
SoC & ASIC Design at Ericsson

© Ericsson AB 2023 1

SOC & ASIC DESIGN
AT ERICSSON

Björn Fjellborg

Ericsson AB

Kista

SoC & ASIC Design at Ericsson | © Ericsson AB 2023 | Page 2

Anything happened since 1984?

1984 "smartphone"

Wow, a chip
with 100 000
transistors!!

3.4 GHz
1 TB

10 MHz
256 kB

16 billion
transistors,
hm ...

x 160 000 density
x 340 speed
x 4 000 000 RAM

2022 smartphone

1

2

SoC & ASIC Design at Ericsson

© Ericsson AB 2023 2

SoC & ASIC Design at Ericsson | © Ericsson AB 2023 | Page 3

THIS LECTURE

› Mobile networks and HW infrastructure

› Systemization and System design

› Design challenges

› SoC/ASIC design flow

Mobile Networks and
HW Infrastructure

3

4

SoC & ASIC Design at Ericsson

© Ericsson AB 2023 3

SoC & ASIC Design at Ericsson | © Ericsson AB 2023 | Page 5

3G WCDMA
RAN

2G GSM
RAN

5G
RAN

A MOBILE NETWORK

4G LTE
RAN

GSM, WCDMA, LTE, 5G
Radio Base Stations

Cloud
services

PSTN/
ISDN

Internet

Packet Switched
Core Network

RAN = Radio Access Network

SoC & ASIC Design at Ericsson | © Ericsson AB 2023 | Page 6

MOBILE NETWORKS DEVELOPMENT

GSM
2G

EDGE
2.5G

GPRS

1990 2000 2005 20101995

10k

100k

10M

1M

100M

Bits/s

1G

Evolved 3G

WCDMA
WiMAX

3G

SMS

HD video

Voice
Email

MMS

Interactive
data

HSPA

See next page
for abbreviations
See next page
for abbreviations

Location/positioning
services

LTE

4G
LTE-A

2015

Social
networking

Video telephony/
conference

2020

10G

5G

Connected
vehicles

Connected
wearables

Smart home

Haptics

M2M

100G

2025

6G

Speech
recognition

Cloud processingData streaming,
Web access

Audio streaming/
download

Web feeds/
RSS

Video
streaming/
download

High speed data
and web access

Online video,
audio, radio

Augmented reality

Smart grid

Online gaming,
Virtual worlds Cloud storage

Massive data
collection

Virtualized
processing/AI

Time critical
remote control Autonomous

vehicles

Virtual reality

Fixed
wireless

Virtual teams/
conferencing

Real-time
translation

5

6

SoC & ASIC Design at Ericsson

© Ericsson AB 2023 4

SoC & ASIC Design at Ericsson | © Ericsson AB 2023 | Page 7

ABBREVIATIONS

› AI Artificial Intelligence
› EDGE Enhanced Data rates for GSM Evolution
› GPRS General Packet Radio Service
› GSM Global System for Mobile communications
› HD High Definition
› HSPA High-Speed Packet Access
› IoT Internet of Things
› LTE Long Term Evolution
› LTE-A Long Term Evolution Advanced
› MMS Multimedia Messaging Service
› M2M Machine to Machine
› RSS Really Simple Syndication
› SMS Short Messaging Service
› WCDMA Wideband Code Division Multiple Access
› WiMAX Worldwide Interoperability for Microwave Access

SoC & ASIC Design at Ericsson | © Ericsson AB 2023 | Page 8

ERICSSON RADIO BASE STATIONS
The most visible
parts of a base
station are
usually the
antennas (and
antenna mast)

The cabinet
housing the HW
and SW is located
at a sealed off
area below the
antenna mast or
inside a nearby
building

Cabinets come in
different sizes, for
different capacity

OUTDOOR

INDOOR

SMALL
INDOOR

RADIO
DOT

7

8

SoC & ASIC Design at Ericsson

© Ericsson AB 2023 5

SoC & ASIC Design at Ericsson | © Ericsson AB 2023 | Page 9

SIGNAL PROCESSING REQUIREMENTS

GSM
2G

EDGE
2.5G

GPRS

1990 2000 2005 20101995

10k

100k

10M

1M

100M

Bits/s

1G

Evolved 3G

WCDMA
WiMAX

3G

SMS

HD video

Voice
Email

MMS

Interactive
data

HSPA

Location/positioning
services

LTE

4G
LTE-A

2015

Social
networking

Video telephony/
conference

2020

10G

5G

Connected
vehicles

Connected
wearables

Smart home

Haptics

M2M

100G

2025

6G

Speech
recognition

Cloud processingData streaming,
Web access

Audio streaming/
download

Web feeds/
RSS

Video
streaming/
download

High speed data
and web access

Online video,
audio, radio

Augmented reality

Smart grid

Online gaming,
Virtual worlds Cloud storage

Massive data
collection

Virtualized
processing/AI

Time critical
remote control Autonomous

vehicles

Virtual reality

Fixed
wireless

Virtual teams/
conferencing

Real-time
translation

SoC & ASIC Design at Ericsson | © Ericsson AB 2023 | Page 10

1990 2000 2005 20101995 2015 2020 2025

10k

100k

10M

1M

100M

1G

10G

100G

Application complexity
Air interface complexity

Bits/s

Per user

Per component

Increased
integration
Increased
integration

OPS (for signal processing)

100G

10G

1G

100M

10M

1T

10T

100T

SIGNAL PROCESSING REQUIREMENTS

9

10

SoC & ASIC Design at Ericsson

© Ericsson AB 2023 6

SoC & ASIC Design at Ericsson | © Ericsson AB 2023 | Page 11

ERICSSON SILICON

INDUSTRY LEADING SYSTEM ON A CHIP

Ericsson Many-Core
Architecture (EMCA) Digital front-end

Hundreds of digital
signaling processors

(DSPs)

Software development
kit (SDK) for designing
massively parallel radio
algorithms

4G/5G HW Accelerators

Tight SW/HW co-design

Systemization and
System Design

11

14

SoC & ASIC Design at Ericsson

© Ericsson AB 2023 7

SoC & ASIC Design at Ericsson | © Ericsson AB 2023 | Page 15

LTE
RAN

SYSTEM LEVEL(S)

Radio network
Base station

Board + SW package

ASIC + SW module

DSP core + SW routines

Ericsson terminology:

Node system

SoC subsystem

SoC

Node subsystem

Network system

SoC & ASIC Design at Ericsson | © Ericsson AB 2023 | Page 16

SYSTEMIZATION PURPOSE

› Find the most cost-efficient combination of HW
components and SW modules that meets requirements on:
– Performance (traffic capacity, latency)

– Cost

– Size (weight, height, footprint – physical area on
ground/board/silicon or memory size)

– Power consumption

– Flexibility (for capacity expansion, functionality upgrade)

– Environmental protection (hazardous substances, recycling)

› Applied to all system levels

15

16

SoC & ASIC Design at Ericsson

© Ericsson AB 2023 8

SoC & ASIC Design at Ericsson | © Ericsson AB 2023 | Page 17

HW/SW TRADE-OFFS

› System design is in many cases a trade-off between HW
and SW solutions to best meet the systemization
requirements:

› The same trade-off applies to
– ASIC/FPGA vs DSP/CPU

– Hardwired logic vs DSP/CPU cores

Performance CostPower Flexibility

Better

Worse

HW

SW

HW

SW HW

SW

SW

HW

single
function

single
function

set of
functions

set of
functions

SW

HW

SoC & ASIC Design at Ericsson | © Ericsson AB 2023 | Page 18

HW VS SW PERFORMANCE

› HW has higher performance than SW because:
– HW tailored to a specific functionality requires fewer gates than a

general instruction execution engine


Higher capacity/gate

– Tailored HW can exploit parallelism to a higher degree than a
DSP/CPU


Lower latency (faster execution of complex functions)

17

18

SoC & ASIC Design at Ericsson

© Ericsson AB 2023 9

SoC & ASIC Design at Ericsson | © Ericsson AB 2023 | Page 19

HW VS SW POWER

› HW has lower power dissipation than SW because:
– Tailored HW uses few transistor switches/function (HW optimized

for the specific function)


Low energy/function step

– SW that runs on an instruction execution engine induces many
transistor switches/function (several SW instructions to load,
decode, and execute)


High energy/function step

SoC & ASIC Design at Ericsson | © Ericsson AB 2023 | Page 20

HW VS SW FLEXIBILITY

› SW has higher flexibility than HW because:
– Correcting errors in SW requires no new HW


Faster correction at customer site

– Upgrading functionality in SW may require more memory but no
new HW


No HW production cost for upgrading, say, 100 000 customer sites
(provided enough memory was designed in)

– Note: Functionality upgrades in SW do not necessarily get to
customer faster than HW upgrades, because development and
verification times are comparable to those of HW (for complex
systems)!

19

20

SoC & ASIC Design at Ericsson

© Ericsson AB 2023 10

SoC & ASIC Design at Ericsson | © Ericsson AB 2023 | Page 21

HW VS SW COST

› HW has lower cost than SW when:
– The functionality can be implemented on a tailored piece of HW that

is cheaper/smaller than a general purpose DSP/CPU

› A set of functions may have lower SW cost (a DSP/CPU):
– Re-uses the same HW (instruction execution engine) for multiple

functions

– HW tailored to each function
 Cost =  tailored HW blocks > 1 DSP/CPU

SoC & ASIC Design at Ericsson | © Ericsson AB 2023 | Page 22

HW VS SW COST
FURTHER CONSIDERATIONS

› Concurrency-based allocation:
– Has inherent concurrency: Use HW (utilize HW concurrency)

› May require a large number of DSP/CPUs to obtain same
performance

› Typical for filter functions

– Has inherent sequentiality: Use SW (no speed-up with tailored HW)

DSP

DSP

DSP

DSP

Computational
graph:

Tailored parallel HW

General DSP cores
(larger HW cost for
same performance)Parallel concurrency

Pipelined concurrency

21

22

SoC & ASIC Design at Ericsson

© Ericsson AB 2023 11

SoC & ASIC Design at Ericsson | © Ericsson AB 2023 | Page 23

EXAMPLE: RANDOM ACCESS &
DEMODULATION (RA-DEM)

› WCDMA Uplink Baseband Antenna Near Signal Processing

› A result from node subsystem systemization for baseband is that HW
support for Random Access and Demodulation is needed in the
receiver chain (for WCDMA receivers).

› A RA-DEM detects and correlates all reflections of coded signals into
one signal per transmitter

› A RA-DEM performs a number of functions:
– Preamble detect
– Message search
– Rake finger despread

› The RA-DEM functions imply a number of operations:
– Code match filtering
– Interference estimation
– Coherent and non-coherent accumulation
– Interpolation
– Squaring
– ...

SoC & ASIC Design at Ericsson | © Ericsson AB 2023 | Page 24

RA-DEM ARCHITECTURE
First SoC/SoC subsystem systemization*: • Node subsystem

systemization has
resulted in a RA-DEM
algorithm, given
requirements at that
level

• SoC systemization has
defined subfunctions
(boxes in the picture)

• All subfunctions are
performed inside the
SoC ASIC

• System design task:
For each box, decide
whether to use

- hardwired logic

- SW (DSP core)
* Subfunctions are anonymized for confidentiality reasons

23

24

SoC & ASIC Design at Ericsson

© Ericsson AB 2023 12

SoC & ASIC Design at Ericsson | © Ericsson AB 2023 | Page 25

RA-DEM DESIGN GOAL

› Main goal: Minimize cost

› Constraints:
– Performance (can be determined with high precision per subfunction

from the algorithm and max input data rate)

– Power (total for the SoC; if the SoC power budget does not hold, re-
systemization has to be done on the SoC or even the node
subsystem level)

– Flexibility (flexibility requirements are limited to those subfunctions
that have to change in case of future upgrades)

SoC & ASIC Design at Ericsson | © Ericsson AB 2023 | Page 26

RA-DEM SYSTEM DESIGN
PERFORMANCE TRADE-OFF

HW

SW

• Determine the
subfunctions' peak
performance*
requirement (in
OPS)

• Subfunctions that
exceed one DSP
core's performance
(350 MOPS)


HW (to avoid splitting
over several DSPs)

2.2G
166M

184M 46M 55.6G 19G 588M 588M 588M 118M 40M 1.8k

184M

8.8G 36M 2.22M 3.6k 3.6k 3.6k

6.2G

3.1G
34.6M 736M

14.4M

736M

477M 477M

3.1G

477M 477M

1.6G

* A function that requires 10 MOPS
and has to finish in 0.1 s has a peak
performance of 10/0.1 = 100 MOPS

25

26

SoC & ASIC Design at Ericsson

© Ericsson AB 2023 13

SoC & ASIC Design at Ericsson | © Ericsson AB 2023 | Page 27

RA-DEM SYSTEM DESIGN
FLEXIBILITY TRADE-OFF

• Determine the
subfunctions'
flexibility
requirement
(upgradable or not)

• Subfunctions that
must be upgradable


SW

• Conflicting trade-offs
may occur!

HW

SW2.2G
166M

184M 46M 55.6G 19G 588M 588M 588M 118M 40M 1.8k

184M

8.8G 36M 2.22M 3.6k 3.6k 3.6k

6.2G

3.1G
34.6M 736M

14.4M

736M

477M 477M

3.1G

477M 477M

1.6G

? ?

SoC & ASIC Design at Ericsson | © Ericsson AB 2023 | Page 28

RA-DEM SYSTEM DESIGN
CONCURRENCY TRADE-OFF

• Determine which
subfunctions that are
inherently
concurrent

• Subfunctions with
high degree of
concurrency and
reasonably high
performance
requirement


HW

HW

SW2.2G
166M

184M 46M 55.6G 19G 588M 588M 588M 118M 40M 1.8k

184M

8.8G 36M 2.22M 3.6k 3.6k 3.6k

6.2G

3.1G
34.6M 736M

14.4M

736M

477M 477M

3.1G

477M 477M

1.6G

? ?

27

28

SoC & ASIC Design at Ericsson

© Ericsson AB 2023 14

SoC & ASIC Design at Ericsson | © Ericsson AB 2023 | Page 29

RA-DEM SYSTEM DESIGN
HW COST TRADE-OFF

• Cost of HW
implementation =
area of tailored HW

• Cost of SW (DSP core)
implementation =
(load requirement/DSP
performance)
· DSP core area
+ extra interconnect

• Express as % of a DSP
core's area:
Tailored HW area|
DSP area + interconnect

• Subfunctions with
lower HW cost


HW, the rest


SW

HW

SW2.2G
166M

184M 46M 55.6G 19G 588M 588M 588M 118M 40M 1.8k

184M

8.8G 36M 2.22M 3.6k 3.6k 3.6k

6.2G

3.1G
34.6M 736M

14.4M

736M

477M 477M

3.1G

477M 477M

1.6G

? ?

5|
10+10

3|
10+3

5|
1+3

4|
0+3

5|
0+2

30|
34+2

20|
11+2

5|
0+2

45|
457+10

35|
168+10

SoC & ASIC Design at Ericsson | © Ericsson AB 2023 | Page 30

184M 46M 47M

1.8k

72M
2.2G

55.6G 19G 588M 294M 40M 1.8k

184M

8.8G 4.32M 1.66M 1.8k 3.6k

6.2G

3.1G
4.32M 92M

3.6M

92M

59.6M 59.6M

3.1G

59.6M 59.6M

588M 588M

RA-DEM SYSTEM DESIGN
RESOLVING CONFLICTS

HW

SW

? ?

184M 46M

166M

1.6G 588M
118M 40M 1.8k

184M

36M 2.22M 3.6k 3.6k
3.6k

34.6M 736M

14.4M

736M

477M 477M

477M 477M

5|
10+10

3|
10+3

5|
1+3

4|
0+3

5|
0+2

30|
34+2

20|
11+2

5|
0+2

45|
457+10

35|
168+10

HW

SW2.2G
166M

184M 46M 55.6G 19G 588M 588M 588M 118M 40M 1.8k

184M

8.8G 36M 2.22M 3.6k 3.6k 3.6k

6.2G

3.1G
34.6M 736M

14.4M

736M

477M 477M

3.1G

477M 477M

1.6G

? ?

5|
10+10

3|
10+3

5|
1+3

4|
0+3

5|
0+2

30|
34+2

20|
11+2

5|
0+2

45|
457+10

35|
168+10

588M1.6G

? ?

45|
457+10

35|
168+10

› How important is the
flexibility?

– If worth the extra cost (4.22
resp 1.43 cores)


SW, otherwise HW

› Or, re-systemize:
– Can the flexibility

requirement be isolated to
part of the subfunction?


Split into sub-subfunctions
and map to HW resp SW

– Can we use SW-
configurable HW?

› The conflict is caused
by the requirement on
flexibility – everything
else points to a HW
solution

› Cost for HW vs
DSP core:

– 0.45 vs 4.67 cores

– 0.35 vs 1.78 cores

29

30

SoC & ASIC Design at Ericsson

© Ericsson AB 2023 15

Design Challenges
for SoCs

SoC & ASIC Design at Ericsson | © Ericsson AB 2023 | Page 32

5 M

500 M

50 M

10 M

20 M

100 M

200 M

1 G

L
o

g
ic

2 G

5 G M
e

m
o

ry
Transistors

10 G

20 G

2 million
transistors

15 billion
transistors

RBS SIGNAL PROCESSING ASICS
1995-2022 – SIZES

31

32

SoC & ASIC Design at Ericsson

© Ericsson AB 2023 16

SoC & ASIC Design at Ericsson | © Ericsson AB 2023 | Page 33

MULTI-CHIP MODULES

› Integrate multiple chips
in a single package
–Denser design

–Faster interconnect
42 billion transistors

SoC & ASIC Design at Ericsson | © Ericsson AB 2023 | Page 34

Visible light: 400-700 nm

Si atom diameter: 0.2 nm

Visible light: 400-700 nm

Si atom diameter: 0.2 nm

1/4 wavelength of 400 nm light

10 nm feature

Si atom

5 M

500 M

50 M

10 M

20 M

100 M

200 M

1 G

2 G

5 G

Transistors

10 G

20 G

TECHNOLOGIES AND
CHALLENGES

Wire
delay

Signal
integrity

Soft errors

Leakage
power

Variation

Sum of all!

800 nm

250 nm

180 nm

130 nm

90 nm

65 nm

45 nm
40 nm

28 nm
16 nm

+Reliability 10 nm

+Manu-
facturing

7 nm

130 nm

10 nm

33

34

SoC & ASIC Design at Ericsson

© Ericsson AB 2023 17

SoC & ASIC Design at Ericsson | © Ericsson AB 2023 | Page 35

WIRE DELAY, CROSSTALK, SOFT
ERRORS

› Wire delay dominates over logic delay at ≤ 350 nm
– Solution: New delay models for timing analysis, interconnect-driven

design

› Signal integrity, e.g. crosstalk (capacitive coupling between
parallel wires) that cause excessive delays and false
pulses, at ≤ 180 nm
– Solution: New design rules (wire spacing) and analysis methods

› Soft errors (charged particles hit the silicon with enough
energy to change the logic state) at ≤ 130 nm
– Solution: Error correction coding of memory content

SoC & ASIC Design at Ericsson | © Ericsson AB 2023 | Page 36

LEAKAGE POWER

› Leakage current (transistor turn-off current) is a major
contributor to power dissipation at ≤ 90 nm

› Power is a limiting factor for design also for stationary
equipment (i.e., not battery operated)
– Cooling

– Energy consumption

Typical
power
budget

0%

20%

40%

60%

80%

100%

Technology

P
o

w
er

 d
is

si
p

at
io

n

Dynamic

Leakage

Conventional
power reduction
methods apply
to dynamic power

35

36

SoC & ASIC Design at Ericsson

© Ericsson AB 2023 18

SoC & ASIC Design at Ericsson | © Ericsson AB 2023 | Page 37

PROCESS VARIATION AT THE ATOMIC
SCALE

› Parameter variation increases
with decreasing geometry:
– Dopant
– Instrumentation
– Mask precision
– Lithography
– Variations between fabs and

batches
› Timing characteristics vary

significantly from chip to chip
10

100

1000

10000

1000 500 250 130 65 32

Technology Node (nm)

M
ea

n
 N

u
m

b
er

 o
f

D
o

p
an

t
A

to
m

s

Random dopant fluctuation:
Number of dopant atoms

SoC & ASIC Design at Ericsson | © Ericsson AB 2023 | Page 38

RELIABILITY AT 16 NM AND BELOW

› Increased risk of device failure after years of operation, due
to the small geometry making the device more sensitive to:
– Electromigration: Can cause opens

in wires due to gradual displacement
of metal ions caused by high current
density

– Electrostatic discharge: Can cause shorts; increased risk due to
small margin between operating voltage and breakdown voltage

– Thermal heating: High current density leads to local heating which
can lead to defects such as cracks (due to heat expansion)

› Hard to completely eliminate, but effects can be reduced by
proper physical design and geometry of transistors and
wires

37

38

SoC & ASIC Design at Ericsson

© Ericsson AB 2023 19

SoC & ASIC Design at Ericsson | © Ericsson AB 2023 | Page 39

MANUFACTURING AT 16 NM AND
BELOW

› Silicon structures are manufactured with a lithographic process
that uses 193 nm UV light. Creating 10 nm features with a 193
nm "pen" is challenging!

› Optical proximity correction (OPC)
compensates for image errors due
to diffraction

› Double or multiple sets of masks reduce
the demands on individual mask resolution

› Extreme UV (EUV) light (11-14 nm) is now used
for some 7 nm technologies.

› X-rays (< 1 nm) may be a future method. It
presents huge challenges for the optical
equipment used to focus the light.

SoC & ASIC Design at Ericsson | © Ericsson AB 2023 | Page 40

WITH ALL THESE PROBLEMS –
WHY MAKE AN ASIC?

› 95 % of the functionality on a radio base station receiver
board is signal processing

› Developing an ASIC takes 1-1.5 year and costs several
10 MSEK

› Buying a high-performance DSP costs 2000 SEK and it is
available off the shelf

39

40

SoC & ASIC Design at Ericsson

© Ericsson AB 2023 20

SoC & ASIC Design at Ericsson | © Ericsson AB 2023 | Page 41

ASIC VS DSP

› ASICs are:
– Custom made
– Tailored to the application

› Pros:
– High functionality/transistor

(tailored HW)
– Few transistor switches/function

(optimized HW; low energy)
– Low component price (100-1000 SEK)

› Cons:
– Expensive to introduce (high

development cost)
– Available after 1-2 year development
– Not upgradable for new functionality

› DSPs are:
– Commodity products
– Used for general applications

› Pros:
– Cheap to introduce
– Available at once (but SW will likely

take at least 1 year to develop...)
– Upgradable for new functionality

(through SW)
› Cons:

– Less functionality/transistor (general
SW)

– Many transistor switches/function
(several SW instructions to load,
decode, and execute; high energy)

– High component price (500-3000
SEK)

SoC & ASIC Design at Ericsson | © Ericsson AB 2023 | Page 42

ASIC VS DSP PERFORMANCE

› A 100 GOPS ASIC:
– Uses massive parallelism (1000s

of parallel threads in concurrent
HW)

– Can run at moderate frequency
(100 MHz-1 GHz)
 Use low to medium
performance Si process (high Vt

transistors)
 Low leakage current
 Low to medium power
dissipation (5-50 W)

› A 100 GOPS DSP:
– Uses moderate parallelism

(pipelining, co-processors)

– Must run at high frequency (2-20
GHz)
 Use high performance Si
process (low Vt transistors)
 High leakage current
 High power dissipation (100-
1000 W)

41

42

SoC & ASIC Design at Ericsson

© Ericsson AB 2023 21

SoC/ASIC Design Flow

SoC & ASIC Design at Ericsson | © Ericsson AB 2023 | Page 44

FROM IDEA  COMPONENT ...

ROP1011503
R1A

43

44

SoC & ASIC Design at Ericsson

© Ericsson AB 2023 22

SoC & ASIC Design at Ericsson | © Ericsson AB 2023 | Page 45

... LIKE THIS?

Hey! I've got
this marvelous

idea!

Great! Let's go
hack some

code!

Geez... Imagine
life without VHDL...

Your Si foundry

Invoice

$ 1,000,000

Product plans?

Market window?

Software?

Firmware?

O&M?

Board?

System integration?

System verification?

Type approval?

Export control?

Thermal design?

Environmental protection restrictions?

Price models?

Supply agreement?

Test?

Patents?

Product structure?

Vendor negotiations?

Documentation? Version control?

Interfaces?

Debug?
Reliability?

Signal integrity?
Power budget?

Producibility?

Building practice?

Soft errors?

ROP1011503
R1A

SoC & ASIC Design at Ericsson | © Ericsson AB 2023 | Page 46

MAIN STEPS

Technology study

Structuring

HW modeling & design

ASIC technology mapping

ASIC prototype manufacturing

ASIC prototype verification

SW modeling & design

SW implementation

SW verification

45

46

SoC & ASIC Design at Ericsson

© Ericsson AB 2023 23

SoC & ASIC Design at Ericsson | © Ericsson AB 2023 | Page 47

TECHNOLOGY STUDY

› Analyze functional and performance requirements

› Analyze technological possibilities

› Investigate different technical solutions, consider:
– standards

– production costs

– life cycle costs

– reliability

– environment

– legal directives

› Create a high level description of the system architecture
(text and graphics)

› Provide a decision base for project launch decision

Hey! I've got
this marvelous

idea!

Great! Let's go
hack some

code!

SoC & ASIC Design at Ericsson | © Ericsson AB 2023 | Page 48

STRUCTURING

› Partition into HW and SW
› Define HW/SW interface
› Partition into functional blocks
› Create behavioral models to evaluate

critical functionality (Matlab, C, VHDL)
› Select IPs, IOs and memories, consider re-use of previous designs
› Select ASIC technology and silicon foundry
› Choose package
› Investigate patent opportunities
› Specify system testability and diagnostics in production, field, and

repair
› Choose test strategy: scan test, memory test, boundary scan, logic

BIST

47

48

SoC & ASIC Design at Ericsson

© Ericsson AB 2023 24

SoC & ASIC Design at Ericsson | © Ericsson AB 2023 | Page 49

SYSTEM DESIGN TOOLS AND MODELS

› Signal processing algorithms are designed and analyzed
in Matlab
– Functionality and performance
– Based on GSM/WCDMA/LTE standards

› The signal chain is modelled at algorithmic level in
C/C++
– Includes model of the air (radio channel mobile device –

base station)
– Constitutes a reference model for HW and SW

implementation

› Systemization alternatives are evaluated in various ways
– Spreadsheets for cost, power, capacity
– High-level architectural models for performance

(transaction level models in SystemC)

› SW Virtual Platforms
– High-level functional models for SW development

(transaction level models in SystemC)

Node subsystem

SoC

SoC & ASIC Design at Ericsson | © Ericsson AB 2023 | Page 50

TYPICAL ASIC DESIGN FLOW

Processor cores
BIST & TAPC
RAMs
PLL

Coding

Specification

Synthesis

Place & Route

Production

Prototypes

Floorplanning

IP (macros)

Front-end

Back-end

Design &

verification of

- function

- timing

- power

Silicon foundry

49

50

SoC & ASIC Design at Ericsson

© Ericsson AB 2023 25

SoC & ASIC Design at Ericsson | © Ericsson AB 2023 | Page 51

ASIC DEVELOPMENT ACTIVITIES

SpecificationSpecification

TLM modelingTLM modeling

Verification planningVerification planning

Define TLM test casesDefine TLM test cases

Build TLM testbenchBuild TLM testbench

TLM simulationTLM simulation

Debug - CorrectDebug - Correct

RTL modelingRTL modeling

RTL design rule checkRTL design rule check

Formal property checkFormal property check

RTL simulationRTL simulation

Debug - CorrectDebug - Correct

Continued verification (simulation, formal)Continued verification (simulation, formal)

Build regression test suiteBuild regression test suite

Debug – Correct/work aroundDebug – Correct/work around

Define RTL test casesDefine RTL test cases

Build RTL testbenchBuild RTL testbench

Define propertiesDefine properties

SpecificationSpecification

TLM integrationTLM integration
Define TLM test casesDefine TLM test cases

Build TLM testbenchBuild TLM testbench

TLM simulation (run SW)TLM simulation (run SW)

Debug - CorrectDebug - Correct

Verification planningVerification planning

RTL integrationRTL integration
Build RTL testbenchBuild RTL testbench

Define RTL test casesDefine RTL test cases

RTL simulationRTL simulation

Connectivity check (formal)Connectivity check (formal)

Build emulation
testbench

Build emulation
testbench

Define emulation
test cases

Define emulation
test cases

Emulation (with SW)Emulation (with SW)

Continued verification
(simulation, emulation)
Continued verification
(simulation, emulation)

Debug – Correct/work
around

Debug – Correct/work
around

Debug - CorrectDebug - Correct

Logic synthesisLogic synthesis Design planningDesign planning

DFT insertionDFT insertion

Equivalence checkEquivalence check

Static timing analysisStatic timing analysis

Gate level simulationGate level simulation

Debug – Correct (ECO)Debug – Correct (ECO)

Timing back-annotationTiming back-annotation

Prototype verificationPrototype verification

Debug – Work aroundDebug – Work around

Constraints (re-)definitionConstraints (re-)definition

Build regression
test suite

Build regression
test suite

DFT implementationDFT implementation

FloorplanningFloorplanning

Place & RoutePlace & Route

Design rule checkDesign rule check

Parasitic extractionParasitic extraction

Chip manufacturingChip manufacturing

Verification managementVerification management

Verification managementVerification management

3 rounds of
deliveries

Block development ASIC chip development ASIC backend

Several
deliveries

One development
team per block:

One integration &
synthesis team:

ASIC backend
team:

SoC & ASIC Design at Ericsson | © Ericsson AB 2023 | Page 52

ASIC DEVELOPMENT ACTIVITIES

SpecificationSpecification

TLM modelingTLM modeling

Verification planningVerification planning

Define TLM test casesDefine TLM test cases

Build TLM testbenchBuild TLM testbench

TLM simulationTLM simulation

Debug - CorrectDebug - Correct

RTL modelingRTL modeling

RTL design rule checkRTL design rule check

Formal property checkFormal property check

RTL simulationRTL simulation

Debug - CorrectDebug - Correct

Continued verification (simulation, formal)Continued verification (simulation, formal)

Build regression test suiteBuild regression test suite

Debug – Correct/work aroundDebug – Correct/work around

Define RTL test casesDefine RTL test cases

Build RTL testbenchBuild RTL testbench

Define propertiesDefine properties

SpecificationSpecification

TLM integrationTLM integration
Define TLM test casesDefine TLM test cases

Build TLM testbenchBuild TLM testbench

TLM simulation (run SW)TLM simulation (run SW)

Debug - CorrectDebug - Correct

Verification planningVerification planning

RTL integrationRTL integration
Build RTL testbenchBuild RTL testbench

Define RTL test casesDefine RTL test cases

RTL simulationRTL simulation

Connectivity check (formal)Connectivity check (formal)

Build emulation
testbench

Build emulation
testbench

Define emulation
test cases

Define emulation
test cases

Emulation (with SW)Emulation (with SW)

Continued verification
(simulation, emulation)
Continued verification
(simulation, emulation)

Debug – Correct/work
around

Debug – Correct/work
around

Debug - CorrectDebug - Correct

Logic synthesisLogic synthesis Design planningDesign planning

DFT insertionDFT insertion

Equivalence checkEquivalence check

Static timing analysisStatic timing analysis

Gate level simulationGate level simulation

Debug – Correct (ECO)Debug – Correct (ECO)

Timing back-annotationTiming back-annotation

Prototype verificationPrototype verification

Debug – Work aroundDebug – Work around

Constraints (re-)definitionConstraints (re-)definition

Build regression
test suite

Build regression
test suite

DFT implementationDFT implementation

FloorplanningFloorplanning

Place & RoutePlace & Route

Design rule checkDesign rule check

Parasitic extractionParasitic extraction

Chip manufacturingChip manufacturing

Verification managementVerification management

Verification managementVerification management

3 rounds of
deliveries

Block development ASIC chip development ASIC backend

One development
team per block:

51

52

SoC & ASIC Design at Ericsson

© Ericsson AB 2023 26

SoC & ASIC Design at Ericsson | © Ericsson AB 2023 | Page 53

SPECIFICATION

› Each function block has a Design
Specification
– There are also

Interface Descriptions,
Verification Specifications,
Verification Reports
+ a number of other documents

› Example of
content:

SoC & ASIC Design at Ericsson | © Ericsson AB 2023 | Page 54

VERIFICATION PLANNING

Define how to reach verification goals within available
time and resources:

1. Analyze the design requirements to identify features

2. Analyze the features’ characteristics: typical and
extreme data/conditions

3. Set verification goals
– Include all types of coverage

4. Design tests to achieve verification goals

5. Plan resources for verification (personnel, computers,
licenses)

6. Commence verification

53

54

SoC & ASIC Design at Ericsson

© Ericsson AB 2023 27

SoC & ASIC Design at Ericsson | © Ericsson AB 2023 | Page 55

VERIFICATION
FEATURES AND COVERAGE

› Features of a design
– Operations to perform

– Data to process

– Protocols to follow

› Verification goals
– Cover x % of typical cases

– Cover y % of corner cases

– Cover z % of interactions
between features

› Verification complete when cover
goals reached (and bugs
attended to)

Three different verification features

• Filled and emptied every
FIFO in the design

• Transmitted all packet
types across a particular
channel of the design

• Transmitted packets
across all channels in the
design

• Transmitted all packet
types across all channels
(cross-coverage)

For example, functional
coverage might track whether
the verification process has:

Interacting features

SoC & ASIC Design at Ericsson | © Ericsson AB 2023 | Page 56

TRANSACTION LEVEL MODELING
(TLM)

› Model functionality at a
high level

› Communication modeled
as transactions

› Use SystemC and TLM-2
standard
– Timing can be added

› Simulates fast (10-1000 x
faster than RTL)

› Example SystemC code:
– Communication modeled

as function calls

struct sender: sc_module {
sc_out<pkt> pkt_out;
sc_in<sc_int<4> > source_id;
sc_in_clk CLK;
SC_CTOR(sender)
{ SC_CTHREAD(entry, CLK.pos()); }

void entry();
};

void sender:: entry() {
pkt pkt_data;
while(true) {

// Data generation code ...
pkt_out.write(pkt_data);
wait();

}
}

55

56

SoC & ASIC Design at Ericsson

© Ericsson AB 2023 28

SoC & ASIC Design at Ericsson | © Ericsson AB 2023 | Page 57

REGISTER TRANSFER LEVEL (RTL)
MODELING

› Model functionality and
implementation at HW
level

› Communication modeled
as signaling

› Use VHDL, Verilog,
SystemVerilog
– Clock-based timing

› Example VHDL code
(excerpts) for a serial
interface:

entity serdes_rif is
port (

clk : in std_logic;
reset_n : in std_logic;
cif_hss_strb : in std_logic;
cif_hss_data : in std_logic_vector(cif_di_width_c downto 0);
cif_hss_ack_strb : in std_logic;
cif_hss_data_out : out std_logic_vector(cif_do_width_c downto 0);
cif_hss_req : out std_logic;
cif_hss_halt : out std_logic;
rc_clk : in std_logic;
rc_reset_b : in std_logic;
rcmh_address : out std_logic_vector(31 downto 0);
rcmh_wdata : out std_logic_vector(15 downto 0);
rcmh_wmask : out std_logic_vector(15 downto 0);
rcmh_write_req : out std_logic;
rcmh_wmask_req : out std_logic;
rcmh_read_req : out std_logic;
rcmh_ack : in std_logic;
rcmh_rresult : in std_logic;
rcmh_rdata : in std_logic_vector(15 downto 0)
);

end serdes_rif;

rcmh_read_req <= not sr_data(65) when req_trigger_d1 = '1' else '0';
rcmh_write_req <= sr_data(65) when req_trigger_d1 = '1' and sr_data(64) = '0' else '0';
rcmh_address <= sr_data(63 downto 32) when req_trigger_d1 = '1' else (others => '0');
rcmh_wmask_req <= sr_data(64) when req_trigger_d1 = '1' and sr_data(65) = '1' else '0';
rcmh_wmask <= sr_data(31 downto 16) when req_trigger_d1 = '1' and sr_data(65) = '1' else (others => '0');
rcmh_wdata <= sr_data(15 downto 0) when req_trigger_d1 = '1' and sr_data(65) = '1' else (others => '0');

sr_data(64), req_trigger_d1, rcmh_ack,
rc_ctrl_fsm : process (state_rs, sr_data(65),
sr_data(64), req_trigger_d1, rcmh_ack,
rcmh_rresult, rc_domain_clear_s)
begin -- process rc_ctrl_fsm

nextstate_rs <= state_rs;
read_data_valid <= '0';
case state_rs is

when idle_e =>
if rc_domain_clear_s = '0' then

if req_trigger_d1 = '1' then
if sr_data(65) = '1' then

nextstate_rs <= wait_acknowledge_w_e;
else

nextstate_rs <= wait_acknowledge_r_e;
end if;

end if;
end if;

when wait_acknowledge_w_e =>
if rc_domain_clear_s = '0' then

if rcmh_ack = '1' then
read_data_valid <= '1';
nextstate_rs <= idle_e;

end if;
else

nextstate_rs <= idle_e;
end if;

when wait_acknowledge_r_e =>
if rc_domain_clear_s = '0' then

if rcmh_ack = '1' then
nextstate_rs <= wait_read_data_e;

end if;
else

nextstate_rs <= idle_e;
end if;

when wait_read_data_e =>
if rc_domain_clear_s = '0' then

if rcmh_rresult = '1' then
read_data_valid <= '1';
nextstate_rs <= idle_e;

end if;
else

nextstate_rs <= idle_e;
end if;

when others => nextstate_rs <= idle_e;
end case;

end process rc_ctrl_fsm;

+ about 400 additional code lines
of declarations, synchronization
processes, meta-stability handling,
etc

Signal assignments:

Entity with ports:

FSM controller (part):

SoC & ASIC Design at Ericsson | © Ericsson AB 2023 | Page 58

SystemC TLM-2 model (system or sub-system level)

SYSTEM PERFORMANCE ANALYSIS

Shared
memory

HW
block

HW
block

DSP
core

IO

Communication Infrastructure

Traffic
gen.

Traffic
gen.

Traffic
gen.

Performance analysis
Debug

Latency Contention Throughput Bandwidth

Utilization (time, memory) Transaction tracing

CCI* information exchange:

Registers

Internal state

Transaction logging

etc

*CCI = Configuration, Control & Inspection

57

58

SoC & ASIC Design at Ericsson

© Ericsson AB 2023 29

SoC & ASIC Design at Ericsson | © Ericsson AB 2023 | Page 59

property req_ack;
@(posedge clk) $rose(req) |-> ##[1:3] $rose(ack);

endproperty
req_ack_asrt: assert property(req_ack);

DEFINE PROPERTIES

› Properties are used for
three purposes:
– Assertions:

Define conditional
expected events and
sequences (what you
want to test)

– Assumptions:
Constraints (what states
the design can have)

– Covers:
Check that certain states
are reached (can be
prerequisites for tests)

SystemVerilog codeSystemVerilog code

Example assertion: Check
that a bus request is followed
by an acknowledge 1-3 cycles
after the request

SoC & ASIC Design at Ericsson | © Ericsson AB 2023 | Page 60

BUILDING THE RTL TEST BENCH

› Create test benches to verify functional behavior and RTL
implementation

› Feature based verification

› Usually built with SystemVerilog

› Stimuli generation
– Specify data format rather than exact content

– Random data generators with constraints

› Checkers verify stimuli/response relationship
– Basis for functional coverage analysis

59

60

SoC & ASIC Design at Ericsson

© Ericsson AB 2023 30

SoC & ASIC Design at Ericsson | © Ericsson AB 2023 | Page 61

BUILDING THE RTL TEST BENCH
CONSTRAINED RANDOM TESTING

› Instead of specifying which variable values to test, specify
constraints for the interesting ranges

› Auto generate random values within the constraints

X

Y

C
o

ns
tr

ai
nt

 {
Y

}

Constraint {X}

class CRT_example;
rand shortint X;
rand shortint Y;

constraint x1
{X inside {[xmin:xmax]};}

constraint y1
{Y inside {[ymin:ymax]};}

endclass: CRT_example

ymax

xmax

ymin

xmin

SystemVerilog code:

SoC & ASIC Design at Ericsson | © Ericsson AB 2023 | Page 62

RTL DESIGN RULE CHECK

› Designability = Ability to design

› Rule check: Find design patterns that
may cause problems in the design
flow
– Static check of HDL code

› Typically several hundred rules

› Rule examples:
– Avoid latches (incomplete HDL conditions may

cause unintentional latches)

– Memory inputs should be observable (for test)

– Use specified identifier suffixes, e.g. ”_n” for
active low

– One file per HDL design unit (entity/module etc)

– Use fixed indentation

– Use IEEE Numeric_std packages

61

62

SoC & ASIC Design at Ericsson

© Ericsson AB 2023 31

SoC & ASIC Design at Ericsson | © Ericsson AB 2023 | Page 63

RTL VERIFICATION AND DEBUG

› First verify assertions by
formal property check
– Mathematical proof that a

behavior always/never occurs

› Then simulate what’s left
– Mathematical computations

– Performance

› Debug is typically
waveform based

SoC & ASIC Design at Ericsson | © Ericsson AB 2023 | Page 64

ASIC DEVELOPMENT ACTIVITIES

SpecificationSpecification

TLM modelingTLM modeling

Verification planningVerification planning

Define TLM test casesDefine TLM test cases

Build TLM testbenchBuild TLM testbench

TLM simulationTLM simulation

Debug - CorrectDebug - Correct

RTL modelingRTL modeling

RTL design rule checkRTL design rule check

Formal property checkFormal property check

RTL simulationRTL simulation

Debug - CorrectDebug - Correct

Continued verification (simulation, formal)Continued verification (simulation, formal)

Build regression test suiteBuild regression test suite

Debug – Correct/work aroundDebug – Correct/work around

Define RTL test casesDefine RTL test cases

Build RTL testbenchBuild RTL testbench

Define propertiesDefine properties

SpecificationSpecification

TLM integrationTLM integration
Define TLM test casesDefine TLM test cases

Build TLM testbenchBuild TLM testbench

TLM simulation (run SW)TLM simulation (run SW)

Debug - CorrectDebug - Correct

Verification planningVerification planning

RTL integrationRTL integration
Build RTL testbenchBuild RTL testbench

Define RTL test casesDefine RTL test cases

RTL simulationRTL simulation

Connectivity check (formal)Connectivity check (formal)

Build emulation
testbench

Build emulation
testbench

Define emulation
test cases

Define emulation
test cases

Emulation (with SW)Emulation (with SW)

Continued verification
(simulation, emulation)
Continued verification
(simulation, emulation)

Debug – Correct/work
around

Debug – Correct/work
around

Debug - CorrectDebug - Correct

Logic synthesisLogic synthesis Design planningDesign planning

DFT insertionDFT insertion

Equivalence checkEquivalence check

Static timing analysisStatic timing analysis

Gate level simulationGate level simulation

Debug – Correct (ECO)Debug – Correct (ECO)

Timing back-annotationTiming back-annotation

Prototype verificationPrototype verification

Debug – Work aroundDebug – Work around

Constraints (re-)definitionConstraints (re-)definition

Build regression
test suite

Build regression
test suite

DFT implementationDFT implementation

FloorplanningFloorplanning

Place & RoutePlace & Route

Design rule checkDesign rule check

Parasitic extractionParasitic extraction

Chip manufacturingChip manufacturing

Verification managementVerification management

Verification managementVerification management

3 rounds of
deliveries

Block development ASIC chip development ASIC backend

One integration &
synthesis team:

ASIC backend
team:

Several
deliveries

63

64

SoC & ASIC Design at Ericsson

© Ericsson AB 2023 32

SoC & ASIC Design at Ericsson | © Ericsson AB 2023 | Page 65

LOGIC SYNTHESIS AND
DESIGN PLANNING

› Map RTL to optimized gate level netlist
– Needs cell library for target

technology

› Work towards goals
– Typically minimized area or power

› Find result within constraints
– Typically timing or power

› Synthesis result depends on physical
layout
– Layout affects timing constraints

› Physical layout depends on synthesis
– Synthesis determines size of blocks

› Good result requires interaction synthesis –
design planning (= preliminary layout)

Synthesis

Layout

AreaTiming

SoC & ASIC Design at Ericsson | © Ericsson AB 2023 | Page 66

EQUIVALENCE CHECK

› Checks functional equivalence of
two designs
– RTL - gate (before and after

synthesis)
– Gate - gate (before and after

netlist modification)
– (RTL - RTL)

› Formal methods
– Reference design logically

implies* compared design
– No test bench, no test vectors
– Verifies complete design

* Implication () means that all reference functionality is present in the compared design, but the
compared design may have additional functions not present in the reference design (such as test logic).

Equivalent?

65

66

SoC & ASIC Design at Ericsson

© Ericsson AB 2023 33

SoC & ASIC Design at Ericsson | © Ericsson AB 2023 | Page 67

STATIC TIMING ANALYSIS

› Verify timing

› Gate level

› Estimated or back-annotated timing from layout

› Calculate delay along all clock and data paths
– Check for setup and hold violations, delays, pulse widths

– Locate critical paths

– Analysis for worst case, best case, on-chip variation

Timing path for worst case (setup check)

setup time

d

ck
min_path time

max_path time

SoC & ASIC Design at Ericsson | © Ericsson AB 2023 | Page 68

BACKEND DESIGN & VERIFICATION
RTL

NHO netlist

Sign-off netlist

Synthesis

Equivalence
checker

Equivalence
checker

Preliminary netlist

Floorplanning
Test insertion

Place & Route
Test insertion

Equivalence
checker

SDF

Simulator

SDF

Simulator

Typically at least
3 deliveries
to ASIC backend

Typically at least
3 deliveries
to ASIC backend

Constraints

Static Timing
Analyzer

Static Timing
Analyzer

SIGN-OFF!

Increasing
precision

67

68

SoC & ASIC Design at Ericsson

© Ericsson AB 2023 34

SoC & ASIC Design at Ericsson | © Ericsson AB 2023 | Page 69

TOP-LEVEL VERIFICATION

› Four different platforms for the top level:

void sender:: entry() {
pkt pkt_data;
while(true) {

// Data generation code ...
pkt_out.write(pkt_data);
wait();

}
}

req_trigger_d1, rcmh_ack,

rc_ctrl_fsm : process (state_rs,
sr_data(65), sr_data(64),
req_trigger_d1, rcmh_ack,
rcmh_rresult, rc_domain_clear_s)
begin -- process rc_ctrl_fsm

nextstate_rs <= state_rs;
read_data_valid <= '0';
case state_rs is
when idle_e =>

if rc_domain_clear_s = '0' then
if req_trigger_d1 = '1' then
if sr_data(65) = '1' then

nextstate_rs <=
wait_acknowledge_w_e;

req_trigger_d1, rcmh_ack,

rc_ctrl_fsm : process (state_rs,
sr_data(65), sr_data(64),
req_trigger_d1, rcmh_ack,
rcmh_rresult, rc_domain_clear_s)
begin -- process rc_ctrl_fsm

nextstate_rs <= state_rs;
read_data_valid <= '0';
case state_rs is

when idle_e =>
if rc_domain_clear_s = '0' then

if req_trigger_d1 = '1' then
if sr_data(65) = '1' then

nextstate_rs <=
wait_acknowledge_w_e;

TLM simulation RTL simulation RTL/GL emulation ASIC prototype

Relative speed
(slowdown) 1-100x 10 000-100 000x 10-100x 1x

ROP1011503
R1A

SoC & ASIC Design at Ericsson | © Ericsson AB 2023 | Page 70

EMULATION

› RTL or gate level verification
› Acceleration: Replace design in simulation

(keep simulated test bench)
› In Circuit Emulation: Replace circuit on

board with model in emulator; connect
emulator to board

› Emulates design with configurable
hardware arrays (FPGAs or custom
developed)
– Extremely fast, ~1-10 M cycles/s

› Requires long test cases for efficient use
– Random or real data streams,

application SW

69

70

SoC & ASIC Design at Ericsson

© Ericsson AB 2023 35

SoC & ASIC Design at Ericsson | © Ericsson AB 2023 | Page 71

PROTOTYPE VERIFICATION

› Establish that ASIC prototypes
meet specifications:
– functionality at full speed

– interaction between blocks

– I/O pad connectivity

– timing on interfaces

– electrical characteristics

› Tested in lab environment:
– production board or test board

BGA adapter

Logic analyzer
Oscilloscope

Data generator

CPU debugger
RISCWatch/Green Hills Probe

DSP core debugger
Ericsson inhouse

Simulation
test vectors DSP SWCPU SW

Other components
ROP1011503

R1A

SoC & ASIC Design at Ericsson | © Ericsson AB 2023 | Page 72

HW/SW/SYSTEM VERIFICATION

System
specification

SOFTWARE DEVELOPMENT

SoC DEVELOPMENT

TLM model - early
validation & verification
of system functionality

RTL model - mid-way
verification of system
functionality

Actual HW - final
verification of system
functionality

ROP1011503
R1A

71

72

SoC & ASIC Design at Ericsson

© Ericsson AB 2023 36

SoC & ASIC Design at Ericsson | © Ericsson AB 2023 | Page 73

SW-DRIVEN VERIFICATION

› Use the built-in DSP cores to run test programs on top level

› Provides a platform-independent test environment

› The same tests can be run on all four top-level verification
platforms

TLM simulation RTL simulation RTL/GL emulation ASIC prototype

SW

DSP cores present
in all models +
prototype

Tests

SoC & ASIC Design at Ericsson | © Ericsson AB 2023 | Page 74

ASIC DESIGN FLOW – OVERVIEW

Design activity

Verification activity

Logic synthesis

Static timing analysis

ASIC backend
& manufacture

Prototype verification

Gate simulation

Timing & Loads

Equivalence check

Test coverage

Gate emulation

Gate level
power analysis

Rule check

RTL design entry

Acceleration

Test vectors

SW

RTL simulationFormal verification

TLM design entry

TLM simulation

Architectural exploration

RTL power analysis

Verification planning

Verification run
management

Verification environment
design & entry

Debug

Design planning

Switching
frequencies

Reference models

CDC check

Performance analysis

73

74

SoC & ASIC Design at Ericsson

© Ericsson AB 2023 37

SoC & ASIC Design at Ericsson | © Ericsson AB 2023 | Page 75

LOGIC DESIGN FLOW

Rule check
Design

planning
Logic

synthesis

Equivalence

check

Simulation

Floorplan data

DEF/MW

Parasitics

Switching

SAIF

Simulation

Reports
- area
- timing
- power
- DRC

ASIC
backend

RTL

VHDL/
(System)-

VerilogSynthesis
Design

rules

Netlist

verification

Timing

Gate level
power

analysis

Static
Timing

Analysis

Power
model

DB

Timing
model

DB

Design
rules

Power

Timing

SDF

Power
reports

Design

exploration

Architectural
exploration

TLM

SystemC

Analysis
database

Perfor-
mance
reports

DRC
reports

Netlist

Verilog

RTL power
analysis

Verification
setup

SVF

Constraints

TCL

SoC & ASIC Design at Ericsson | © Ericsson AB 2023 | Page 76

RTL FUNCTIONAL
VERIFICATION FLOW

HW/SW co-verification

Verification
management

Acceleration Formal
verification

RTL code
VHDL/

(System)Verilog

Properties

SVA
DSP SW

Require-
ments

Verification
planning

Modify/
Extend

Directed tests
Constrained
random tests
Assertions

OK OK

Emulation

Target debug

Board
environment

Verification
IP

UVC

Ref. model
(alg. parts)

C++

Testbench
SystemVerilog

Simulation

Test coverage OK

Code coverage
Functional coverage
Assertion coverage

Verification
run

management

75

76

SoC & ASIC Design at Ericsson

© Ericsson AB 2023 38

SoC & ASIC Design at Ericsson | © Ericsson AB 2023 | Page 77

AFTER PROTOTYPE VERIFICATION

ASIC prototype verification

Board verification

Subsystem verification

System verification

Type approval

Sales & marketing

Board

Subsystem SW

Other
subsystems System

SW
Mechanics

Design & verification

Design & verification

Design & verification

Design & verification

Design & verification

SoC & ASIC Design at Ericsson | © Ericsson AB 2023 | Page 78

WANT TO PARTICIPATE?

› Do you want to:
– Contribute to the world-wide expansion of mobile communications?

– Use the absolutely latest microelectronics technology?

– Be part of a world class ASIC design team?

– Work in a global environment with daily international contacts?

– Work at the world leading telecommunications company?

› Look for job opportunities and thesis works at
jobs.ericsson.com !

77

78

SoC & ASIC Design at Ericsson

© Ericsson AB 2023 39

SoC & ASIC Design at Ericsson | © Ericsson AB 2023 | Page 79

79

