
VERY LONG INSTRUCTION WORD (VLIW)
PROCESSORS

1. Problems with Superscalar Architectures

2. VLIW Processors

3. Advantages and Problems

4. Loop Unrolling

5. Trace Scheduling

6. The Itanium Architecture
1 of 53Datorarkitektur Fö 9-10

What is Good with Superscalars?

 The hardware solves everything

 Hardware detects potential parallelism between instructions.
 Hardware tries to issue as many instructions as possible in parallel.
 Hardware solves register renaming.

 Binary compatibility

 If functional units are added in a new version of the architecture or
some other improvements have been made to the architecture (without
changing the instruction sets), old programs can benefit from the
additional potential of parallelism.

Why?
Because the new hardware will issue the old instruction sequence in a
more efficient way.
2 of 53Datorarkitektur Fö 9-10

What is Bad with Superscalars?

 Very complex

 Much hardware is needed for run-time detection. There is a limit in how
far we can go with this technique.

 Power consumption can be very large!

 The instruction window is limited this limits the capacity to detect
potentially parallel instructions.
3 of 53Datorarkitektur Fö 9-10

The Alternative: VLIW Processors

 VLIW architectures rely on compile-time detection of parallelism the
compiler analysis the program and detects operations to be executed in
parallel; such operations are packed into one “large” instruction.

 At execution, after one instruction has been fetched all the corresponding
operations are issued in parallel.

 No hardware is needed for run-time detection of parallelism.

 The instruction window problem is solved: the compiler can potentially
analyse the whole program in order to detect parallel operations.
4 of 53Datorarkitektur Fö 9-10

VLIW Processors

op1 po op3 op4

op1 op2 op4

op1 op2 op3 op4

empty

empty

instruction - 1

instruction - 2

instruction - 3
 5 of 53Datorarkitektur Fö 9-10

VLIW Processors

Instruction
fetch
unit

FU-1

Memory

R
egister Files

Instruction
decode

unit

FU-2

FU-3

FU-4

FU-n

FUs
Reg. File

Execution unit
6 of 53Datorarkitektur Fö 9-10

Advantages with VLIW Processors

 Simpler hardware:

 Does not need additional sophisticated hardware to detect parallelism,
like in superscalars.

 Power consumption is reduced, compared to superscalar.

 Good compilers can detect parallelism based on global analysis of the whole
program (no instruction window problem).
7 of 53Datorarkitektur Fö 9-10

Problems with VLIW Processors

 Large number of registers needed in order to keep all FUs active (to store
operands and results).

 Large data transport capacity is needed between FUs and the register file and
between register files and memory.

 High bandwidth between instruction cache and fetch unit.
Example: one instruction with 7 operations, each 24 bits 168 bits/instruction.

 Large code size, partially because unused operations wasted bits in
instruction word.

 Incompatibility of binary cod
 For example:

If for a new version of the processor additional FUs are introduced
the number of operations possible to execute in parallel is increased
the instruction word changes
old binary code cannot be run on this processor.
8 of 53Datorarkitektur Fö 9-10

An Example
Consider the following code in C:

for (i=959; i >= 0; i--)
x[i] = x[i] + s;

Assumptions: x is an array of floating point values
s is a floating point constant.
9 of 53Datorarkitektur Fö 9-10

An Example
Consider the following code in C:

for (i=959; i >= 0; i--)
x[i] = x[i] + s;

Assumptions: x is an array of floating point values
s is a floating point constant.

This sequence (for an ordinary processor) would be compiled to:

Loop: LDD F0, (R1) F0 ← x[i] ;(load double)
ADF F4,F0,F2 F4 ← F0 + F2 ;(floating pnt)
STD (R1),F4 x[i] ← F4 ;(store double)
SBI R1,R1,#8 R1 ← R1 - 8
BGEZ R1,Loop

Assumptions: R1 initially contains the address of the last element in x;
the other elements are at lower addresses; x[0] is at address 0.
Floating point register F2 contains the value s.
Each floating point value is 8 bytes long.
10 of 53Datorarkitektur Fö 9-10

An Example

Consider a VLIW processor:

 Two memory references, two FP operations, and one integer operation
or branch can be issued each clock cycle.

 The delay for a double word load is one additional clock cycle.

 The delay for a floating point operation is two additional clock cycles.

 No additional clock cycles for integer operations.
11 of 53Datorarkitektur Fö 9-10

An Example

 One iteration takes 6 cycles. The whole loop takes 960*6 = 5760 cycles.
 Almost no parallelism there.
 Most of the fields in the instructions are empty.
 We have two completely empty cycles.

LDD
F0,(R1)

ADF
F4,F0,F2

STD
8(R1),F4

SBI
R1,R1,#8

BGEZ
R1,Loop

The displacement of 8, in 8(R1),
is needed because we have
already subtracted 8 from R1.
12 of 53Datorarkitektur Fö 9-10

Loop Unrolling
Let us rewrite the previous example:

for (i=959; i >= 0; i-=2){
x[i] = x[i] + s;
x[i-1] = x[i-1] + s;

}

This sequence (for an ordinary processor) would be compiled to:

Loop: LDD F0, (R1) F0 ← x[i] ;(load double)
ADF F4,F0,F2 F4 ← F0 + F2 ;(floating pnt)
STD (R1),F4 x[i] ← F4 ;(store double)
LDD F0, -8(R1) F0 ← x[i-1] ;(load double)
ADF F4,F0,F2 F4 ← F0 + F2 ;(floating pnt)
STD -8(R1),F4 x[i-1] ← F4 ;(store double)
SBI R1,R1,#16 R1 ← R1 - 16
BGEZ R1,Loop
13 of 53Datorarkitektur Fö 9-10

Loop Unrolling

 There is an increased degree of parallelism in this case.
 We still have two completely empty cycles and empty operation.
 However, we have a dramatic improvement in speed:

Two iterations take 6 cycles
The whole loop takes 480*6 = 2880 cycles

LDD
F0,(R1)

ADF
F4,F0,F2

STD
16(R1),F4

SBI
R1,R1,#16

BGEZ
R1,Loop

LDD
F6,-8(R1)

ADF
F8,F6,F2

STD
8(R1),F8
14 of 53Datorarkitektur Fö 9-10

Loop Unrolling

Loop unrolling is a technique used in compilers in order to increase the
potential of parallelism in a program. This allows for more efficient code
generation for processors with instruction level parallelism (which can execute
several instructions in parallel).
15 of 53Datorarkitektur Fö 9-10

Loop Unrolling
Let us unroll three iterations in our example:

for (i=959; i >= 0; i-=3){
x[i] = x[i] + s;
x[i-1] = x[i-1] + s;
x[i-2] = x[i-2] + s;

}

This sequence (for an ordinary processor) would be compiled to:
Loop: LDD F0, (R1) F0 ← x[i] ;(load double)

ADF F4,F0,F2 F4 ← F0 + F2 ;(floating pnt)
STD (R1),F4 x[i] ← F4 ;(store double)
LDD F0, -8(R1) F0 ← x[i-1] ;(load double)
ADF F4,F0,F2 F4 ← F0 + F2 ;(floating pnt)
STD -8(R1),F4 x[i-1] ← F4 ;(store double)
LDD F0, -16(R1) F0 ← x[i-2] ;(load double)
ADF F4,F0,F2 F4 ← F0 + F2 ;(floating pnt)
STD -16(R1),F4 x[i-2] ← F4 ;(store double)
SBI R1,R1,#24 R1 ← R1 - 24
BGEZ R1,Loop
16 of 53Datorarkitektur Fö 9-10

Loop Unrolling

 The degree of parallelism is further improved.
 There is still an empty cycle and empty operations.
 Three iterations take 7 cycles;

The whole loop takes 320*7 = 2240 cycles

LDD
F0,(R1)

ADF
F4,F0,F2

STD
(R1),F4

SBI
R1,R1,#24

LDD
F6,-8(R1)

ADF
F8,F6,F2

STD
-8(R1),F8

LDD
F10,-16(R1)

ADF
F12,F10,F2

BGEZ
R1,Loop

STD
8(R1),F12
17 of 53Datorarkitektur Fö 9-10

Loop Unrolling

With eight iterations unrolled:

for (i=959; i >= 0; i-=8){
x[i] = x[i] + s; x[i-1] = x[i-1] + s;
x[i-2] = x[i-2] + s; x[i-3] = x[i-3] + s;
x[i-4] = x[i-4] + s; x[i-5] = x[i-5] + s;
x[i-6] = x[i-6] + s; x[i-7] = x[i-7] + s;

}

18 of 53Datorarkitektur Fö 9-10

Loop Unrolling

 No empty cycles, but still empty operations
 Eight iterations take 9 cycles

The whole loop takes 120*9 = 1080 cycles

LDD
F0,(R1)

ADF
F4,F0,F2

STD
(R1),F4

LDD
F6,-8(R1)

ADF
F8,F6,F2

STD
-8(R1),F8

LDD
F10,-16(R1)

ADF
F12,F10,F2

STD
-16(R1),F12

LDD
F14,-24(R1)

LDD
F18,-32(R1)

LDD
F22,-40(R1)

LDD
F26,-48(R1)

LDD
F30,-56(R1)

ADF
F16,F14,F2

ADF
F20,F18,F2

ADF
F24,F22,F2

ADF
F28,F26,F2

ADF
F32,F30,F2

SBI
R1,R1,#64

BGEZ
R1,Loop

STD
-24(R1),F16

STD
-32(R1),F20

STD
-40(R1),F24

STD
16(R1),F28

STD
8(R1),F32
19 of 53Datorarkitektur Fö 9-10

Loop Unrolling

 Given a certain set of resources (processor architecture) and a given loop,
there is a limit on how many iterations should be unrolled.
Beyond that limit there is no gain any more.

 A good compiler has to find the optimal level of unrolling for each loop.

 Loop unrolling increases the memory space needed to store the program.

-
20 of 53Datorarkitektur Fö 9-10

Trace Scheduling
Trace scheduling is another technique used in compilers in order to exploit
parallelism across conditional branches.

 The problem is that long instruction sequences are needed in order to
detect sufficient parallelism block boundaries have to be crossed.

 Trace scheduling is based on compile time branch prediction.
21 of 53Datorarkitektur Fö 9-10

Trace Scheduling
Trace scheduling is another technique used in compilers in order to exploit
parallelism across conditional branches.

 The problem is that long instruction sequences are needed in order to
detect sufficient parallelism block boundaries have to be crossed.

 Trace scheduling is based on compile time branch prediction.

Trace scheduling is done in three steps:

1. Trace selection

2. Instruction scheduling

3. Replacement and compensation
22 of 53Datorarkitektur Fö 9-10

Trace Scheduling

Example:

if (c != 0)
b = a / c;

else
b = 0; h=0;

f = g + h;
23 of 53Datorarkitektur Fö 9-10

Trace Scheduling

Example:

if (c != 0)
b = a / c;

else
b = 0; h=0;

f = g + h;

This (for an ordinary processor) would be compiled to:

LD R0, c R0 ← c ;(load word)
BZ R0,Else
LD R1, a R1 ← a ;(load integer)
DV R1,R1,R0 R1 ← R1 / R0 ;(divide integer)
ST b,R1 b ← R1 ;(store word)
BR Next

Else: STI b,#0 b ← 0
STI h,#0 h ← 0

Next: LD R0, g R0 ← g ;(load word)
LD R1, h R1 ← h ;(load word)
AD R1,R1,R0 R1 ← R1 + R0 ;(add integer)
ST f,R1 f ← R1 ;(store word)

End: - - - - - - - - - - - - - - -
24 of 53Datorarkitektur Fö 9-10

E

Trace Scheduling
LD R0, c

BZ R0,Else

LD R1, a

DV R1,R1,R0

ST b,R1

AD R1,R1,R0

STI b,#0

LD R0, g

LD R1, h

ST f,R1

STI h,#0

lse:

Next:
25 of 53Datorarkitektur Fö 9-10 End:

E

Trace Scheduling
LD R0, c

BZ R0,Else

LD R1, a

DV R1,R1,R0

ST b,R1

AD R1,R1,R0

STI b,#0

LD R0, g

LD R1, h

ST f,R1

STI h,#0

lse:

Next:

Trace selection:

 Selects a sequence of basic
blocks, likely to be executed
most of the time. This
sequence is called a trace.

 Trace selection is based on
compile time prediction

- The prediction can be
based on profiling:
Execution of the program
with several typical input
sequences and collection
of statistics concerning
outcomes of conditional
branches.
26 of 53Datorarkitektur Fö 9-10 End:

E

Trace Scheduling
LD R0, c

BZ R0,Else

LD R1, a

DV R1,R1,R0

ST b,R1

AD R1,R1,R0

STI b,#0

LD R0, g

LD R1, h

ST f,R1

STI h,#0

lse:

Next:

Instruction scheduling:

 Schedules the instructions of
the selected trace into
parallel operations for the
VLIW processor.

LD R0,c

AD R3,R3,R2ST b,R1

LD R1,a

DV R1,R1,R0

ST f,R3

LD R2,g BZ R0,ElseLD R3,h

BR End
Next:

We assume the same processor as
described earlier with Loop Unrolling.
27 of 53Datorarkitektur Fö 9-10 End:

Trace Scheduling

Replacement and compensation:

 The code for the entire sequence is produced by using the schedule
generated for the selected trace.

 However: In the generated schedule, instructions have been moved
across branches

In order to keep the code correct, regardless of the selected branches,
compensation code has to be added!
28 of 53Datorarkitektur Fö 9-10

Els

,

Trace Scheduling
LD R0, c

BZ R0,Else

LD R1, a

DV R1,R1,R0

ST b,R1

AD R1,R1,R0

STI b,#0

LD R0, g

LD R1, h

ST f,R1

STI h,#0

e:

Next:
LD R0,c

AD R3,R3,R2ST b,R1

LD R1,a

DV R1,R1,R0

ST f,R3

LD R2,g BZ R0,ElseLD R3,h

BR End
Next:

In the example:
 the load of g and h is moved up

from the next sequence, before
the conditional branch;
29 of 53Datorarkitektur Fö 9-10 End:

Els

,

e
Trace Scheduling
LD R0, c

BZ R0,Else

LD R1, a

DV R1,R1,R0

ST b,R1

AD R1,R1,R0

STI b,#0

LD R0, g

LD R1, h

ST f,R1

STI h,#0

e:

Next:
LD R0,c

AD R3,R3,R2ST b,R1

LD R1,a

DV R1,R1,R0

ST f,R3

LD R2,g BZ R0,ElseLD R3,h

BR End
Next:

In the example:
 the load of g and h is moved up

from the next sequence, before
the conditional branch;

 the load of a is moved before th
conditional branch;
30 of 53Datorarkitektur Fö 9-10 End:

Els

,

e

s
Trace Scheduling
LD R0, c

BZ R0,Else

LD R1, a

DV R1,R1,R0

ST b,R1

AD R1,R1,R0

STI b,#0

LD R0, g

LD R1, h

ST f,R1

STI h,#0

e:

Next:
LD R0,c

AD R3,R3,R2ST b,R1

LD R1,a

DV R1,R1,R0

ST f,R3

LD R2,g BZ R0,ElseLD R3,h

BR End
Next:

In the example:
 the load of g and h is moved up

from the next sequence, before
the conditional branch;

 the load of a is moved before th
conditional branch;

 the store of b after the division i
now part of the next sequence.
31 of 53Datorarkitektur Fö 9-10 End:

Els
Trace Scheduling
LD R0, c

BZ R0,Else

LD R1, a

DV R1,R1,R0

ST b,R1

AD R1,R1,R0

STI b,#0

LD R0, g

LD R1, h

ST f,R1

STI h,#0

e:

Next: LD R0,c

AD R3,R3,R2ST b,R1

LD R1,a

DV R1,R1,R0

ST f,R3

LD R2,g BZ R0,ElseLD R3,h

STI b,#0
BR End

Else: STI h,#0 BR Next

Next:

End:

Simply merging the code for the two
sequences does not work!
32 of 53Datorarkitektur Fö 9-10 End:

Els
Trace Scheduling
LD R0, c

BZ R0,Else

LD R1, a

DV R1,R1,R0

ST b,R1

AD R1,R1,R0

STI b,#0

LD R0, g

LD R1, h

ST f,R1

STI h,#0

e:

Next: LD R0,c

AD R3,R3,R2ST b,R1

LD R1,a

DV R1,R1,R0

ST f,R3

LD R2,g BZ R0,ElseLD R3,h

STI b,#0
BR End

Else: STI h,#0 BR Next

Next:

End:

store in the next
sequence over-
writes STI in else
sequence (store
of b is moved
down into the
next sequence!).

Simply merging the code for the two
sequences does not work!
33 of 53Datorarkitektur Fö 9-10 End:

Els

34 of 53Datorarkitektur Fö 9-10

Trace Scheduling
LD R0, c

BZ R0,Else

LD R1, a

DV R1,R1,R0

ST b,R1

AD R1,R1,R0

STI b,#0

LD R0, g

LD R1, h

ST f,R1

STI h,#0

e:

Next:

End:

LD R0,c

AD R3,R3,R2ST b,R1

LD R1,a

DV R1,R1,R0

ST f,R3

LD R2,g BZ R0,ElseLD R3,h

STI b,#0
BR End

Else: STI h,#0 BR Next

Next:

End:

store in the next
sequence over-
writes STI in else
sequence (store
of b is moved
down into the
next sequence!).

Value assigned to
h in the else se-
quence is ignored
for the addition
(load of h is
moved up from the
next sequence)

Simply merging the code for the two
sequences does not work!

Compensation is needed!

Els
Trace Scheduling
LD R0, c

BZ R0,Else

LD R1, a

DV R1,R1,R0

ST b,R1

AD R1,R1,R0

STI b,#0

LD R0, g

LD R1, h

ST f,R1

STI h,#0

e:

Next: LD R0,c

AD R3,R3,R2ST b,R1

LD R1,a

DV R1,R1,R0

ST f,R3

LD R2,g BZ R0,ElseLD R3,h

STI R1,#0
BR End

Else: STI h,#0
BR Next

Next:

STI R3,#0
End:

That’s the correct code:
35 of 53Datorarkitektur Fö 9-10 End:

Els
Trace Scheduling
LD R0, c

BZ R0,Else

LD R1, a

DV R1,R1,R0

ST b,R1

AD R1,R1,R0

STI b,#0

LD R0, g

LD R1, h

ST f,R1

STI h,#0

e:

Next: LD R0,c

AD R3,R3,R2ST b,R1

LD R1,a

DV R1,R1,R0

ST f,R3

LD R2,g BZ R0,ElseLD R3,h

STI R1,#0
BR End

Else: STI h,#0
BR Next

Next:

STI R3,#0
End:

LD R0,c

AD R3,R3,R2ST b,R1

LD R1,a

DV R1,R1,R0

ST f,R3

LD R2,g BZ R0,ElseLD R3,h

STI b,#0
BR End

Else: STI h,#0 BR Next

Next:

End:
Compensation!

That’s the correct code:
36 of 53Datorarkitektur Fö 9-10 End:

Trace Scheduling

 Trace scheduling is different from speculative execution:

 This is a compiler optimization (and not a run time technique!) and
tries to optimize the code so that the path which is most likely to be
taken, is executed as fast as possible.

The price: possible additional instructions (the compensation code) to
be executed when the less likely path is taken.

 At program execution always the correct path will be taken (of course!);
however, if this is not the one predicted by the compiler, execution will be
slower because of the compensation code.

 Independently of trace scheduling, at the hardware level, a VLIW processor
can also use branch prediction and speculative execution, like any
processor, in order to improve the use of its pipelines.
37 of 53Datorarkitektur Fö 9-10

Some VLIW Processors
Examples of successful VLIW processors:

 TriMedia of Philips

 TMS320C6x of Texas Instruments

Both are targeting the multi-media market.

 The IA-64 architecture from Intel and Hewlett-Packard.

- This family uses many of the VLIW ideas.
- It is not "just" a multi-media processor, but a processor for servers

and workstations.
- The first product of the family was the Itanium processor.
38 of 53Datorarkitektur Fö 9-10

The Itanium Architecture

The Itanium is not a pure VLIW architecture, but many of its features are typical
for VLIW processors.

Particular features with Itanium:

 These are typical VLIW features:

- Instruction-level parallelism fixed at compile-time.
- (Very) long instruction word.

 Other interesting concepts:

- Branch predication.

Intel calls the Itanium an EPIC (explicitly parallel instruction computing)
processor: the parallelism of operations is explicit in the instruction word.
39 of 53Datorarkitektur Fö 9-10

General Organization

 Registers (both integer and floating point) are 64-bit.
 Predicate registers are 1-bit.
 8 or more functional units.

Instruction
fetch
unit

FU

Memory

128 Registers
(integers)

Instruction
decode &

control unit

FU

FU

FU

128 Registers
(float. pnts.)

64 predicate
registers
40 of 53Datorarkitektur Fö 9-10

Instruction Format

 3 operations/instruction word (40 bits/operation)
 This does not mean that max. 3 operations can be executed in parallel!
 The three operations in the instruction are not necessarily parallel!

Operation1 Operation2 Operation3 Temp-
late

128-bits
41 of 53Datorarkitektur Fö 9-10

Instruction Format

 3 operations/instruction word (40 bits/operation)
 This does not mean that max. 3 operations can be executed in parallel!
 The three operations in the instruction are not necessarily parallel!

 The template (8bits) indicates what can be executed in parallel.
 The encoding in the template shows which of the operations in the

instruction can be executed in parallel.
 The template connects also to neighbouring instructions operations

from different instructions can be executed in parallel.

Operation1 Operation2 Operation3 Temp-
late

128-bits
42 of 53Datorarkitektur Fö 9-10

Instruction Format

 3 operations/instruction word (40 bits/operation)
 This does not mean that max. 3 operations can be executed in parallel!
 The three operations in the instruction are not necessarily parallel!

 The template (8bits) indicates what can be executed in parallel.
 The encoding in the template shows which of the operations in the

instruction can be executed in parallel.
 The template connects also to neighbouring instructions operations

from different instructions can be executed in parallel.
 The template provides high flexibility and avoids some of the problems with

classical VLIW processors
 Operations in one instruction have not necessarily to be parallel no

places have to be left empty when no parallel operation is available.
 The number of parallel operations is not restricted by the instruction

size processor generations have different number of functional
units without changing instruction format binary compatibility.

 If, according to the template, there are more parallel operations than
functional units available processor takes them sequentially.

Operation1 Operation2 Operation3 Temp-
late

128-bits
43 of 53Datorarkitektur Fö 9-10

44 of 53Datorarkitektur Fö 9-10

Predicated Execution

Operation1 Operation2 Operation3 Temp-
late

128-bits

Op
code

Pred
reg Reg Reg Reg

40-bits

45 of 53Datorarkitektur Fö 9-10

Predicated Execution

 Any operation can refer to a predicate register
<Pi> operation i is number of a predicate register (between 0 and 63)

 This means that the respective operation is to be committed (the
results made visible) only when the respective predicate is true (the
predicate register gets value 1).

 If the predicate value is known when the operation is issued, the
operation is executed only if this value is true.

If the predicate is not known at that moment, the operation is started; if
the predicate turns out to be false, the operation is discarded.

<P3> ADI R2, R2,#1

Operation1 Operation2 Operation3 Temp-
late

128-bits

Op
code

Pred
reg Reg Reg Reg

40-bits

46 of 53Datorarkitektur Fö 9-10

Predicated Execution

 Any operation can refer to a predicate register
<Pi> operation i is number of a predicate register (between 0 and 63)

 This means that the respective operation is to be committed (the
results made visible) only when the respective predicate is true (the
predicate register gets value 1).

 If the predicate value is known when the operation is issued, the
operation is executed only if this value is true.

If the predicate is not known at that moment, the operation is started; if
the predicate turns out to be false, the operation is discarded.

 If no predicate register is mentioned, the operation is executed and
committed unconditionally.

Operation1 Operation2 Operation3 Temp-
late

128-bits

Op
code

Pred
reg Reg Reg Reg

40-bits

Predicated Execution
Predicate assignment

Pj, Pk = relation j and k indicate predicate registers (between 0 and 63).

 Sets the value of predicate register Pj to true and that of predicate
register Pk to false if the relation is evaluated to true; Pj will be set to
false and Pk to true if the relation evaluates to false.

P1, P2 = EQ(R0, #0)

Predicated predicate assignment

<Pi> Pj, Pk = relation i, j and k indicate predicate registers.

 Predicate registers Pj and Pk will be updated if and only if predicate
register Pi is true.

<P2> P1, P3 = EQ(R1, #0)
47 of 53Datorarkitektur Fö 9-10

Branch Predication

 Branch predication is a very aggressive compilation technique for
generation of code with instruction level parallelism (code with parallel
operations).

 Branch predication lets operations from both branches of a conditional
branch to be executed in parallel.

 Branch predication is based on the available hardware support: instructions
for predicated execution provided by the Itanium architecture.

The idea is: let instructions from both branches go on in parallel, before the
branch condition has been evaluated. The hardware (predicated execution)
takes care that only those instructions are committed which correspond to
the right branch.
48 of 53Datorarkitektur Fö 9-10

Branch Predication
Branch predication is not branch prediction:

 Branch prediction:

Guess which branch is taken and then go along that one; if the guess was
wrong, undo all the work;

 Branch predication:

Both branches are started and when the condition is known (the predicate
registers are set) the right instructions are committed, all others are discarded.

There is no lost time with failed predictions.
49 of 53Datorarkitektur Fö 9-10

Branch Predication
Example:

if (a && b)
j = j + 1;

else{
if (c)

k = k + 1;
else

k = k - 1;
m = k * 5}

i = i + 1;

Assumptions:
The values are stored in registers, as follows:
a: R0; b: R1; j: R2; c: R3; k: R4; m: R5; i: R6.

This sequence (for an ordinary processor) would
be compiled to:

BZ R0, L1 branch if a == 0
BZ R1, L1 branch if b == 0
ADI R2, R2,#1 R2 ← R2 + 1;(integer)
BR L4

L1: BZ R3, L2 branch if c == 0
ADI R4, R4,#1 R4 ← R4 + 1;(integer)
BR L3

L2: SBI R4, R4,#1 R4 ← R4 - 1;(integer)
L3: MPI R5, R4,#5 R5 ← R4 * 5;(integer)
L4: ADI R6, R6,#1 R6 ← R6 + 1;(integer)
50 of 53Datorarkitektur Fö 9-10

Branch Predication

Let us read it in this way:

if not(a == 0) and not(b == 0) ADI R2, R2,#1
if not(not(a == 0) and not(b == 0)) and not(c == 0) ADI R4, R4,#1
if not(not(a == 0) and not(b == 0)) and not(not(c == 0)) SBI R4, R4,#1
if not(not(a == 0) and not(b == 0)) MPI R5, R4,#5

ADI R6, R6,#1

Example:

if (a && b)
j = j + 1;

else{
if (c)

k = k + 1;
else

k = k - 1;
m = k * 5}

i = i + 1;

Assumptions:
The values are stored in registers, as follows:
a: R0; b: R1; j: R2; c: R3; k: R4; m: R5; i: R6.
51 of 53Datorarkitektur Fö 9-10

Branch Predication

Let us read it in this way:

if not(a == 0) and not(b == 0) ADI R2, R2,#1
if not(not(a == 0) and not(b == 0)) and not(c == 0) ADI R4, R4,#1
if not(not(a == 0) and not(b == 0)) and not(not(c == 0)) SBI R4, R4,#1
if not(not(a == 0) and not(b == 0)) MPI R5, R4,#5

ADI R6, R6,#1

Example:

if (a && b)
j = j + 1;

else{
if (c)

k = k + 1;
else

k = k - 1;
m = k * 5}

i = i + 1;

Assumptions:
The values are stored in registers, as follows:
a: R0; b: R1; j: R2; c: R3; k: R4; m: R5; i: R6.

With predicated execution:

(1) P1, P2 = EQ(R0, #0)
(2) <P2> P1, P3 = EQ(R1, #0)
(3) <P3> ADI R2, R2,#1
(4) <P1> P4, P5 = NEQ(R3, #0)
(5) <P4> ADI R4, R4,#1
(6) <P5> SBI R4, R4,#1
(7) <P1> MPI R5, R4,#5
(8) ADI R6, R6,#1
52 of 53Datorarkitektur Fö 9-10

Branch Predication

 The compiler can plan all these instructions to be issued in parallel, except
(5) with (7) and (6) with (7) which are data-dependent.

 Instructions can be started before the particular predicate on which they
depend is known. When the predicate will be known, the particular
instruction will or will not be committed.

Example:

if (a && b)
j = j + 1;

else{
if (c)

k = k + 1;
else

k = k - 1;
m = k * 5}

i = i + 1;

Assumptions:
The values are stored in registers, as follows:
a: R0; b: R1; j: R2; c: R3; k: R4; m: R5; i: R6.

With predicated execution:

(1) P1, P2 = EQ(R0, #0)
(2) <P2> P1, P3 = EQ(R1, #0)
(3) <P3> ADI R2, R2,#1
(4) <P1> P4, P5 = NEQ(R3, #0)
(5) <P4> ADI R4, R4,#1
(6) <P5> SBI R4, R4,#1
(7) <P1> MPI R5, R4,#5
(8) ADI R6, R6,#1
53 of 53Datorarkitektur Fö 9-10

	VERY LONG INSTRUCTION WORD (VLIW) PROCESSORS
	What is Good with Superscalars?
	The hardware solves everything
	Hardware detects potential parallelism between instructions.
	Hardware tries to issue as many instructions as possible in parallel.
	Hardware solves register renaming.

	Binary compatibility
	If functional units are added in a new version of the architecture or some other improvements have been made to the architecture (without changing the instruction sets), old programs can benefit from the additional potential of parallelism.

	What is Bad with Superscalars?
	Very complex
	Much hardware is needed for run-time detection. There is a limit in how far we can go with this technique.
	Power consumption can be very large!

	The instruction window is limited ﬁ this limits the capacity to detect potentially parallel instructions.

	The Alternative: VLIW Processors
	VLIW architectures rely on compile-time detection of parallelism ﬁ the compiler analysis the program and detects operations to be executed in parallel; such operations are packed into one “large” instruction.
	At execution, after one instruction has been fetched all the corresponding operations are issued in parallel.
	No hardware is needed for run-time detection of parallelism.
	The instruction window problem is solved: the compiler can potentially analyse the whole program in order to detect parallel operations.

	VLIW Processors
	VLIW Processors
	Advantages with VLIW Processors
	Simpler hardware:
	Does not need additional sophisticated hardware to detect parallelism, like in superscalars.
	Power consumption is reduced, compared to superscalar.

	Good compilers can detect parallelism based on global analysis of the whole program (no instruction window problem).

	Problems with VLIW Processors
	Large number of registers needed in order to keep all FUs active (to store operands and results).
	Large data transport capacity is needed between FUs and the register file and between register files and memory.
	High bandwidth between instruction cache and fetch unit. Example: one instruction with 7 operations, each 24 bits ﬁ 168 bits/instruction.
	Large code size, partially because unused operations ﬁ wasted bits in instruction word.
	Incompatibility of binary cod
	For example: If for a new version of the processor additional FUs are introduced ﬁ the number of operations possible to execute in parallel is increased ﬁ the instruction word changes ﬁ old binary code cannot be run on this processor.

	An Example
	An Example
	An Example
	Two memory references, two FP operations, and one integer operation or branch can be issued each clock cycle.
	The delay for a double word load is one additional clock cycle.
	The delay for a floating point operation is two additional clock cycles.
	No additional clock cycles for integer operations.

	An Example
	One iteration takes 6 cycles. The whole loop takes 960*6 = 5760 cycles.
	Almost no parallelism there.
	Most of the fields in the instructions are empty.
	We have two completely empty cycles.

	Loop Unrolling
	Loop Unrolling
	There is an increased degree of parallelism in this case.
	We still have two completely empty cycles and empty operation.
	However, we have a dramatic improvement in speed: Two iterations take 6 cycles The whole loop takes 480*6 = 2880 cycles

	Loop Unrolling
	Loop Unrolling
	Loop Unrolling
	The degree of parallelism is further improved.
	There is still an empty cycle and empty operations.
	Three iterations take 7 cycles; The whole loop takes 320*7 = 2240 cycles

	Loop Unrolling
	Loop Unrolling
	No empty cycles, but still empty operations
	Eight iterations take 9 cycles The whole loop takes 120*9 = 1080 cycles

	Loop Unrolling
	Given a certain set of resources (processor architecture) and a given loop, there is a limit on how many iterations should be unrolled. Beyond that limit there is no gain any more.
	A good compiler has to find the optimal level of unrolling for each loop.
	Loop unrolling increases the memory space needed to store the program.

	Trace Scheduling
	The problem is that long instruction sequences are needed in order to detect sufficient parallelism ﬁ block boundaries have to be crossed.
	Trace scheduling is based on compile time branch prediction.

	Trace Scheduling
	The problem is that long instruction sequences are needed in order to detect sufficient parallelism ﬁ block boundaries have to be crossed.
	Trace scheduling is based on compile time branch prediction.

	Trace Scheduling
	Trace Scheduling
	Trace Scheduling
	Trace Scheduling
	Trace Scheduling
	Trace Scheduling
	The code for the entire sequence is produced by using the schedule generated for the selected trace.
	However: In the generated schedule, instructions have been moved across branches

	Trace Scheduling
	Trace Scheduling
	Trace Scheduling
	Trace Scheduling
	Trace Scheduling
	Trace Scheduling
	Trace Scheduling
	Trace Scheduling
	Trace Scheduling
	Trace scheduling is different from speculative execution:
	This is a compiler optimization (and not a run time technique!) and tries to optimize the code so that the path which is most likely to be taken, is executed as fast as possible.

	At program execution always the correct path will be taken (of course!); however, if this is not the one predicted by the compiler, execution will be slower because of the compensation code.
	Independently of trace scheduling, at the hardware level, a VLIW processor can also use branch prediction and speculative execution, like any processor, in order to improve the use of its pipelines.

	Some VLIW Processors
	TriMedia of Philips
	TMS320C6x of Texas Instruments
	The IA-64 architecture from Intel and Hewlett-Packard.
	- This family uses many of the VLIW ideas.
	- It is not "just" a multi-media processor, but a processor for servers and workstations.
	- The first product of the family was the Itanium processor.

	The Itanium Architecture
	These are typical VLIW features:
	- Instruction-level parallelism fixed at compile-time.
	- (Very) long instruction word.

	Other interesting concepts:
	- Branch predication.

	General Organization
	Registers (both integer and floating point) are 64-bit.
	Predicate registers are 1-bit.
	8 or more functional units.

	Instruction Format
	3 operations/instruction word (40 bits/operation)
	This does not mean that max. 3 operations can be executed in parallel!
	The three operations in the instruction are not necessarily parallel!

	Instruction Format
	3 operations/instruction word (40 bits/operation)
	This does not mean that max. 3 operations can be executed in parallel!
	The three operations in the instruction are not necessarily parallel!

	The template (8bits) indicates what can be executed in parallel.
	The encoding in the template shows which of the operations in the instruction can be executed in parallel.
	The template connects also to neighbouring instructions ﬁ operations from different instructions can be executed in parallel.

	Instruction Format
	3 operations/instruction word (40 bits/operation)
	This does not mean that max. 3 operations can be executed in parallel!
	The three operations in the instruction are not necessarily parallel!

	The template (8bits) indicates what can be executed in parallel.
	The encoding in the template shows which of the operations in the instruction can be executed in parallel.
	The template connects also to neighbouring instructions ﬁ operations from different instructions can be executed in parallel.

	The template provides high flexibility and avoids some of the problems with classical VLIW processors
	Operations in one instruction have not necessarily to be parallel ﬁ no places have to be left empty when no parallel operation is available.
	The number of parallel operations is not restricted by the instruction size ﬁ processor generations have different number of functional units without changing instruction format ﬁ binary compatibility.
	If, according to the template, there are more parallel operations than functional units available ﬁ processor takes them sequentially.

	Predicated Execution
	Predicated Execution
	Any operation can refer to a predicate register
	This means that the respective operation is to be committed (the results made visible) only when the respective predicate is true (the predicate register gets value 1).
	If the predicate value is known when the operation is issued, the operation is executed only if this value is true.

	Predicated Execution
	Sets the value of predicate register Pj to true and that of predicate register Pk to false if the relation is evaluated to true; Pj will be set to false and Pk to true if the relation evaluates to false.
	Predicate registers Pj and Pk will be updated if and only if predicate register Pi is true.

	Branch Predication
	Branch predication is a very aggressive compilation technique for generation of code with instruction level parallelism (code with parallel operations).
	Branch predication lets operations from both branches of a conditional branch to be executed in parallel.
	Branch predication is based on the available hardware support: instructions for predicated execution provided by the Itanium arc...

	Branch Predication
	Branch prediction:
	Branch predication:

	Branch Predication
	Branch Predication
	Branch Predication
	Branch Predication
	The compiler can plan all these instructions to be issued in parallel, except (5) with (7) and (6) with (7) which are data-dependent.
	Instructions can be started before the particular predicate on which they depend is known. When the predicate will be known, the particular instruction will or will not be committed.
	Selects a sequence of basic blocks, likely to be executed most of the time. This sequence is called a trace.
	Trace selection is based on compile time prediction
	- The prediction can be based on profiling:

	Schedules the instructions of the selected trace into parallel operations for the VLIW processor.
	the load of g and h is moved up, from the next sequence, before the conditional branch;
	the load of g and h is moved up, from the next sequence, before the conditional branch;
	the load of a is moved before the conditional branch;
	the load of g and h is moved up, from the next sequence, before the conditional branch;
	the load of a is moved before the conditional branch;
	the store of b after the division is now part of the next sequence.

	Predicated Execution
	Any operation can refer to a predicate register
	This means that the respective operation is to be committed (the results made visible) only when the respective predicate is true (the predicate register gets value 1).
	If the predicate value is known when the operation is issued, the operation is executed only if this value is true.

	If no predicate register is mentioned, the operation is executed and committed unconditionally.

