
SUPERSCALAR PROCESSORS

1. What is a Superscalar Architecture?

2. Superpipelining

3. Features of Superscalar Architectures

4. Data Dependencies

5. Policies for Parallel Instruction Execution

6. Register Renaming
1 of 65Datorarkitektur Fö 7-8

What is a Superscalar Architecture?

 A superscalar architecture is one in which several instructions can be
initiated simultaneously and executed independently.
2 of 65Datorarkitektur Fö 7-8

What is a Superscalar Architecture?

 A superscalar architecture is one in which several instructions can be
initiated simultaneously and executed independently.

As opposed to this:
 Pipelining allows several instructions to be executed at the same time, but

they have to be in different pipeline stages at a given moment.
3 of 65Datorarkitektur Fö 7-8

What is a Superscalar Architecture?

 A superscalar architecture is one in which several instructions can be
initiated simultaneously and executed independently.

As opposed to this:
 Pipelining allows several instructions to be executed at the same time, but

they have to be in different pipeline stages at a given moment.

Superscalar architectures include all features of pipelining but, in addition,
there can be several instructions executing simultaneously in the same pipeline
stage. They have the ability to initiate multiple instructions during the same
clock cycle.
4 of 65Datorarkitektur Fö 7-8

The Quest for Speed

There are two typical approaches today, in order to improve performance:

1. Superpipelining

2. Superscalar
5 of 65Datorarkitektur Fö 7-8

Superpipelining
 Superpipelining is based on dividing the stages of a pipeline into substages

and thus increasing the number of instructions which are active in the
pipeline at a given moment.

 By dividing each stage into two, the clock cycle period τ is reduced to
the half, τ/2  at maximum capacity, a result is produced every τ/2 s.
6 of 65Datorarkitektur Fö 7-8

Superpipelining
 Superpipelining is based on dividing the stages of a pipeline into substages

and thus increasing the number of instructions which are active in the
pipeline at a given moment.

 By dividing each stage into two, the clock cycle period τ is reduced to
the half, τ/2  at maximum capacity, a result is produced every τ/2 s.

 For a given architecture and the corresponding instruction set there is an
optimal number of pipeline stages; increasing the number of stages over this
limit reduces the overall performance.

 A solution to further improve speed is the superscalar architecture.
7 of 65Datorarkitektur Fö 7-8

Superpipelining
Pipelined execution

FI DI

1 2 83 4 5 6 7Clock cycle →

Instr. i
Instr. i+1
Instr. i+2
Instr. i+3
Instr. i+4
Instr. i+5

CO FO EI WO

9 10 11

FI DI CO FO EI WO

FI DI CO FO EI WO
FI DI CO FO EI WO

FI DI CO FO EI WO
FI DI CO FO EI WO
8 of 65Datorarkitektur Fö 7-8

9 of 65Datorarkitektur Fö 7-8

Superpipelining
Pipelined execution

Superpipelined execution

FI DI

1 2 83 4 5 6 7Clock cycle →

Instr. i
Instr. i+1
Instr. i+2
Instr. i+3
Instr. i+4
Instr. i+5

CO FO EI WO

9 10 11

FI DI CO FO EI WO

FI DI CO FO EI WO
FI DI CO FO EI WO

FI DI CO FO EI WO
FI DI CO FO EI WO

FI
1

DI
2

CO
1

FO
1

EI
1

W
O1

FI
2

DI
1

CO
2

FO
2

EI
2

W
O2

1 2 83 4 5 6 7Clock cycle →

Instr. i
Instr. i+1
Instr. i+2
Instr. i+3
Instr. i+4
Instr. i+5

9 10 11

FI
1

DI
2

CO
1

FO
1

EI
1

W
O1

FI
2

DI
1

CO
2

FO
2

EI
2

W
O2

FI
1

DI
2

CO
1

FO
1

EI
1

W
O1

FI
2

DI
1

CO
2

FO
2

EI
2

W
O2

FI
1

DI
2

FO
1

EI
1

W
O1

FI
2

DI
1

CO
2

FO
2

EI
2

W
O2

FI
1

DI
2

CO
1

FO
1

EI
1

W
O1

FI
2

DI
1

CO
2

FO
2

EI
2

W
O2

FI
1

DI
2

CO
1

FO
1

EI
1

W
O1

FI
2

DI
1

CO
2

FO
2

EI
2

W
O2

CO
1

Superscalar Architectures

Superscalar execution

FI DI

1 2 83 4 5 6 7Clock cycle →

Instr. i
Instr. i+1
Instr. i+2
Instr. i+3
Instr. i+4
Instr. i+5

CO FO EI WO

9 10 11

FI DI CO FO EI WO

FI DI CO FO EI WO
FI DI CO FO EI WO

FI DI CO FO EI WO
FI DI CO FO EI WO
10 of 65Datorarkitektur Fö 7-8

Superscalar Architectures

 Superscalar architectures allow several instructions to be issued and
completed per machine cycle.

 A superscalar architecture consists of a number of pipelines that are
working in parallel.

 Depending on the number and kind of parallel units available, a certain
number of instructions can be executed in parallel.
11 of 65Datorarkitektur Fö 7-8

Superscalar Architectures

 Superscalar architectures allow several instructions to be issued and
completed per machine cycle.

 A superscalar architecture consists of a number of pipelines that are
working in parallel.

 Depending on the number and kind of parallel units available, a certain
number of instructions can be executed in parallel.

 In the following example a floating point and two integer operations can be
issued and executed simultaneously; each unit is pipelined and can execute
several operations in different pipeline stages.
12 of 65Datorarkitektur Fö 7-8

Superscalar Architectures

Instr. buffer

Decode &
Rename &
Dispatch

Floating
point unit

Instr. window
(queues, reservation

stations, etc.)

Integer
unit

Integer
unit

M
em

ory

In
st

ru
ct

io
n

ca
ch

e Fetch &
Addr. calc. &
Branch pred.

Register
Files

Commit

In
st

ru
ct

io
n

is
su

in
g

13 of 65Datorarkitektur Fö 7-8

Limitations on Parallel Execution

 The situations which prevent instructions to be executed in parallel by a
superscalar architecture are very similar to those which prevent an efficient
execution on any pipelined architecture (see pipeline hazards).

 The consequences of these situations on superscalar architectures are more
severe than those on simple pipelines, because the potential of parallelism in
superscalars is greater and, thus, a greater opportunity is lost.
14 of 65Datorarkitektur Fö 7-8

Limitations on Parallel Execution
Three categories of limitations have to be considered:
15 of 65Datorarkitektur Fö 7-8

Limitations on Parallel Execution
Three categories of limitations have to be considered:

1. Resource conflicts:
 Occur if several instructions compete for the same resource (register,

memory, functional unit) at the same time; they are similar to structural
hazards discussed with pipelines. Increasing the number of resources,
superscalar architectures try to avoid resource conflicts.
16 of 65Datorarkitektur Fö 7-8

Limitations on Parallel Execution
Three categories of limitations have to be considered:

1. Resource conflicts:
 Occur if several instructions compete for the same resource (register,

memory, functional unit) at the same time; they are similar to structural
hazards discussed with pipelines. Increasing the number of resources,
superscalar architectures try to avoid resource conflicts.

2. Control (procedural) dependency:
 The presence of branches creates major problems in assuring an

optimal parallelism. How to reduce branch penalties has been
discussed in the lecture on pipelining.
17 of 65Datorarkitektur Fö 7-8

Limitations on Parallel Execution
Three categories of limitations have to be considered:

1. Resource conflicts:
 Occur if several instructions compete for the same resource (register,

memory, functional unit) at the same time; they are similar to structural
hazards discussed with pipelines. Increasing the number of resources,
superscalar architectures try to avoid resource conflicts.

2. Control (procedural) dependency:
 The presence of branches creates major problems in assuring an

optimal parallelism. How to reduce branch penalties has been
discussed in the lecture on pipelining.

3. Data conflicts:
 Data conflicts are produced by data dependencies between

instructions. Because superscalar architectures provide a great liberty
in the order in which instructions can be issued and completed, data
dependencies have to be considered with much attention.
18 of 65Datorarkitektur Fö 7-8

Limitations on Parallel Execution
Instructions have to be issued as much as possible in parallel!

Superscalar architectures have to exploit the potential of instruction level
parallelism present in the program.
19 of 65Datorarkitektur Fö 7-8

Limitations on Parallel Execution
Instructions have to be issued as much as possible in parallel!

Superscalar architectures have to exploit the potential of instruction level
parallelism present in the program.

 An important feature of modern superscalar architectures is dynamic
instruction scheduling:

 instructions are issued for execution in parallel and out of order.
- out of order issuing: instructions are issued for execution

independent of their sequential order, based only on dependencies
and availability of resources.

 All this is done dynamically, at run time, by the hardware.
20 of 65Datorarkitektur Fö 7-8

Limitations on Parallel Execution
Instructions have to be issued as much as possible in parallel!

Superscalar architectures have to exploit the potential of instruction level
parallelism present in the program.

 An important feature of modern superscalar architectures is dynamic
instruction scheduling:

 instructions are issued for execution in parallel and out of order.
- out of order issuing: instructions are issued for execution

independent of their sequential order, based only on dependencies
and availability of resources.

 All this is done dynamically, at run time, by the hardware.

Results must be identical with those produced by strictly sequential execution.

Data dependencies have to be considered carefully

21 of 65Datorarkitektur Fö 7-8

Limitations on Parallel Execution

 Because of data dependencies, only some of the instructions are potential
subjects for parallel execution.

 In order to find instructions to be issued in parallel, the processor has to
select from a sufficiently large instruction sequence.

A large instruction window is needed
22 of 65Datorarkitektur Fö 7-8

Instruction Window

Instr. buffer

Decode &
Rename &
Dispatch

Floating
point unit

Instr. window
(queues, reservation

stations, etc.)

Integer
unit

Integer
unit

M
em

ory

In
st

ru
ct

io
n

ca
ch

e Fetch &
Addr. calc. &
Branch pred.

Register
Files

Commit
In

st
ru

ct
io

n
is

su
in

g

23 of 65Datorarkitektur Fö 7-8

Instruction Window

 Instruction Window:

Contains the set of instructions that is considered for execution at a certain
moment. Any instruction in the window can be issued for parallel execution,
subject to data dependencies and resource constraints.

 The number of instructions in the window should be as large as possible.

Problems:
 Capacity to fetch instructions at a high rate

 The problem of branches
24 of 65Datorarkitektur Fö 7-8

Instruction Window
for (i=0; i<last; i++) {

if (a[i] > a[i+1]) {
temp = a[i];
a[i] = a[i+1];
a[i+1] = temp;
change++;

}
}

25 of 65Datorarkitektur Fö 7-8

Instruction Window
for (i=0; i<last; i++) {

if (a[i] > a[i+1]) {
temp = a[i];
a[i] = a[i+1];
a[i+1] = temp;
change++;

}
}

...
r7: address of current element (a[i])
r3: address for access to a[i], a[i+1]
r5: change; r4: last; r6: i
..

L2 move r3,r7
lw r8,(r3) r8 ← a[i]
add r3,r3,4
lw r9,(r3) r9 ← a[i+1]
ble r8,r9,L3

move r3,r7
sw r9,(r3) a[i] ← r9
add r3,r3,4
sw r8,(r3) a[i+1] ← r8
add r5,r5,1 change++

L3 add r6,r6,1 i++
add r7,r7,4
blt r6,r4,L2

basic block 1

basic block 2

basic block 3
26 of 65Datorarkitektur Fö 7-8

Instruction Window

 The instruction window is extended over basic block borders by
branch prediction with speculative execution.

 With speculative execution, instructions of the predicted path are entered
into the instruction window.

Instructions from the predicted path are executed tentatively.
If the prediction turns out to be correct the state change produced by these
instructions will become permanent and visible (the instructions commit); if
not, all effects are removed.
27 of 65Datorarkitektur Fö 7-8

Data Dependencies

 All instructions in the instruction window may begin execution, subject to
data dependence (and resource) constraints.

 Three types of data dependencies can be identified:

1. True data dependency

2. Output dependency

3. Anti-dependency
artificial dependencies
28 of 65Datorarkitektur Fö 7-8

True Data Dependency (read after write, RAW)
 True data dependency exists when the output of one instruction is required

as an input to a subsequent instruction:

MUL R4,R3,R1 R4 ← R3 * R1
- - - - - - - - - - - - - -
ADD R2,R4,R5 R2 ← R4 + R5

 True data dependencies are intrinsic features of the user’s program. They
cannot be eliminated by compiler or hardware techniques.
29 of 65Datorarkitektur Fö 7-8

True Data Dependency (read after write, RAW)
 True data dependency exists when the output of one instruction is required

as an input to a subsequent instruction:

MUL R4,R3,R1 R4 ← R3 * R1
- - - - - - - - - - - - - -
ADD R2,R4,R5 R2 ← R4 + R5

 True data dependencies are intrinsic features of the user’s program. They
cannot be eliminated by compiler or hardware techniques.

 True data dependencies have to be detected and treated: the addition above
cannot be executed before the result of the multiplication is available.

 The simplest solution is to stall the adder until the multiplier has
finished.

 In order to avoid the adder to be stalled, the compiler or hardware can
find other instructions which can be executed by the adder until the
result of the multiplication is available.
30 of 65Datorarkitektur Fö 7-8

True Data Dependency

For our previous example:

L2 move r3,r7

lw r8,(r3)

add r3,r3,4

lw r9,(r3)

ble r8,r9,L3
31 of 65Datorarkitektur Fö 7-8

Output Dependency (write after write, WAW)
 An output dependency exists if two instructions are writing into the same

location; if the second instruction writes before the first one, an error occurs:

MUL R4,R3,R1 R4 ← R3 * R1
- - - - - - - - - - - -
ADD R4,R2,R5 R4 ← R2 + R5

For our previous example:

L2 move r3,r7

lw r8,(r3)

add r3,r3,4

lw r9,(r3)

ble r8,r9,L3
32 of 65Datorarkitektur Fö 7-8

Anti-dependency (write after read, WAR)
 An anti-dependency exists if an instruction uses a location as an operand

while a following one is writing into that location; if the first one is still using
the location when the second one writes into it, an error occurs:

MUL R4,R3,R1 R4 ← R3 * R1
- - - - - - - - - - - -
ADD R3,R2,R5 R3 ← R2 + R5

For our previous example:

L2 move r3,r7

lw r8,(r3)

add r3,r3,4

lw r9,(r3)

ble r8,r9,L3

33 of 65Datorarkitektur Fö 7-8

The Nature of Output and Anti-dependency

 Output dependencies and anti-dependencies are not intrinsic features of the
executed program; they are not real data dependencies but storage conflicts.

 Output dependencies and anti-dependencies are only the consequence of
the manner in which the programmer or the compiler are using registers (or
memory locations). They are produced by the competition of several
instructions for the same register.

 In the previous examples the conflicts are produced only because:
 the output dependency: R4 is used by both instructions to store the

result;
 the anti-dependency: R3 is used by the second instruction to store the

result;
34 of 65Datorarkitektur Fö 7-8

The Nature of Output and Anti-dependency
 Examples can be written without dependencies by using additional registers:

MUL R4,R3,R1 R4 ← R3 * R1
- - - - - - - - - - - -
ADD R4,R2,R5 R4 ← R2 + R5

MUL R4,R3,R1 R4 ← R3 * R1
- - - - - - - - - - - -
ADD R7,R2,R5 R7 ← R2 + R5

Output dependency

No dependency
35 of 65Datorarkitektur Fö 7-8

The Nature of Output and Anti-dependency
 Examples can be written without dependencies by using additional registers:

MUL R4,R3,R1 R4 ← R3 * R1
- - - - - - - - - - - -
ADD R4,R2,R5 R4 ← R2 + R5

MUL R4,R3,R1 R4 ← R3 * R1
- - - - - - - - - - - -
ADD R7,R2,R5 R7 ← R2 + R5

and

MUL R4,R3,R1 R4 ← R3 * R1
- - - - - - - - - - - -
ADD R3,R2,R5 R3 ← R2 + R5

MUL R4,R3,R1 R4 ← R3 * R1
- - - - - - - - - - - -
ADD R6,R2,R5 R6 ← R2 + R5

Output dependency

No dependency

No dependency

Anti-dependency
36 of 65Datorarkitektur Fö 7-8

The Nature of Output and Anti-dependency
For our previous example:

L2 move r3,r7
lw r8,(r3)
add r3,r3,4
lw r9,(r3)
ble r8,r9,L3
37 of 65Datorarkitektur Fö 7-8

The Nature of Output and Anti-dependency
For our previous example:

L2 move r3,r7
lw r8,(r3)
add r3,r3,4
lw r9,(r3)
ble r8,r9,L3

L2 move r1,r7
lw r8,(r1)
add r2,r1,4
lw r9,(r2)
ble r8,r9,L3
38 of 65Datorarkitektur Fö 7-8

Policies for Parallel Instruction Execution

 The ability of a superscalar processor to execute instructions in parallel is
determined by:

 the number and nature of functional units (this determines the number
and nature of instructions that can be executed at the same time);

 the policies that the processor uses to find independent instructions
(instructions that can be executed in parallel).

 The policies used for instruction execution are defined by two factors:

1. the order in which instructions are issued for execution;
2. the order in which instructions are completed (they write results into

registers and memory locations).
39 of 65Datorarkitektur Fö 7-8

Policies for Parallel Instruction Execution

 The simplest policy is to execute and complete instructions in their
sequential order. This, however, gives little chances to find instructions
which can be executed in parallel.

 In order to improve parallelism the processor has to look ahead and try to
find independent instructions to execute in parallel.
40 of 65Datorarkitektur Fö 7-8

Policies for Parallel Instruction Execution

 The simplest policy is to execute and complete instructions in their
sequential order. This, however, gives little chances to find instructions
which can be executed in parallel.

 In order to improve parallelism the processor has to look ahead and try to
find independent instructions to execute in parallel.

Instructions will be executed in parallel, in an order possibly different from the
strictly sequential one, with the restriction that the result must be correct.

 Execution policies:

- In-order issue with in-order completion.
- In-order issue with out-of-order completion.
- Out-of-order issue with out-of-order completion.
41 of 65Datorarkitektur Fö 7-8

In-Order Issue with In-Order Completion

 Instructions are issued in the exact order that would correspond to
sequential execution; results are written (completion) in the same order.

 An instruction cannot be issued before the previous one has been
issued; but several consecutive instructions can be issued for
execution in parallel!

 Instruction are completed in the order of their issuing (in-order).

At issuing, the processor has to detect and handle true data dependencies;
an instruction can be executed only once the data it needs is available!

Since instructions are executed in order, output dependencies and
anti-dependencies cannot create conflicts  they can be ignored.
42 of 65Datorarkitektur Fö 7-8

Out-of-Order Issue with Out-of-Order Completion

 With in-order issue, no new instruction can be issued when the processor
has detected a conflict and is stalled, until after the conflict has been
resolved.

The processor is not allowed to look ahead for further instructions, which
could be executed in parallel with the current ones.
43 of 65Datorarkitektur Fö 7-8

Out-of-Order Issue with Out-of-Order Completion

 With in-order issue, no new instruction can be issued when the processor
has detected a conflict and is stalled, until after the conflict has been
resolved.

The processor is not allowed to look ahead for further instructions, which
could be executed in parallel with the current ones.

 Out-of-order issue tries to resolve the above problem. Taking the set of
decoded instructions the processor looks ahead and issues any instruction,
in any order, as long as the program execution is correct.
44 of 65Datorarkitektur Fö 7-8

Out-of-Order Issue with Out-of-Order Completion

 With out-of-order issue&out-of-order completion the processor has to bother
about true data dependency and both about output-dependency and
anti-dependency!

Output dependency can be violated (if addition completes before multiplication):

MUL R4,R3,R1 R4 ← R3 * R1
- - - - - - - - - - - -
ADD R4,R2,R5 R4 ← R2 + R5

Anti-dependency can be violated (if operand in R3 is used after being over-written):

MUL R4,R3,R1 R4 ← R3 * R1
- - - - - - - - - - - -
ADD R3,R2,R5 R3 ← R2 + R5
45 of 65Datorarkitektur Fö 7-8

Register Renaming
 Output dependencies and anti-dependencies can be treated similarly to true

data dependencies as normal conflicts. Such conflicts are solved by delaying
the execution of a certain instruction until it can be executed.
46 of 65Datorarkitektur Fö 7-8

Register Renaming
 Output dependencies and anti-dependencies can be treated similarly to true

data dependencies as normal conflicts. Such conflicts are solved by delaying
the execution of a certain instruction until it can be executed.

 Parallelism could be improved by eliminating output dependencies and
anti-dependencies, which are not real data dependencies.

 Output dependencies and anti-dependencies can be eliminated by
automatically allocating new registers to values, when such a dependency
has been detected. This technique is called register renaming.
47 of 65Datorarkitektur Fö 7-8

Register Renaming
 Output dependencies and anti-dependencies can be treated similarly to true

data dependencies as normal conflicts. Such conflicts are solved by delaying
the execution of a certain instruction until it can be executed.

 Parallelism could be improved by eliminating output dependencies and
anti-dependencies, which are not real data dependencies.

 Output dependencies and anti-dependencies can be eliminated by
automatically allocating new registers to values, when such a dependency
has been detected. This technique is called register renaming.

The output dependency is eliminated by allocating, R6 to the value R2+R5:
MUL R4,R3,R1 R4 ← R3 * R1 MUL R4,R3,R1 R4 ← R3 * R1
-
ADD R4,R2,R5 R4 ← R2 + R5 ADD R6,R2,R5 R6 ← R2 + R5

The same is true for the anti-dependency below:
MUL R4,R3,R1 R4 ← R3 * R1 MUL R4,R3,R1 R4 ← R3 * R1
- -
ADD R3,R2,R5 R3 ← R2 + R5 ADD R6,R2,R5 R6 ← R2 + R5
48 of 65Datorarkitektur Fö 7-8

Final Comments
 The following main techniques are characteristic for superscalar processors:

1. additional pipelined units which are working in parallel;
2. out-of-order issue&out-of-order completion;
3. register renaming.

 All of the above techniques are aimed to enhance performance.

 Experiments have shown:

 without the other techniques, only adding additional units is not efficient;
 out-of-order issue is extremely important; it allows to look ahead for

independent instructions;
 register renaming can improve performance with more than 30%; in this

case performance is limited only by true dependencies.
 it is important to provide a fetching/decoding capacity so that the

instruction window is sufficiently large.
49 of 65Datorarkitektur Fö 7-8

Some Architectures
 PowerPC 604

 six independent execution units:
- Branch execution unit
- Load/Store unit
- 3 Integer units
- Floating-point unit

 in-order issue

 Power PC 620
 provides in addition to the 604 out-of-order issue
50 of 65Datorarkitektur Fö 7-8

Some Architectures
 PowerPC 604

 six independent execution units:
- Branch execution unit
- Load/Store unit
- 3 Integer units
- Floating-point unit

 in-order issue

 Power PC 620
 provides in addition to the 604 out-of-order issue

 Pentium
 three independent execution units:

- 2 Integer units
- Floating point unit

 in-order issue; two instructions issued per clock cycle.

 Pentium II to 4
 provide in addition to the Pentium out-of-order execution
 five to seven independent execution units
51 of 65Datorarkitektur Fö 7-8

Pentium 4 Basic Block Diagram
Intel calls this architecture Netburst

L1 Data Cache

Execution Units

Out-of-order
execution

instruction
queues&buffers

Fetch/
Decode

Trace
Cache

Branch
Pred.

Branch
Pred.

L2 Cache

Main Memory

Alloc
TC Nxt IP

TC Fetch

D
rive

Rename

Q
ueue

Schedule

Dispatch

Reg. file

Ex
Flgs
Br C

k
D

rive

Memory subsystem

Front End Out-of-order Engine Int&FP Exec. Units
52 of 65Datorarkitektur Fö 7-8 52 63 71 84 9 11 12 2013 1914 15 1816 1710

Pentium 4
 The fetch unit loads x86 instructions form the L2 cache which, then, are

decoded and translated into microoperations that are stored in the trace
cache (the L1 instruction cache).
These (RISC-like) microoperations are executed by the Pentium 4 hardware.

 Branch predictions
 Based on two branch history tables (called BTB - branch target buffer):

- a 4K-entries BTB for the fetch unit;
- a 512 -entries BTB for the trace cache.

 Exceptional: 4 bits branch prediction (very rare to have more than 2
bits prediction!) - this is due to the very long pipeline which comes
with a huge penalty for misprediction.

 The out-of-order execution mechanism uses several buffers (which together
build the instruction window) to reorder the flow of instructions.
These buffers store up to 126 microoperations at a given time.

 20 stage pipeline; the instruction fetch and decode are considered outside
(and before) this pipeline.
53 of 65Datorarkitektur Fö 7-8

54 of 65Datorarkitektur Fö 7-8

Pentium 4
 The trace cache stages (1-5):

 Trace cache next instruction pointer (TC Nxt IP): Determines, using
branch prediction, the next microoperation to be executed.

 Trace cache fetch: The microoperation is fetched from the trace cache.
 Drive: Delivers the microoperation to the rename/allocator module.

 The out of order engine stages (6-14):
 Allocate: Allocates buffer space in the out of order engine to the new

microoperation.
 Rename: Renames the 8 (in 32-mode) registers visible by the

programmer using the 128-entry physical register file.
Removes output dependencies and anti-dependencies.

 Queue: Microoperations are placed into queues where they wait to be
scheduled.

 Scheduling: Microoperation schedulers determine when a
microoperation is ready to execute (based on dependencies).

 Dispatching: Microoperations ready to be executed are fetched and
dispatched to the corresponding functional units (when such a unit is
available).
Six microoperations can be dispatched for execution in one cycle.

Pentium 4

 The execution stages (15-20):

 Register file: Operands are fetched from the register files and L1 data
cache.

 Execute (Ex): The microoperation is executed.

 Flags: Flags (e.g. zero, negative) are computed and set.

 Branch checking (Br Ck): The actual branch result is compared with
the prediction. If there has been a misprediction the pipeline is
cleaned.

 Drive: The branch check result is registered in the BTB for further
branch prediction.
The whole pipeline is restarted.
55 of 65Datorarkitektur Fö 7-8

Pentium 4

 Execution units:

 Addressing units:
- One address generation unit for memory loads; it also executes the

memory loads.
- One address generation unit for stores.

 Integer units:
- Two low latency ALUs; they execute very fast simple operations

(e.g. add, subtract, logic operations, integer store).
- One complex integer unit (for e.g. multiply, divide, shift).

 Floating point units:
- One FP execution unit; it executes FP operations, multimedia

instruction set (MMX), Streaming SIMD extension (SSE).
- One FP unit for FP (128-bit) register-to-register moves and memory

stores.
56 of 65Datorarkitektur Fö 7-8

The End of the Lonely Big
The Pentium 4 was the last of its kind!
57 of 65Datorarkitektur Fö 7-8

The End of the Lonely Big
The Pentium 4 was the last of its kind!

 It delivered on performance but
- It was running at very high frequency

- The basic philosophy, to deliver, generation by generation,
increased performance by more complex architectures and running
at higher frequency was no longer sustainable!

Very high power consumption
and temperature dissipation!
58 of 65Datorarkitektur Fö 7-8

The End of the Lonely Big
The Pentium 4 was the last of its kind!

 It delivered on performance but
- It was running at very high frequency

- The basic philosophy, to deliver, generation by generation,
increased performance by more complex architectures and running
at higher frequency was no longer sustainable!

 A radically new approach has been adopted:
- Replace one large and complex processor running at high

frequency with several simpler processors running at lower
frequency!

Very high power consumption
and temperature dissipation!

Multicore architectures

59 of 65Datorarkitektur Fö 7-8

The End of the Lonely Big

 Intel’s multicore architectures:
 Core Duo, Core 2 Duo, Core 2 Quad, Core i3, Core i5, Core i7 ...

 A new architecture has been developed for the individual processors on the
multicores:

 the Intel Core architecture (in the Core 2).
 the Nehalem architecture, a further development of Intel Core

(in Core i5, i7).

 Basic principle: keep the power consumption of each core down and
increase the power/performance efficiency:

 Overall processor complexity is reduced, compared to e.g. Pentium 4
(e.g. the number of pipeline stages is 14-16).

 Processors run at lower frequency.
60 of 65Datorarkitektur Fö 7-8

The Nehalem Basic Block Diagram

L1 Instruction Cache

Instruction Fetch
and Predecode

Branch
Prediction

Instruction Queue

Simple
Decoder

Simple
Decoder

Simple
Decoder

Complex
Decoder

μOperation Buffer

Register Renaming/Allocation

Reorder Buffer

Reservation Station
(μOperation scheduling and dispatching)

Execution Units

L1 Data Cache

Front End
O

ut-of-order Execution
61 of 65Datorarkitektur Fö 7-8

The Nehalem Architecture
Front-End

 The Front-End is responsible for loading x86 instructions from the
instruction cache and translating them into microoperations that are
buffered for further execution by the Out-of-order Execution Back-End.

 You remember the trace cache of the Pentium 4 and the motivation
behind it! Nehalem is back to the traditional L1 instruction cache
placed before the fetch unit. The microoperation buffer (see below)
can, however, act like a trace cache.

 The fetch unit fetches 128 instruction bits every cycle. The predecoder
takes these 128 bits and prepares the X86 instructions found, for
further decoding; the predecoder determines instruction length and
identifies branch instructions; it writes, up to 6 instructions per cycle,
into the instruction queue (which stores up to 18 instructions).

62 of 65Datorarkitektur Fö 7-8

The Nehalem Architecture

 The Instruction Decoding Unit translates the X86 instructions into a
stream of RISC-like microoperations; the unit consists of 4 decoders that
work in parallel: 3 simple (translate simpler X86 instructions) and one
complex (translates X86 instructions that result in longer sequences of
microoperations). The generated microoperations are stored in the
microoperation buffer (capacity of 28 microoperations).

 Branch prediction is based (like in Pentium 4) on a large branch target
buffer (BTB).

 A Loop Stream Detector detects short loops, such that the whole loop fits
into the microoperation buffer; when such a loop is executed, the
microoperations are streamed into the Execution Back-End from the
microoperation buffer, without using the whole Front-End (thus, avoid
fetch, decode etc.); this works similar to the trace cache in the Pentium 4.
63 of 65Datorarkitektur Fö 7-8

The Nehalem Architecture
Out-of-order Execution Back-End

 Register Renaming & Allocation: detects dependencies; allocates slots
to the microoperation in the reorder buffer and reservation station;
does register renaming.

 The reorder buffer (128 entries) and reservation stations (36 entries) act
like an instruction window.

 The scheduler can dispatch for execution maximum 6 microoperations
per clock cycle: 3 arithmetic/logic operations and 3 memory operations.

L1 caches
 L1 Instruction cache: 32 KB, 4-way associative.
 L1 data cache: 32 KB, 8 way-associative.
 Level 2&3 caches are shared by several cores

(see lecture on Parallel architectures).

The Nehalem architecture (like its predecessor, Intel Core) is implemented in
Intel’s multicore chips (e.g. Core i5, i7) - (see lecture on Parallel architectures).
64 of 65Datorarkitektur Fö 7-8

ARM Cortex-A8

An embedded RISC processor from the ARM family for complex applications
(wireless, imaging, gaming, etc.).

 13-stage pipeline

 In-order issue (to keep power consumption reduced).
Two instructions issued per clock cycle.

 2 integer ALUs, one integer multiplier, one load/store unit + the NEON
unit.

The NEON unit implements packed SIMD (see lecture on parallel
architectures) instructions. It can handle both integer and single
precision floating-point values.
65 of 65Datorarkitektur Fö 7-8

	SUPERSCALAR PROCESSORS
	What is a Superscalar Architecture?
	A superscalar architecture is one in which several instructions can be initiated simultaneously and executed independently.

	What is a Superscalar Architecture?
	A superscalar architecture is one in which several instructions can be initiated simultaneously and executed independently.
	Pipelining allows several instructions to be executed at the same time, but they have to be in different pipeline stages at a given moment.

	What is a Superscalar Architecture?
	A superscalar architecture is one in which several instructions can be initiated simultaneously and executed independently.
	Pipelining allows several instructions to be executed at the same time, but they have to be in different pipeline stages at a given moment.

	The Quest for Speed
	Superpipelining
	Superpipelining is based on dividing the stages of a pipeline into substages and thus increasing the number of instructions which are active in the pipeline at a given moment.
	By dividing each stage into two, the clock cycle period t is reduced to the half, t/2 ﬁ at maximum capacity, a result is produced every t/2 s.

	Superpipelining
	Superpipelining is based on dividing the stages of a pipeline into substages and thus increasing the number of instructions which are active in the pipeline at a given moment.
	By dividing each stage into two, the clock cycle period t is reduced to the half, t/2 ﬁ at maximum capacity, a result is produced every t/2 s.

	For a given architecture and the corresponding instruction set there is an optimal number of pipeline stages; increasing the number of stages over this limit reduces the overall performance.
	A solution to further improve speed is the superscalar architecture.

	Superpipelining
	Superscalar Architectures
	Superscalar Architectures
	Superscalar architectures allow several instructions to be issued and completed per machine cycle.
	A superscalar architecture consists of a number of pipelines that are working in parallel.
	Depending on the number and kind of parallel units available, a certain number of instructions can be executed in parallel.

	Superscalar Architectures
	Superscalar architectures allow several instructions to be issued and completed per machine cycle.
	A superscalar architecture consists of a number of pipelines that are working in parallel.
	Depending on the number and kind of parallel units available, a certain number of instructions can be executed in parallel.
	In the following example a floating point and two integer operations can be issued and executed simultaneously; each unit is pipelined and can execute several operations in different pipeline stages.

	Superscalar Architectures
	Limitations on Parallel Execution
	The situations which prevent instructions to be executed in parallel by a superscalar architecture are very similar to those which prevent an efficient execution on any pipelined architecture (see pipeline hazards).
	The consequences of these situations on superscalar architectures are more severe than those on simple pipelines, because the potential of parallelism in superscalars is greater and, thus, a greater opportunity is lost.

	Limitations on Parallel Execution
	Limitations on Parallel Execution
	Occur if several instructions compete for the same resource (register, memory, functional unit) at the same time; they are simil...

	Limitations on Parallel Execution
	Occur if several instructions compete for the same resource (register, memory, functional unit) at the same time; they are simil...
	The presence of branches creates major problems in assuring an optimal parallelism. How to reduce branch penalties has been discussed in the lecture on pipelining.

	Limitations on Parallel Execution
	Occur if several instructions compete for the same resource (register, memory, functional unit) at the same time; they are simil...
	The presence of branches creates major problems in assuring an optimal parallelism. How to reduce branch penalties has been discussed in the lecture on pipelining.
	Data conflicts are produced by data dependencies between instructions. Because superscalar architectures provide a great liberty in the order in which instructions can be issued and completed, data dependencies have to be considered with much attention.

	Limitations on Parallel Execution
	Limitations on Parallel Execution
	An important feature of modern superscalar architectures is dynamic instruction scheduling:
	instructions are issued for execution in parallel and out of order.
	- out of order issuing: instructions are issued for execution independent of their sequential order, based only on dependencies and availability of resources.

	All this is done dynamically, at run time, by the hardware.

	Limitations on Parallel Execution
	An important feature of modern superscalar architectures is dynamic instruction scheduling:
	instructions are issued for execution in parallel and out of order.
	- out of order issuing: instructions are issued for execution independent of their sequential order, based only on dependencies and availability of resources.

	All this is done dynamically, at run time, by the hardware.

	Limitations on Parallel Execution
	Because of data dependencies, only some of the instructions are potential subjects for parallel execution.
	In order to find instructions to be issued in parallel, the processor has to select from a sufficiently large instruction sequence.

	Instruction Window
	Instruction Window
	Instruction Window:
	The number of instructions in the window should be as large as possible.
	Capacity to fetch instructions at a high rate
	The problem of branches

	Instruction Window
	Instruction Window
	Instruction Window
	The instruction window is extended over basic block borders by branch prediction with speculative execution.
	With speculative execution, instructions of the predicted path are entered into the instruction window. Instructions from the pr...

	Data Dependencies
	All instructions in the instruction window may begin execution, subject to data dependence (and resource) constraints.
	Three types of data dependencies can be identified:

	True Data Dependency (read after write, RAW)
	True data dependency exists when the output of one instruction is required as an input to a subsequent instruction:
	True data dependencies are intrinsic features of the user’s program. They cannot be eliminated by compiler or hardware techniques.

	True Data Dependency (read after write, RAW)
	True data dependency exists when the output of one instruction is required as an input to a subsequent instruction:
	True data dependencies are intrinsic features of the user’s program. They cannot be eliminated by compiler or hardware techniques.
	True data dependencies have to be detected and treated: the addition above cannot be executed before the result of the multiplication is available.
	The simplest solution is to stall the adder until the multiplier has finished.
	In order to avoid the adder to be stalled, the compiler or hardware can find other instructions which can be executed by the adder until the result of the multiplication is available.

	True Data Dependency
	Output Dependency (write after write, WAW)
	An output dependency exists if two instructions are writing into the same location; if the second instruction writes before the first one, an error occurs:

	Anti-dependency (write after read, WAR)
	An anti-dependency exists if an instruction uses a location as an operand while a following one is writing into that location; if the first one is still using the location when the second one writes into it, an error occurs:

	The Nature of Output and Anti-dependency
	Output dependencies and anti-dependencies are not intrinsic features of the executed program; they are not real data dependencies but storage conflicts.
	Output dependencies and anti-dependencies are only the consequence of the manner in which the programmer or the compiler are using registers (or memory locations). They are produced by the competition of several instructions for the same register.
	In the previous examples the conflicts are produced only because:
	the output dependency: R4 is used by both instructions to store the result;
	the anti-dependency: R3 is used by the second instruction to store the result;

	The Nature of Output and Anti-dependency
	Examples can be written without dependencies by using additional registers:

	The Nature of Output and Anti-dependency
	Examples can be written without dependencies by using additional registers:

	The Nature of Output and Anti-dependency
	The Nature of Output and Anti-dependency
	Policies for Parallel Instruction Execution
	The ability of a superscalar processor to execute instructions in parallel is determined by:
	the number and nature of functional units (this determines the number and nature of instructions that can be executed at the same time);
	the policies that the processor uses to find independent instructions (instructions that can be executed in parallel).

	The policies used for instruction execution are defined by two factors:

	Policies for Parallel Instruction Execution
	The simplest policy is to execute and complete instructions in their sequential order. This, however, gives little chances to find instructions which can be executed in parallel.
	In order to improve parallelism the processor has to look ahead and try to find independent instructions to execute in parallel.

	Policies for Parallel Instruction Execution
	The simplest policy is to execute and complete instructions in their sequential order. This, however, gives little chances to find instructions which can be executed in parallel.
	In order to improve parallelism the processor has to look ahead and try to find independent instructions to execute in parallel.
	Execution policies:
	- In-order issue with in-order completion.
	- In-order issue with out-of-order completion.
	- Out-of-order issue with out-of-order completion.

	In-Order Issue with In-Order Completion
	Instructions are issued in the exact order that would correspond to sequential execution; results are written (completion) in the same order.
	An instruction cannot be issued before the previous one has been issued; but several consecutive instructions can be issued for execution in parallel!
	Instruction are completed in the order of their issuing (in-order).

	Out-of-Order Issue with Out-of-Order Completion
	With in-order issue, no new instruction can be issued when the processor has detected a conflict and is stalled, until after the conflict has been resolved.

	Out-of-Order Issue with Out-of-Order Completion
	With in-order issue, no new instruction can be issued when the processor has detected a conflict and is stalled, until after the conflict has been resolved.
	Out-of-order issue tries to resolve the above problem. Taking the set of decoded instructions the processor looks ahead and issues any instruction, in any order, as long as the program execution is correct.

	Out-of-Order Issue with Out-of-Order Completion
	With out-of-order issue&out-of-order completion the processor has to bother about true data dependency and both about output-dependency and anti-dependency!

	Register Renaming
	Output dependencies and anti-dependencies can be treated similarly to true data dependencies as normal conflicts. Such conflicts are solved by delaying the execution of a certain instruction until it can be executed.

	Register Renaming
	Output dependencies and anti-dependencies can be treated similarly to true data dependencies as normal conflicts. Such conflicts are solved by delaying the execution of a certain instruction until it can be executed.
	Parallelism could be improved by eliminating output dependencies and anti-dependencies, which are not real data dependencies.
	Output dependencies and anti-dependencies can be eliminated by automatically allocating new registers to values, when such a dependency has been detected. This technique is called register renaming.

	Register Renaming
	Output dependencies and anti-dependencies can be treated similarly to true data dependencies as normal conflicts. Such conflicts are solved by delaying the execution of a certain instruction until it can be executed.
	Parallelism could be improved by eliminating output dependencies and anti-dependencies, which are not real data dependencies.
	Output dependencies and anti-dependencies can be eliminated by automatically allocating new registers to values, when such a dependency has been detected. This technique is called register renaming.

	Final Comments
	The following main techniques are characteristic for superscalar processors:
	All of the above techniques are aimed to enhance performance.
	Experiments have shown:
	without the other techniques, only adding additional units is not efficient;
	out-of-order issue is extremely important; it allows to look ahead for independent instructions;
	register renaming can improve performance with more than 30%; in this case performance is limited only by true dependencies.
	it is important to provide a fetching/decoding capacity so that the instruction window is sufficiently large.

	Some Architectures
	PowerPC 604
	six independent execution units:
	- Branch execution unit
	- Load/Store unit
	- 3 Integer units
	- Floating-point unit

	in-order issue

	Power PC 620
	provides in addition to the 604 out-of-order issue

	Some Architectures
	PowerPC 604
	six independent execution units:
	- Branch execution unit
	- Load/Store unit
	- 3 Integer units
	- Floating-point unit

	in-order issue

	Power PC 620
	provides in addition to the 604 out-of-order issue

	Pentium
	three independent execution units:
	- 2 Integer units
	- Floating point unit

	in-order issue; two instructions issued per clock cycle.

	Pentium II to 4
	provide in addition to the Pentium out-of-order execution
	five to seven independent execution units

	Pentium 4 Basic Block Diagram
	Pentium 4
	The fetch unit loads x86 instructions form the L2 cache which, then, are decoded and translated into microoperations that are stored in the trace cache (the L1 instruction cache). These (RISC-like) microoperations are executed by the Pentium 4 hardware.
	Branch predictions
	Based on two branch history tables (called BTB - branch target buffer):
	Exceptional: 4 bits branch prediction (very rare to have more than 2 bits prediction!) - this is due to the very long pipeline which comes with a huge penalty for misprediction.

	The out-of-order execution mechanism uses several buffers (which together build the instruction window) to reorder the flow of instructions. These buffers store up to 126 microoperations at a given time.
	20 stage pipeline; the instruction fetch and decode are considered outside (and before) this pipeline.

	Pentium 4
	The trace cache stages (1-5):
	Trace cache next instruction pointer (TC Nxt IP): Determines, using branch prediction, the next microoperation to be executed.
	Trace cache fetch: The microoperation is fetched from the trace cache.
	Drive: Delivers the microoperation to the rename/allocator module.

	The out of order engine stages (6-14):
	Allocate: Allocates buffer space in the out of order engine to the new microoperation.
	Rename: Renames the 8 (in 32-mode) registers visible by the programmer using the 128-entry physical register file. Removes output dependencies and anti-dependencies.
	Queue: Microoperations are placed into queues where they wait to be scheduled.
	Scheduling: Microoperation schedulers determine when a microoperation is ready to execute (based on dependencies).
	Dispatching: Microoperations ready to be executed are fetched and dispatched to the corresponding functional units (when such a unit is available). Six microoperations can be dispatched for execution in one cycle.

	Pentium 4
	The execution stages (15-20):
	Register file: Operands are fetched from the register files and L1 data cache.
	Execute (Ex): The microoperation is executed.
	Flags: Flags (e.g. zero, negative) are computed and set.
	Branch checking (Br Ck): The actual branch result is compared with the prediction. If there has been a misprediction the pipeline is cleaned.
	Drive: The branch check result is registered in the BTB for further branch prediction. The whole pipeline is restarted.

	Pentium 4
	Execution units:
	Addressing units:
	- One address generation unit for memory loads; it also executes the memory loads.
	- One address generation unit for stores.

	Integer units:
	- Two low latency ALUs; they execute very fast simple operations (e.g. add, subtract, logic operations, integer store).
	- One complex integer unit (for e.g. multiply, divide, shift).

	Floating point units:
	- One FP execution unit; it executes FP operations, multimedia instruction set (MMX), Streaming SIMD extension (SSE).
	- One FP unit for FP (128-bit) register-to-register moves and memory stores.

	The End of the Lonely Big
	The End of the Lonely Big
	It delivered on performance but
	- It was running at very high frequency
	- The basic philosophy, to deliver, generation by generation, increased performance by more complex architectures and running at higher frequency was no longer sustainable!

	The End of the Lonely Big
	It delivered on performance but
	- It was running at very high frequency
	- The basic philosophy, to deliver, generation by generation, increased performance by more complex architectures and running at higher frequency was no longer sustainable!

	A radically new approach has been adopted:
	- Replace one large and complex processor running at high frequency with several simpler processors running at lower frequency!

	The End of the Lonely Big
	Intel’s multicore architectures:
	Core Duo, Core 2 Duo, Core 2 Quad, Core i3, Core i5, Core i7 ...

	A new architecture has been developed for the individual processors on the multicores:
	the Intel Core architecture (in the Core 2).
	the Nehalem architecture, a further development of Intel Core (in Core i5, i7).

	Basic principle: keep the power consumption of each core down and increase the power/performance efficiency:
	Overall processor complexity is reduced, compared to e.g. Pentium 4 (e.g. the number of pipeline stages is 14-16).
	Processors run at lower frequency.

	The Nehalem Basic Block Diagram
	The Nehalem Architecture
	The Front-End is responsible for loading x86 instructions from the instruction cache and translating them into microoperations that are buffered for further execution by the Out-of-order Execution Back-End.
	You remember the trace cache of the Pentium 4 and the motivation behind it! Nehalem is back to the traditional L1 instruction cache placed before the fetch unit. The microoperation buffer (see below) can, however, act like a trace cache.
	The fetch unit fetches 128 instruction bits every cycle. The predecoder takes these 128 bits and prepares the X86 instructions f...

	The Nehalem Architecture
	The Instruction Decoding Unit translates the X86 instructions into a stream of RISC-like microoperations; the unit consists of 4...
	Branch prediction is based (like in Pentium 4) on a large branch target buffer (BTB).
	A Loop Stream Detector detects short loops, such that the whole loop fits into the microoperation buffer; when such a loop is ex...

	The Nehalem Architecture
	Register Renaming & Allocation: detects dependencies; allocates slots to the microoperation in the reorder buffer and reservation station; does register renaming.
	The reorder buffer (128 entries) and reservation stations (36 entries) act like an instruction window.
	The scheduler can dispatch for execution maximum 6 microoperations per clock cycle: 3 arithmetic/logic operations and 3 memory operations.
	L1 Instruction cache: 32 KB, 4-way associative.
	L1 data cache: 32 KB, 8 way-associative.
	Level 2&3 caches are shared by several cores (see lecture on Parallel architectures).

	ARM Cortex-A8
	13-stage pipeline
	In-order issue (to keep power consumption reduced). Two instructions issued per clock cycle.
	2 integer ALUs, one integer multiplier, one load/store unit + the NEON unit.

	Superpipelining

