y

e

L

M

x y/o

C

n Signals are propagated instan-
taneously through the system.

57 of 81

n all FSMs react instantaneously
to events.

n No buffering.

58 of 81

How to implement a synchronous system?

n In hardware:

r System described as single FSM:
- implementation as a state machine.

r System described as several FSMs:
- several communicating synchronous state machines or
- implement the equivalent single (very large) state machine

59 of 81

How to implement a synchronous system?

n In hardware:

r System described as single FSM:
- implementation as a state machine.

r System described as several FSMs:
- several communicating synchronous state machines or
- implement the equivalent single (very large) state machine

But if the system is large:
r How do you distribute the clock signal on a large chip, in order to keep

synchrony?
r If there are several chips, keeping synchrony is even more difficult.

60 of 81

How to implement a synchronous system?

n In software:

r One single FSM or several FSMs:
Generate a sequential program which emulates the state machine.

Problems:
r Large concurrent systems Þ state explosion Þ very large programs.
r It is practically impossible to implement the software on a large

multiprocessor/distributed system (extremely inefficient to keep the
global synchrony of such a multiprocessor/distributed software).

How to implement a synchronous system?

n If the model is impossible (or very difficult and expensive) to implement,
there is no use that it is elegant, simple, and can be formally verified.
We get a correct verified model but we cannot implement it correctly!

Synchronous models are very good for relatively small systems
implemented in hardware or software.

n For larger systems we have to give up the assumption of global synchrony.

61 of 81

62 of 81

GLOBALLY ASYNCHRONOUS LOCALLY
SYNCHRONOUS SYSTEMS

1. Globally Asynchronous Locally Synchronous Systems

2. Globally Asynchronous Locally Synchronous System Models

GALS Systems
Globally asynchronous and locally synchronous (GALS) models:

FSM1

FSM3

FSM4

FSM2

FSM5

n Each FSM individually behaves like a
synchronous systems Þ reacts
instantaneously on a set of available
inputs and generates output.

63 of 81

n The global system is asynchronousÞ
communication time is finite and non-
zero; reaction time of each FSM, as
viewed by other FSMs is finite and
non-zero.

n With global asynchrony, buffering of
signals could be needed.

GALS Systems

n With a GALS model, the set of FSMs is not any more equivalent with a single
FSM (as was the case for the synchronous model).

Several nice features are gone:

r With synchronous FSMs we had the nice theoretical background and
the possibility of formal verification of the whole system. Not the case
with GALS.

r Every implementation of a synchronous FSM model is guaranteed to
be functionally equivalent to the initial model and behave exactly and
deterministically like the model (in the case we are able to produce an
implementation!). Not the case with GALS.

64 of 81

GALS Systems

n The GALS model is not deterministic, in the sense that its behavior depends
on the amount of time taken for a certain communication or transition.

Two different implementations of the same GALS model can behave differently.

65 of 81

GALS Systems

n A GALS model: FSM1 and FSM2 communicate through a single-slot buffer.

n FSM1 outputs a signal (writes into the buffer) every 2 ms (we neglect
communication time).

1. If the reaction time of FSM2 is 6ms, every third signal from FSM1 will be
reacted on.

2. If we have a faster implementation of FSM2, with reaction time 2ms,
every signal from FSM1 will be captured.

FSM1 FSM2

66 of 81

67 of 81

GALS Systems
n Each individual FSM can still be verified and formal methods can be used.
n However, individual correctness of each FSM does not guarantee the

correctness of the whole system. The system behaves correctly only if, in
addition, certain assumptions regarding the timing of components and of
communications are satisfied.

GALS Systems
n Each individual FSM can still be verified and formal methods can be used.
n However, individual correctness of each FSM does not guarantee the

correctness of the whole system. The system behaves correctly only if, in
addition, certain assumptions regarding the timing of components and of
communications are satisfied.

r Each FSM can be functionally verified individually.

r The global system will be correct (no signal is lost) if FSM2 has a
reaction time which is smaller than the production rate of FSM1.

r Estimation and simulation can be used in order to verify that a certain
implementation (like FSM1 as software on a certain µprocessor, and
FSM2 as an ASIC) satisfies this assumption.

FSM1 FSM2

68 of 81

69 of 81

GALS System Models

n A GALS system is modelled as a network of FSMs:

r Each FSM has a locally synchronous behavior: it executes a transition
by producing a single output reaction based on a single, snap-shot
input assignment in zero time.

r A System has a globally asynchronous behavior: each FSM reads
inputs, executes a transition, and produces outputs in a finite amount
of time as seen by the rest of the system.

70 of 81

GALS System Models

n FSMs communicate through signals.

r A signal, in general, carries an event and associated data.

r A signal is communicated between two FSMs via a connection that has
an associated input buffer.

r A sender can communicate a signal to several receivers; each receiver
buffers the signal in its own input buffer (of a certain size) associated
to the connection.

r Communication is asynchronous and has undefined (finite) delays.
Each input buffer stores the most recently received events and values.

r In general, the transmitter sends without waiting for the receiver;
nothing prevents the transmitter from sending a new event before the
last one was consumed and, thus, potentially, overwriting it.

71 of 81

GALS System Models

n A FSM reacts when at least on event is available on any of its inputs; in this
case the FSM

r reads and consumes the available input signal(s);
r identifies the matching transition and performs the corresponding

state transition with the associated action set;
r writes the outputs associated to the transition.

72 of 81

GALS System Models

n A FSM reacts when at least on event is available on any of its inputs; in this
case the FSM

r reads and consumes the available input signal(s);
r identifies the matching transition and performs the corresponding

state transition with the associated action set;
r writes the outputs associated to the transition.

n The reaction takes a certain, finite, amount of time.

After executing a transition, the FSM will be ready to react to new inputs.

Question: When? Immediately, just after it finished the current transition?

73 of 81

GALS System Models

n A FSM reacts when at least on event is available on any of its inputs; in this
case the FSM

r reads and consumes the available input signal(s);
r identifies the matching transition and performs the corresponding

state transition with the associated action set;
r writes the outputs associated to the transition.

n The reaction takes a certain, finite, amount of time.

After executing a transition, the FSM will be ready to react to new inputs.

Question: When? Immediately, just after it finished the current transition?
Answer: Not necessarily!

When a certain FSM is ready to check inputs and react, depends on the,
execution platform, the execution times, periods, and the scheduling policy
used at implementation.

GALS System Models

Each task implements an FSM (in software).

µP

t1

µP

t2

µP

t3

Task t1
Period T1 = 100 µs

WCET C1 = 40 µs

Task t2
Period T2 = 30 µs

WCET C2 = 10 µs

Task t3

74 of 81

Period T3 = 25 µs

WCET C3 = 10 µs

GALS System Models
µP

t1

µP

t2

µP

t3

Task t1
Period T1 = 100 µs

WCET C1 = 40 µs

Task t2
Period T2 = 30 µs

WCET C2 = 10 µs

Task t3

75 of 81

Period T3 = 25 µs

WCET C3 = 10 µs

Works! No problem!

GALS System Models

µP

t2 t1
t3

Task t1
Period T1 = 100 µs

WCET C1 = 40 µs

Task t2
Period T2 = 30 µs

WCET C2 = 10 µs

Task t3

76 of 81

Period T3 = 25 µs

WCET C3 = 10 µs

GALS System Models

µP

t2 t1
t3

Does this work?
Can each of the tasks work at the
required rate (period)?

Task t1
Period T1 = 100 µs

WCET C1 = 40 µs

Task t2
Period T2 = 30 µs

WCET C2 = 10 µs

Task t3

77 of 81

Period T3 = 25 µs

WCET C3 = 10 µs

GALS System Models

µP

t2 t1
t3

Does this work?
Can each of the tasks work at the
required rate (period)?

n t1 needs to run for 40 µs every 100 µs: 40% of CPU
n t2 needs to run for 10 µs every 30 µs: 33% of CPU
n t3 needs to run for 10 µs every 25 µs: 40% of CPU

Task t1
Period T1 = 100 µs

WCET C1 = 40 µs

Task t2
Period T2 = 30 µs

WCET C2 = 10 µs

Task t3

78 of 81

Period T3 = 25 µs

WCET C3 = 10 µs

GALS System Models

µP

t2 t1
t3

Does this work?
Can each of the tasks work at the
required rate (period)?

n t1 needs to run for 40 µs every 100 µs: 40% of CPU
n t2 needs to run for 10 µs every 30 µs: 33% of CPU
n t3 needs to run for 10 µs every 25 µs: 40% of CPU

Total: 113%

Task t1
Period T1 = 100 µs

WCET C1 = 40 µs

Task t2
Period T2 = 30 µs

WCET C2 = 10 µs

Task t3

79 of 81

Period T3 = 25 µs

WCET C3 = 10 µs

GALS System Models

µP

t2 t1
t3

Does this work?
Can each of the tasks work at the
required rate (period)?

n t1 needs to run for 40 µs every 100 µs: 40% of CPU
n t2 needs to run for 10 µs every 30 µs: 33% of CPU
n t3 needs to run for 10 µs every 25 µs: 40% of CPU

Total: 113%
This will not work!

Task t1
Period T1 = 100 µs

WCET C1 = 40 µs

Task t2
Period T2 = 30 µs

WCET C2 = 10 µs

Task t3

80 of 81

Period T3 = 25 µs

WCET C3 = 10 µs

GALS System Models

µP

t2 t1
t3

Does this work?
Can each of the tasks work at the
required rate (period)?

If the total utilisation is not larger than 100% it
is possible to implements the tasks!

Task t1
Period T1 = 100 µs

WCET C1 = 40 µs

Task t2
Period T2 = 30 µs

WCET C2 = 10 µs

Task t3

81 of 81

Period T3 = 25 µs

WCET C3 = 10 µs

