
ARCHITECTURES FOR PARALLEL
COMPUTATION

 1. Why Parallel Computation
 2. Parallel Programs
 3. A Classification of Computer Architectures
 4. Performance of Parallel Architectures
 5. The Interconnection Network
 6. SIMD Computers: Array Processors
 7. MIMD Computers
 9. Multicore Architectures
10. Multithreading
11. General Purpose Graphic Processing Units
12. Vector Processors
13. Multimedia Extensions to Microprocessors
1 of 81Datorarkitektur Fö 11-12

The Need for High Performance
Two main factors contribute to high performance of modern processors:

 Fast circuit technology
 Architectural features:

- large caches
- multiple fast buses
- pipelining
- superscalar architectures (multiple functional units)
2 of 81Datorarkitektur Fö 11-12

The Need for High Performance
Two main factors contribute to high performance of modern processors:

 Fast circuit technology
 Architectural features:

- large caches
- multiple fast buses
- pipelining
- superscalar architectures (multiple functional units)

However
 Computers running with a single CPU, often are not able to meet

performance needs in certain areas:
- Fluid flow analysis and aerodynamics;
- Simulation of large complex systems, for example in physics,

economy, biology, technic;
- Computer aided design;
- Multimedia.
3 of 81Datorarkitektur Fö 11-12

A Solution: Parallel Computers

 One solution to the need for high performance: architectures in which
several CPUs are running in order to solve a certain application.

 Such computers have been organized in different ways. Some key features:

 number and complexity of individual CPUs
 availability of common (shared memory)
 interconnection topology
 performance of interconnection network
 I/O devices
 - - - - - - - - - - - - -

 To efficiently use parallel computers you need to write parallel programs.
4 of 81Datorarkitektur Fö 11-12

U

S

Parallel Programs
Parallel sorting

nsorted-1 Unsorted-4Unsorted-3Unsorted-2

orted-1 Sorted-4Sorted-3Sorted-2

Sort-1 Sort-4Sort-3Sort-2

Merge

S O R T E D
5 of 81Datorarkitektur Fö 11-12

-
U

S

Parallel Programs
Parallel sorting var t: array [1..1000] of integer;

- - - - - - - - - - -
procedure sort (i, j:integer);

- - sort elements between t[i] and t[j] -
end sort;
procedure merge;

- - merge the four sub-arrays - -
end merge;
- - - - - - - - - - -
begin

- - - - - - - -
cobegin

sort (1,250) |
sort (251,500) |
sort (501,750) |
sort (751,1000)

coend;
merge;
- - - - - - - -

end;

nsorted-1 Unsorted-4Unsorted-3Unsorted-2

orted-1 Sorted-4Sorted-3Sorted-2

Sort-1 Sort-4Sort-3Sort-2

Merge

S O R T E D
6 of 81Datorarkitektur Fö 11-12

a1
a2
a3
⋅ ⋅
an
Parallel Programs
Matrix addition:
1
1
1

 ⋅ ⋅
1

a12
a22
a32
⋅ ⋅ ⋅ ⋅
an2

⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅

a1m
a2m
a3m
⋅ ⋅ ⋅ ⋅
anm

b11
b21
b31
⋅ ⋅ ⋅ ⋅
bn1

b12
b22
b32
⋅ ⋅ ⋅ ⋅
bn2

⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅

b1m
b2m
b3m
⋅ ⋅ ⋅ ⋅
bnm

c11
c21
c31
⋅ ⋅ ⋅ ⋅
cn1

c12
c22
c32
⋅ ⋅ ⋅ ⋅
cn2

⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅

c1m
c2m
c3m
⋅ ⋅ ⋅ ⋅
cnm

+ =
7 of 81Datorarkitektur Fö 11-12

a1
a2
a3
⋅ ⋅
an
Parallel Programs
Matrix addition:
1
1
1

 ⋅ ⋅
1

a12
a22
a32
⋅ ⋅ ⋅ ⋅
an2

⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅

a1m
a2m
a3m
⋅ ⋅ ⋅ ⋅
anm

b11
b21
b31
⋅ ⋅ ⋅ ⋅
bn1

b12
b22
b32
⋅ ⋅ ⋅ ⋅
bn2

⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅

b1m
b2m
b3m
⋅ ⋅ ⋅ ⋅
bnm

c11
c21
c31
⋅ ⋅ ⋅ ⋅
cn1

c12
c22
c32
⋅ ⋅ ⋅ ⋅
cn2

⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅

c1m
c2m
c3m
⋅ ⋅ ⋅ ⋅
cnm

+ =

var a: array [1..n, 1..m] of integer;
b: array [1..n, 1..m] of integer;
c: array [1..n, 1..m] of integer;
i: integer

- - - - - - - - - - -
begin

- - - - - - - -
for i:=1 to n do

for j:= 1 to m do
c[i,j]:=a[i, j] + b[i, j];

end for
end for
- - - - - - - -

end;

Sequential version:
8 of 81Datorarkitektur Fö 11-12

a1
a2
a3
⋅ ⋅
an

r);

j];
Parallel Programs
Matrix addition:
1
1
1

 ⋅ ⋅
1

a12
a22
a32
⋅ ⋅ ⋅ ⋅
an2

⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅

a1m
a2m
a3m
⋅ ⋅ ⋅ ⋅
anm

b11
b21
b31
⋅ ⋅ ⋅ ⋅
bn1

b12
b22
b32
⋅ ⋅ ⋅ ⋅
bn2

⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅

b1m
b2m
b3m
⋅ ⋅ ⋅ ⋅
bnm

c11
c21
c31
⋅ ⋅ ⋅ ⋅
cn1

c12
c22
c32
⋅ ⋅ ⋅ ⋅
cn2

⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅

c1m
c2m
c3m
⋅ ⋅ ⋅ ⋅
cnm

+ =

var a: array [1..n, 1..m] of integer;
b: array [1..n, 1..m] of integer;
c: array [1..n, 1..m] of integer;
i: integer

- - - - - - - - - - -
begin

- - - - - - - -
for i:=1 to n do

for j:= 1 to m do
c[i,j]:=a[i, j] + b[i, j];

end for
end for
- - - - - - - -

end;

var a: array [1..n, 1..m] of integer;
b: array [1..n, 1..m] of integer;
c: array [1..n, 1..m] of integer;
i: integer

- - - - - - - - - - -
procedure add_vector(n_ln: intege

var j: integer
begin

for j:=1 to m do
c[n_ln, j]:=a[n_ln, j] + b[n_ln,

end for
end add_vector;
begin

- - - - - - - -
cobegin for i:=1 to n do

add_vector(i);
coend;
- - - - - - - -

end;

Sequential version:

Parallel version:
9 of 81Datorarkitektur Fö 11-12

a1
a2
a3
⋅ ⋅
an

r);

j];
Parallel Programs
Matrix addition:
1
1
1

 ⋅ ⋅
1

a12
a22
a32
⋅ ⋅ ⋅ ⋅
an2

⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅

a1m
a2m
a3m
⋅ ⋅ ⋅ ⋅
anm

b11
b21
b31
⋅ ⋅ ⋅ ⋅
bn1

b12
b22
b32
⋅ ⋅ ⋅ ⋅
bn2

⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅

b1m
b2m
b3m
⋅ ⋅ ⋅ ⋅
bnm

c11
c21
c31
⋅ ⋅ ⋅ ⋅
cn1

c12
c22
c32
⋅ ⋅ ⋅ ⋅
cn2

⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅

c1m
c2m
c3m
⋅ ⋅ ⋅ ⋅
cnm

+ =

var a: array [1..n, 1..m] of integer;
b: array [1..n, 1..m] of integer;
c: array [1..n, 1..m] of integer;
i: integer

- - - - - - - - - - -
begin

- - - - - - - -
for i:=1 to n do

c[i,1:m]:=a[i,1:m] +b [i,1:m];
end for;
- - - - - - - -

end;

Vector computation version 1:

var a: array [1..n, 1..m] of integer;
b: array [1..n, 1..m] of integer;
c: array [1..n, 1..m] of integer;
i: integer

- - - - - - - - - - -
procedure add_vector(n_ln: intege

var j: integer
begin

for j:=1 to m do
c[n_ln, j]:=a[n_ln, j] + b[n_ln,

end for
end add_vector;
begin

- - - - - - - -
cobegin for i:=1 to n do

add_vector(i);
coend;
- - - - - - - -

end;

Parallel version:
10 of 81Datorarkitektur Fö 11-12

a1
a2
a3
⋅ ⋅
an
Parallel Programs
Matrix addition:
1
1
1

 ⋅ ⋅
1

a12
a22
a32
⋅ ⋅ ⋅ ⋅
an2

⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅

a1m
a2m
a3m
⋅ ⋅ ⋅ ⋅
anm

b11
b21
b31
⋅ ⋅ ⋅ ⋅
bn1

b12
b22
b32
⋅ ⋅ ⋅ ⋅
bn2

⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅

b1m
b2m
b3m
⋅ ⋅ ⋅ ⋅
bnm

c11
c21
c31
⋅ ⋅ ⋅ ⋅
cn1

c12
c22
c32
⋅ ⋅ ⋅ ⋅
cn2

⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅

c1m
c2m
c3m
⋅ ⋅ ⋅ ⋅
cnm

+ =

var a: array [1..n, 1..m] of integer;
b: array [1..n, 1..m] of integer;
c: array [1..n, 1..m] of integer;
i: integer

- - - - - - - - - - -
begin

- - - - - - - -
for i:=1 to n do

c[i,1:m]:=a[i,1:m] +b [i,1:m];
end for;
- - - - - - - -

end;

Vector computation version 1:
var a: array [1..n, 1..m] of integer;

b: array [1..n, 1..m] of integer;
c: array [1..n, 1..m] of integer;

- - - - - - - - - - -
begin

- - - - - - - -
c[1:n,1:m]:=a[1:n,1:m]+b[1:n,1:m];
- - - - - - - -

end;

Vector computation version 2:
11 of 81Datorarkitektur Fö 11-12

Parallel Programs
Pipeline model computation:

x
y 5= 45 xlog+×

y

12 of 81Datorarkitektur Fö 11-12

Parallel Programs
Pipeline model computation:

x
y 5= 45 xlog+×

a 45 xlog+=

y

y 5= a×
a yx
13 of 81Datorarkitektur Fö 11-12

Parallel Programs
Pipeline model computation:

x
y 5= 45 xlog+×

a 45 xlog+=

y

y 5= a×
a yx

channel ch:real;
- - - - - - - - -
cobegin

var x: real;
while true do

read(x);
send(ch, 45+log(x));

end while
|
var v: real;
while true do

receive(ch, v);
write(5 * sqrt(v));

end while
coend;
- - - - - - - - -
14 of 81Datorarkitektur Fö 11-12

Flynn’s Classification of Computer Architectures

 Flynn’s classification is based on the nature of the
instruction flow executed by the computer and that of the
data flow on which the instructions operate.
15 of 81Datorarkitektur Fö 11-12

Flynn’s Classification of Computer Architectures

Single Instruction stream, Single Data stream (SISD)

Control
unit

Processing
unit

instr. stream

da
ta

 s
tre

am

Memory

CPU
16 of 81Datorarkitektur Fö 11-12

Flynn’s Classification of Computer Architectures

Single Instruction stream, Multiple Data stream (SIMD)

Control
unit

Processing
unit_1

Shared
Memory

Processing
unit_2

Processing
unit_n

In
te

rc
on

ne
ct

io
n

N
et

w
or

k

IS

DS1

DS2

DSn

SIMD with shared memory
17 of 81Datorarkitektur Fö 11-12

Flynn’s Classification of Computer Architectures
Single Instruction stream, Multiple Data stream (SIMD)

SIMD with no shared memory

Control
unit

Processing
unit_1

Processing
unit_2

Processing
unit_n

In
te

rc
on

ne
ct

io
n

N
et

w
or

k

DS1

LM1

IS

LM

DS2

LM2

DSn

LMn
18 of 81Datorarkitektur Fö 11-12

Flynn’s Classification of Computer Architectures
Multiple Instruction stream, Multiple Data stream (MIMD)

MIMD with shared memory

Control
unit_1

Processing
unit_1

Processing
unit_2

Processing
unit_n

In
te

rc
on

ne
ct

io
n

N
et

w
or

k

DS1

LM1
IS1

DS2

LM2

DSn

LMn

Control
unit_2

Control
unit_n

IS2

ISn

CPU_1

CPU_2

CPU_n

Shared
Memory
19 of 81Datorarkitektur Fö 11-12

Flynn’s Classification of Computer Architectures
Multiple Instruction stream, Multiple Data stream (MIMD)

MIMD with no shared memory

Control
unit_1

Processing
unit_1

Processing
unit_2

Processing
unit_n

In
te

rc
on

ne
ct

io
n

N
et

w
or

k

DS1

LM1
IS1

DS2

LM2

DSn

LMn

Control
unit_2

Control
unit_n

IS2

ISn

CPU_1

CPU_2

CPU_n
20 of 81Datorarkitektur Fö 11-12

Performance of Parallel Architectures

Important questions:

 How fast runs a parallel computer at its maximal potential?

 How fast execution can we expect from a parallel computer for a
concrete application?

 How do we measure the performance of a parallel computer and the
performance improvement we get by using such a computer?
21 of 81Datorarkitektur Fö 11-12

Performance Metrics

 Peak rate: the maximal computation rate that can be theoretically achieved
when all modules are fully utilized.

The peak rate is of no practical significance for the user. It is mostly used by
vendor companies for marketing of their computers.
22 of 81Datorarkitektur Fö 11-12

23 of 81Datorarkitektur Fö 11-12

Performance Metrics

 Peak rate: the maximal computation rate that can be theoretically achieved
when all modules are fully utilized.

The peak rate is of no practical significance for the user. It is mostly used by
vendor companies for marketing of their computers.

 Speedup: measures the gain we get by using a certain parallel computer to
run a given parallel program in order to solve a specific problem.

TS: execution time needed with the best sequential algorithm;
TP: execution time needed with the parallel algorithm.

S
TS
TP
------=

Performance Metrics

 Efficiency: this metric relates the speedup to the number of processors
used; by this it provides a measure of the efficiency with which the
processors are used.

S: speedup;
p: number of processors.

For the ideal situation, in theory:

; which means E = 1

Practically the ideal efficiency of 1 can not be achieved!

E S
p---=

S
TS
TS
p-----
------ p= =
24 of 81Datorarkitektur Fö 11-12

Amdahl’s Law
 Consider f to be the ratio of computations that, according to the algorithm,

have to be executed sequentially (0 ≤ f ≤ 1); p is the number of processors;

TP f TS×
1 f–() TS×

p---------------------------+=

S
TS

f TS× 1 f–()
TS
p-----×+

-- 1

f 1 f–()
p---------------+

-----------------------= =
25 of 81Datorarkitektur Fö 11-12

f

Amdahl’s Law
 Consider f to be the ratio of computations that, according to the algorithm,

have to be executed sequentially (0 ≤ f ≤ 1); p is the number of processors;

TP f TS×
1 f–() TS×

p---------------------------+=

S
TS

f TS× 1 f–()
TS
p-----×+

-- 1

f 1 f–()
p---------------+

-----------------------= =

1
2
3
4
5
6
7
8
9

10

0.2 0.4 0.6 0.8 1.0

S

26 of 81Datorarkitektur Fö 11-12

Amdahl’s Law

‘
Amdahl’s law: even a little ratio of sequential computation imposes a certain
limit to speedup; a higher speedup than 1/f can not be achieved, regardless the
number of processors.

To efficiently exploit a high number of processors, f must be small
(the algorithm has to be highly parallel).

E S
P---

1
f p 1–()× 1+----------------------------------= =
27 of 81Datorarkitektur Fö 11-12

Other Aspects which Limit the Speedup

 Beside the intrinsic sequentiality of some parts of an algorithm there are also
other factors that limit the achievable speedup:

 communication cost
 load balancing of processors
 costs of creating and scheduling processes
 I/O operations

 There are many algorithms with a high degree of parallelism; for such
algorithms the value of f is very small and can be ignored. These algorithms
are suited for massively parallel systems; in such cases the other limiting
factors, like the cost of communications, become critical.
28 of 81Datorarkitektur Fö 11-12

The Interconnection Network

 The interconnection network (IN) is a key component of the architecture. It
has a decisive influence on the overall performance and cost.

 The traffic in the IN consists of data transfer and transfer of commands and
requests.

 The key parameters of the IN are

 total bandwidth: transferred bits/second
 cost
29 of 81Datorarkitektur Fö 11-12

The Interconnection Network

Single Bus

 Single bus networks are simple and cheap.
 One single communication allowed at a time; bandwidth shared by all nodes.
 Performance is relatively poor.
 In order to keep performance, the number of nodes is limited (16 - 20).

Node1 Node2 Noden
30 of 81Datorarkitektur Fö 11-12

The Interconnection Network
Completely connected network

 Each node is connected to every other one.
 Communications can be performed in parallel between any pair of nodes.
 Both performance and cost are high.
 Cost increases rapidly with number of nodes.

Node1

Node2 Node5

Node3 Node4
31 of 81Datorarkitektur Fö 11-12

32 of 81Datorarkitektur Fö 11-12

The Interconnection Network
Crossbar network

 The crossbar is a dynamic network: the interconnection topology can be
modified by positioning of switches.

 The crossbar network is completely connected: any node can be directly
connected to any other.

 Fewer interconnections are needed than for the static completely connected
network; however, a large number of switches is needed.

 Several communications can be performed in parallel.

Node1

Node2

Noden

The Interconnection Network
Mesh network

 Mesh networks are cheaper than completely connected ones and provide
relatively good performance.

 In order to transmit an information between certain nodes, routing through
intermediate nodes is needed (max. 2*(n-1) intermediates for an n*n mesh).

 It is possible to provide wraparound connections: between nodes 1 and 13, 2
and 14, etc.

 Three dimensional meshes have been also implemented.

Node1

Node2

Node3

Node4

Node5

Node6

Node7

Node8

Node9

Node10

Node11

Node12

Node13

Node14

Node15

Node16
33 of 81Datorarkitektur Fö 11-12

The Interconnection Network
Hypercube network

 2n nodes are arranged in an n-dimensional cube. Each node is connected to
n neighbours.

 In order to transmit an information between certain nodes, routing through
intermediate nodes is needed (maximum n intermediates).

N10

N11 N15

N14

N12

N9 N13

N0

N2

N3 N7

N5

N4

N1

N6

N8
34 of 81Datorarkitektur Fö 11-12

35 of 81Datorarkitektur Fö 11-12

SIMD Computers

 SIMD computers are usually called array processors.
 PU’s are very simple: an ALU which executes the instruction broadcast by

the CU, a few registers, and some local memory.
 The first SIMD computer: ILLIAC IV (1970s), 64 relatively powerful

processors (mesh connection, see above).
 Newer SIMD computer: CM-2 (Connection Machine, by Thinking Machines

Corporation, 65 536 very simple processors (connected as hypercube).
 Array processors are specialized for numerical problems formulated as

matrix or vector calculations. Each PU computes one element of the result.

Control
unit

PU

PU

PU

PU

PU

PU

PU

PU

PU

MIMD computers
MIMD with shared memory

 Communication between processors is through shared memory. One
processor can change the value in a location and the other processors can
read the new value.

 With many processors, memory contention seriously degrades performance
 such architectures don’t support a high number of processors.

Shared
Memory

Processor
1

Processor
2

Processor
n

Local
Memory

Local
Memory

Local
Memory

Interconnection Network
36 of 81Datorarkitektur Fö 11-12

3

MIMD computers
MIMD with shared memory

 Communication between processors is through shared memory. One
processor can change the value in a location and the other processors can
read the new value.

 With many processors, memory contention seriously degrades performance
 such architectures don’t support a high number of processors.

Shared
Memory

Processor
1

Processor
2

Processor
n

Local
Memory

Local
Memory

Local
Memory

 Classical parallel mainframe
computers (1970-1980-1990):

 IBM 370/390 Series
 CRAY X-MP, CRAY Y-MP, CRAY

 Modern multicore chips:
 Intel Core Duo, i5, i7; Arm MPCInterconnection Network
37 of 81Datorarkitektur Fö 11-12

MIMD computers
MIMD with no shared memory

 Communication between processors is only by passing messages over the
interconnection network.

 There is no competition of the processors for the shared memory  the
number of processors is not limited by memory contention.

 The speed of the interconnection network is an important parameter for the
overall performance.

 Modern large parallel computers do not have a system-wide shared memory.

Processor
1

Processor
2

Processor
n

Private
Memory

Private
Memory

Private
Memory

Interconnection Network
38 of 81Datorarkitektur Fö 11-12

Muticore Architectures
The Parallel Computer in Your Pocket

 Multicore chips:

Several processors on the same chip.

A parallel computer on a chip.

 This is the only way to increase chip performance without excessive
increase in power consumption:

 Instead of increasing processor frequency, use several processors and
run each at lower frequency.

Examples:
 Intel x86 Multicore architectures

- Intel Core Duo
- Intel Core i7

 ARM11 MPCore

39 of 81Datorarkitektur Fö 11-12

Intel Core Duo
Composed of two Intel Core superscalar processors

Processor
core

32-KB L1
I Cache

32-KB L1
D Cache

Processor
core

32-KB L1
I Cache

32-KB L1
D Cache

2 MB L2 Shared Cache &
Cache coherence

Off chip
Main Memory
40 of 81Datorarkitektur Fö 11-12

Intel Core i7
Contains four Nehalem processors.

Processor
core

32-KB L1
I Cache

32-KB L1
D Cache

Processor
core

32-KB L1
I Cache

32-KB L1
D Cache

Processor
core

32-KB L1
I Cache

32-KB L1
D Cache

Processor
core

32-KB L1
I Cache

32-KB L1
D Cache

256 KB L2
Cache

256 KB L2
Cache

256 KB L2
Cache

256 KB L2
Cache

8 MB L3 Shared Cache &
Cache coherence

Off chip

41 of 81Datorarkitektur Fö 11-12 Main Memory

ARM11 MPCore

Arm11 Processor
core

32-KB L1
I Cache

32-KB L1
D Cache

32-KB L1
I Cache

32-KB L1
D Cache

32-KB L1
I Cache

32-KB L1
D Cache

32-KB L1
I Cache

32-KB L1
D Cache

Off chip
Main Memory

Cache coherence unit

Arm11 Processor
core

Arm11 Processor
core

Arm11 Processor
core
42 of 81Datorarkitektur Fö 11-12

Multithreading
 A running program:

 one or several processes; each process:
- one or several threads

 thread: a piece of sequential code executed in parallel with other threads.

process 1 process 3process 2
th

re
ad

 1
_1

th
re

ad
 1

_2

th
re

ad
 1

_3

th
re

ad
 2

_1

th
re

ad
 2

_2

th
re

ad
 3

_1

processor 1 processor 2
43 of 81Datorarkitektur Fö 11-12

Multithreading

 Several threads can be active simultaneously on the same processor.

 Typically, the Operating System is scheduling threads on the processor.
 The OS is switching between threads so that one thread is active

(running) on a processor at a time.

 Switching between threads implies saving/restoring the Program Counter,
Registers, Status flags, etc.

Switching overhead is considerable!
44 of 81Datorarkitektur Fö 11-12

Hardware Multithreading
 Multithreaded processors provide hardware support for executing

multithreaded code:
 separate program counter & register set for individual threads;
 instruction fetching on thread basis;
 hardware supported context switching.

- Efficient execution of multithread software.
- Efficient utilisation of processor resources.
45 of 81Datorarkitektur Fö 11-12

Hardware Multithreading
 Multithreaded processors provide hardware support for executing

multithreaded code:
 separate program counter & register set for individual threads;
 instruction fetching on thread basis;
 hardware supported context switching.

- Efficient execution of multithread software.
- Efficient utilisation of processor resources.

 By handling several threads:
 There is greater chance to find instructions to execute in parallel on the

available resources.
 When one thread is blocked, due to e.g. memory access or data

dependencies, instructions from another thread can be executed.
 Multithreading can be implemented on both scalar and superscalar processors.
46 of 81Datorarkitektur Fö 11-12

Approaches to Multithreaded Execution
 Interleaved multithreading:

The processor switches from one thread to another at each clock cycle; if
any thread is blocked due to dependency or memory latency, it is skipped
and an instruction from a ready thread is executed.
47 of 81Datorarkitektur Fö 11-12

Approaches to Multithreaded Execution
 Interleaved multithreading:

The processor switches from one thread to another at each clock cycle; if
any thread is blocked due to dependency or memory latency, it is skipped
and an instruction from a ready thread is executed.

 Blocked multithreading:

Instructions of the same thread are executed until the thread is blocked;
blocking of a thread triggers a switch to another thread ready to execute.
48 of 81Datorarkitektur Fö 11-12

Approaches to Multithreaded Execution
 Interleaved multithreading:

The processor switches from one thread to another at each clock cycle; if
any thread is blocked due to dependency or memory latency, it is skipped
and an instruction from a ready thread is executed.

 Blocked multithreading:

Instructions of the same thread are executed until the thread is blocked;
blocking of a thread triggers a switch to another thread ready to execute.

Interleaved and blocked multithreading can be applied to both scalar and
superscalar processors. When applied to superscalars, several instructions are
issued simultaneously. However, all instructions issued during a cycle have to
be from the same thread.
49 of 81Datorarkitektur Fö 11-12

Approaches to Multithreaded Execution
 Interleaved multithreading:

The processor switches from one thread to another at each clock cycle; if
any thread is blocked due to dependency or memory latency, it is skipped
and an instruction from a ready thread is executed.

 Blocked multithreading:

Instructions of the same thread are executed until the thread is blocked;
blocking of a thread triggers a switch to another thread ready to execute.

Interleaved and blocked multithreading can be applied to both scalar and
superscalar processors. When applied to superscalars, several instructions are
issued simultaneously. However, all instructions issued during a cycle have to
be from the same thread.

 Simultaneous multithreading (SMT):

Applies only to superscalar processors.
Several instructions are fetched during a cycle and they can belong to
different threads.
50 of 81Datorarkitektur Fö 11-12

Approaches to Multithreaded
Scalar (non-superscalar) processors

A

A

A
A

thread blocked

no multithreading
51 of 81Datorarkitektur Fö 11-12

Approaches to Multithreaded
Scalar (non-superscalar) processors

A

A

A
A

A
B
C
D
B
C
D
A

thread blocked

no multithreading

ABCD
interleaved multithreading
52 of 81Datorarkitektur Fö 11-12

Approaches to Multithreaded
Scalar (non-superscalar) processors

A

A

A
A

A
B
C
D
B
C
D
A

thread blocked

no multithreading

ABCD
interleaved multithreading

A
B
B
B
C
C
D
A

ABCD
blocked multithreading
53 of 81Datorarkitektur Fö 11-12

Approaches to Multithreaded
Superscalar processors

X

X
X

X
X

X

X
X

X
X
X

X

X
X
X

X X

X

X

X

no multithreading
54 of 81Datorarkitektur Fö 11-12

Approaches to Multithreaded
Superscalar processors

X

X
X

X
X

X

X
X

X
X
X

X

X
X
X

X X

X

X

X

X
Y
Z
V
X
Y
Z
X

X
Y
Z
V
X
Y
Z
X

Y
Z

V
X

Z
X

Y

V
X

Z
X

X

X

X

no multithreading
XYZV

interleaved
multithreading
55 of 81Datorarkitektur Fö 11-12

Approaches to Multithreaded
Superscalar processors

X

X
X

X
X

X

X
X

X
X
X

X

X
X
X

X X

X

X

X

X
Y
Z
V
X
Y
Z
X

X
Y
Z
V
X
Y
Z
X

Y
Z

V
X

Z
X

Y

V
X

Z
X

X

X

X

X
X
Y
Y
Y
Z
Z
V

X
X

Y
Y
Y
Z

Z
V

X
Y

Y

Z

V

Y

Z

V

Z Z

no multithreading
XYZV

interleaved
multithreading

XYZV

blocked
multithreading
56 of 81Datorarkitektur Fö 11-12

Approaches to Multithreaded
Superscalar processors

X

X
X

X
X

X

X
X

X
X
X

X

X
X
X

X X

X

X

X

X
Y
Z
V
X
Y
Z
X

X
Y
Z
V
X
Y
Z
X

Y
Z

V
X

Z
X

Y

V
X

Z
X

X

X

X

X
X
Y
Y
Y
Z
Z
V

X
X

Y
Y
Y
Z

Z
V

X
Y

Y

Z

V

Y

Z

V

Z Z

X
Z
X
Z
V
Y
X
Z

X
Z
X
Z
V
Y
X
Z

X
X
Z
X
V
X

Y
V
Y
X
X
V
Y
Y

Y
V
Y
X
Z
V
V
V

Z

X
Z
C
Y
V

no multithreading
XYZV

interleaved
multithreading

XYZV

blocked
multithreading

XYZV

simultaneous
multithreading

X

57 of 81Datorarkitektur Fö 11-12

Multithreaded Processors
Are multithreaded processors parallel computers?
58 of 81Datorarkitektur Fö 11-12

Multithreaded Processors
Are multithreaded processors parallel computers?

 Yes:

 they execute parallel threads;
 certain sections of the processor are available in several copies (e.g.

program counter, instruction registers + other registers);
 the processor appears to the operating system as several processors.
59 of 81Datorarkitektur Fö 11-12

Multithreaded Processors
Are multithreaded processors parallel computers?

 Yes:

 they execute parallel threads;
 certain sections of the processor are available in several copies (e.g.

program counter, instruction registers + other registers);
 the processor appears to the operating system as several processors.

 No:

 only certain sections of the processor are available in several copies
but we do not have several processors; the execution resources (e.g.
functional units) are common.

In fact, a single physical processor appears as multiple logical
processors to the operating system.
60 of 81Datorarkitektur Fö 11-12

Multithreaded Processors
 IBM Power5, Power6:

 simultaneous multithreading;
 two threads/core;
 both power5 and power6 are dual core chips.

 Intel Montecito (Itanium 2 family):

 blocked multithreading (called by Intel temporal multithreading);
 two threads/core;
 Itanium 2 processors are dual core.

 Intel Pentium 4, Nehalem

 Pentium 4 was the first Intel processor to implement multithreading;
 simultaneous multithreading (called by Intel Hyperthreading);
 two threads/core (8 simultaneous threads per quad core);
61 of 81Datorarkitektur Fö 11-12

General Purpose GPUs

 The first GPUs (graphic processing units) were non-programmable
3D-graphic accelerators.

 Today’s GPUs are highly programmable and efficient.

 NVIDIA, AMD, etc. have introduced high performance GPUs that can be used
for general purpose high performance computing: general purpose graphic
processing units (GPGPUs).

 GPGPUs are multicore, multithreaded processors which also include SIMD
capabilities.
62 of 81Datorarkitektur Fö 11-12

TP
S

The NVIDIA Tesla GPGPU

C TPC TPC TPC TPC TPC TPC TPC

Host System

Memory

MSM SMSM SMSM SMSM SMSM SMSM SMSM SMSM

 The NVIDIA Tesla (GeForce 8800) architecture:

 8 independent processing units (texture
processor clusters - TPCs);

 each TPC consists of 2 streaming
multiprocessors (SMs);

 each SM consists of 8 streaming
processors (SPs).
63 of 81Datorarkitektur Fö 11-12

TP
S

2

The NVIDIA Tesla GPGPU

C TPC TPC TPC TPC TPC TPC TPC

Host System

Memory

MSM SMSM SMSM SMSM SMSM SMSM SMSM SMSM

 Each TPC consists of:

 two SMs, controlled by the SM controller
(SMC);

 a texture unit (TU): is specialised for
graphic processing; the TU can serve four
threads per cycle.

SP

SP

SP

SP

SP

SP

SP

SP

Cache
MT Issue

SFU SFU

Shared
memory

SP

SP

SP

SP

SP

SP

SP

SP

Cache
MT Issue

SFU SFU

Shared
memory

Texture unit

SMC

TPC

SMSM1
64 of 81Datorarkitektur Fö 11-12







2

The NVIDIA Tesla GPGPU
Each SM consists of:
 8 streaming processors (SPs);
 multithreaded instruction fetch and issue

unit (MT issue);
 cache and shared memory;
 two Special Function Units (SFUs); each SFU

also includes 4 floating point multipliers.

Each SM is a multithreaded processor;
it executes up to 768 concurrent threads.

The SM architecture is based on a combination
of SIMD and multithreading - single instruction
multiple thread (SIMT):
 a warp consist of 32 parallel threads;
 each SM manages a group of 24 warps at a

time (768 threads, in total);

SP

SP

SP

SP

SP

SP

SP

SP

Cache
MT Issue

SFU SFU

Shared
memory

SP

SP

SP

SP

SP

SP

SP

SP

Cache
MT Issue

SFU SFU

Shared
memory

Texture unit

SMC

TPC

SMSM1
65 of 81Datorarkitektur Fö 11-12











2

The NVIDIA Tesla GPGPU
At each instruction issue the SM selects a
ready warp for execution.

Individual threads belonging to the active warp
are mapped for execution on the SP cores.

The 32 threads of the same warp execute code
starting from the same address.

Once a warp has been selected for execution
by the SM, all threads execute the same
instruction at a time; some threads can stay
idle (due to branching).

The SP (streaming processor) is the primary
processing unit of an SM. It performs:
 floating point add, multiply, multiply-add;
 integer arithmetic, comparison, conversion.

SP

SP

SP

SP

SP

SP

SP

SP

Cache
MT Issue

SFU SFU

Shared
memory

SP

SP

SP

SP

SP

SP

SP

SP

Cache
MT Issue

SFU SFU

Shared
memory

Texture unit

SMC

TPC

SMSM1
66 of 81Datorarkitektur Fö 11-12

The NVIDIA Tesla GPGPU
 GPGPUS are optimised for throughput:

 each thread may take longer time to execute but there are hundreds of
threads active;

 large amount of activity in parallel and large amount of data produced
at the same time.

 Common CPU based parallel computers are primarily optimised for latency:

 each thread runs as fast as possible, but only a limited amount of
threads are active.

 Throughput oriented applications for GPGPUs:

 extensive data parallelism: thousands of computations on independent
data elements;

 limited process-level parallelism: large groups of threads run the same
program; not so many different groups that run different programs.

 latency tolerant; the primary goal is the amount of work completed.

67 of 81Datorarkitektur Fö 11-12

Vector Processors

 Vector processors include in their instruction set, beside scalar instructions,
also instructions operating on vectors.

 Array processors (SIMD) computers can operate on vectors by executing
simultaneously the same instruction on pairs of vector elements; each
instruction is executed by a separate processing element.

 Several computer architectures have implemented vector operations using
the parallelism provided by pipelined functional units. Such architectures are
called vector processors.
68 of 81Datorarkitektur Fö 11-12

Vector Processors
 Strictly speaking, vector processors are not parallel processors, although

they behave like SIMD computers. There are not several CPUs in a vector
processor, running in parallel. They are SISD processors which have
implemented vector instructions executed on pipelined functional units.

 Vector computers usually have vector registers which can store each 64 up
to 128 words.

 Vector instructions:

 load vector from memory into vector register
 store vector into memory
 arithmetic and logic operations between vectors
 operations between vectors and scalars
 etc.

 The programmers is allowed to use operations on vectors; the compiler
translates these instructions into vector instructions at machine level.
69 of 81Datorarkitektur Fö 11-12

Vector Processors

Scalar registers

Vector registers

Scalar functional
units

Vector functional
units

Scalar unit

Vector unit

Instruction
decoder

Scalar
instructions

Vector
instructions

Memory

Vector computers:
 CDC Cyber 205

 CRAY

 IBM 3090

 NEC SX

 Fujitsu VP

 HITACHI S8000
70 of 81Datorarkitektur Fö 11-12

)

Vector Unit

Scalar registers

Vector registers

Scalar functional
units

Vector functional
units

Scalar unit

Vector unit

Instruction
decoder

Scalar
instructions

Vector
instructions

Memory

 A vector unit consists of:
 pipelined functional units
 vector registers

 Vector registers:
n general purpose vector

registers Ri, 0 ≤ i ≤ n-1,
each of length s;

 vector length register VL:
stores the length l (0 ≤ l ≤ s
of the currently processed
vectors;

mask register M; stores a
set of l bits, interpreted as
boolean values; vector
instructions can be
executed in masked mode:
vector register elements
corresponding to a false
71 of 81Datorarkitektur Fö 11-12 value in M, are ignored.

Vector Instructions

LOAD-STORE instructions:
R ← A(x1:x2:incr) load
A(x1:x2:incr) ← R store

R ← MASKED(A) masked load
A ← MASKED(R) masked store

R ← INDIRECT(A(X)) indirect load
A(X) ← INDIRECT(R) indirect store

Arithmetic - logic
R ← R' b_op R''
R ← S b_op R'
R ← u_op R'
M ← R rel_op R'
WHERE(M) R ← R' b_op R''
72 of 81Datorarkitektur Fö 11-12

Vector Instructions

LOAD-STORE instructions:
R ← A(x1:x2:incr) load
A(x1:x2:incr) ← R store

R ← MASKED(A) masked load
A ← MASKED(R) masked store

R ← INDIRECT(A(X)) indirect load
A(X) ← INDIRECT(R) indirect store

Arithmetic - logic
R ← R' b_op R''
R ← S b_op R'
R ← u_op R'
M ← R rel_op R'
WHERE(M) R ← R' b_op R''

Chaining
R2 ← R0 + R1
R3 ← R2 * R4

Execution of the vector multiplication
has not to wait until the vector
addition has terminated; as elements
of the sum are generated by the
addition pipeline they enter the
multiplication pipeline;

addition and multiplication are per-
formed (partially) in parallel.
73 of 81Datorarkitektur Fö 11-12

Vector Instructions

In a language with vector computation instructions:

if T[1..50] > 0 then
T[1..50] := T[1..50] + 1;

A compiler for a vector computer generates something like:

R0 ← T(0:49:1)
VL ← 50
M ← R0 > 0
WHERE(M) R0 ← R0 + 1
T(0:49:1) ← R0
74 of 81Datorarkitektur Fö 11-12

Multimedia Extensions to General Purpose
Microprocessors

 Video and audio applications very often deal with large arrays of small data
types (8 or 16 bits).

 Such applications exhibit a large potential of SIMD (vector) parallelism.

General purpose microprocessors have been equipped with special
instructions to exploit this potential of parallelism.

 The specialised multimedia instructions perform vector computations on
bytes, half-words, or words.
75 of 81Datorarkitektur Fö 11-12

Multimedia Extensions to General Purpose
Microprocessors

Several vendors have extended the instruction set of their processors in order
to improve performance with multimedia applications:

 MMX for Intel x86 family

 VIS for UltraSparc

 MDMX for MIPS

 MAX-2 for Hewlett-Packard PA-RISC

 NEON for ARM Cortex-A8, ARM Cortex-A9

The Pentium family provides 57 MMX instructions. They treat data in a SIMD
fashion.
76 of 81Datorarkitektur Fö 11-12

Multimedia Extensions to General Purpose
Microprocessors

The basic idea: subword execution

 Use the entire width of the data path (32 or 64 bits) when processing
small data types used in signal processing (8, 12, or 16 bits).

With word size 64 bits, the adders will be used to implement eight 8 bit
additions in parallel.

This is practically a kind of SIMD parallelism, at a reduced scale.
77 of 81Datorarkitektur Fö 11-12

Multimedia Extensions to General Purpose
Microprocessors

Three packed data types are defined for parallel operations: packed byte,
packed word, packed double word.

q0q1q2q3q4q5q6q7

q0q1q2q3

q0q1

q0

Packed byte

Packed word

Packed double word

Quadword
78 of 81Datorarkitektur Fö 11-12 64 bits

Multimedia Extensions to General Purpose
Microprocessors

Examples of SIMD arithmetics with the MMX instruction set:

a0a1a2a3a4a5a6a7
ADD R3 ← R1,R2

b0b1b2b3b4b5b6b7

a0+b0

++++++++

========
a7+b7 a6+b6 a5+b5 a4+b4 a3+b3 a2+b2 a1+b1
79 of 81Datorarkitektur Fö 11-12

Multimedia Extensions to General Purpose
Microprocessors

Examples of SIMD arithmetics with the MMX instruction set:

a0a1a2a3a4a5a6a7
ADD R3 ← R1,R2

b0b1b2b3b4b5b6b7

a0+b0

++++++++

========
a7+b7 a6+b6 a5+b5 a4+b4 a3+b3 a2+b2 a1+b1

a0a1a2a3a4a5a6a7
MPYADD R3 ← R1,R2

b0b1b2b3b4b5b6b7
x-+

====
(a6xb6)+(a7xb7)

x-+ x-+ x-+

(a4xb4)+(a5xb5) (a2xb2)+(a3xb3) (a0xb0)+(a1xb1)
80 of 81Datorarkitektur Fö 11-12

Multimedia Extensions to General Purpose
Microprocessors

How to get the data ready for computation?
 How to get the results back in the right format?
 Packing and Unpacking:

truncated a0

a0a1

b0b1

truncated b1 truncated b0 truncated a1

PACK.W R3 ← R1,R2

a0a1a2a3

a0a1

UNPACK R3 ← R1
81 of 81Datorarkitektur Fö 11-12

	ARCHITECTURES FOR PARALLEL COMPUTATION
	The Need for High Performance
	Fast circuit technology
	Architectural features:
	- large caches
	- multiple fast buses
	- pipelining
	- superscalar architectures (multiple functional units)

	The Need for High Performance
	Fast circuit technology
	Architectural features:
	- large caches
	- multiple fast buses
	- pipelining
	- superscalar architectures (multiple functional units)

	Computers running with a single CPU, often are not able to meet performance needs in certain areas:
	- Fluid flow analysis and aerodynamics;
	- Simulation of large complex systems, for example in physics, economy, biology, technic;
	- Computer aided design;
	- Multimedia.

	A Solution: Parallel Computers
	One solution to the need for high performance: architectures in which several CPUs are running in order to solve a certain application.
	Such computers have been organized in different ways. Some key features:
	number and complexity of individual CPUs
	availability of common (shared memory)
	interconnection topology
	performance of interconnection network
	I/O devices
	- - - - - - - - - - - - -

	To efficiently use parallel computers you need to write parallel programs.

	Parallel Programs
	Parallel Programs
	Parallel Programs
	Parallel Programs
	Parallel Programs
	Parallel Programs
	Parallel Programs
	Parallel Programs
	Parallel Programs
	Parallel Programs
	Flynn’s Classification of Computer Architectures
	Flynn’s Classification of Computer Architectures
	Flynn’s Classification of Computer Architectures
	Flynn’s Classification of Computer Architectures
	Flynn’s Classification of Computer Architectures
	Flynn’s Classification of Computer Architectures
	Performance of Parallel Architectures
	How fast runs a parallel computer at its maximal potential?
	How fast execution can we expect from a parallel computer for a concrete application?
	How do we measure the performance of a parallel computer and the performance improvement we get by using such a computer?

	Performance Metrics
	Peak rate: the maximal computation rate that can be theoretically achieved when all modules are fully utilized. The peak rate is of no practical significance for the user. It is mostly used by vendor companies for marketing of their computers.

	Performance Metrics
	Efficiency: this metric relates the speedup to the number of processors used; by this it provides a measure of the efficiency with which the processors are used.

	Amdahl’s Law
	Consider f to be the ratio of computations that, according to the algorithm, have to be executed sequentially (0 £ f £ 1); p is the number of processors;

	Amdahl’s Law
	Consider f to be the ratio of computations that, according to the algorithm, have to be executed sequentially (0 £ f £ 1); p is the number of processors;

	Amdahl’s Law
	Other Aspects which Limit the Speedup
	Beside the intrinsic sequentiality of some parts of an algorithm there are also other factors that limit the achievable speedup:
	communication cost
	load balancing of processors
	costs of creating and scheduling processes
	I/O operations

	There are many algorithms with a high degree of parallelism; for such algorithms the value of f is very small and can be ignored...

	The Interconnection Network
	The interconnection network (IN) is a key component of the architecture. It has a decisive influence on the overall performance and cost.
	The traffic in the IN consists of data transfer and transfer of commands and requests.
	The key parameters of the IN are
	total bandwidth: transferred bits/second
	cost

	The Interconnection Network
	Single bus networks are simple and cheap.
	One single communication allowed at a time; bandwidth shared by all nodes.
	Performance is relatively poor.
	In order to keep performance, the number of nodes is limited (16 - 20).

	The Interconnection Network
	Each node is connected to every other one.
	Communications can be performed in parallel between any pair of nodes.
	Both performance and cost are high.
	Cost increases rapidly with number of nodes.

	The Interconnection Network
	The crossbar is a dynamic network: the interconnection topology can be modified by positioning of switches.
	The crossbar network is completely connected: any node can be directly connected to any other.
	Fewer interconnections are needed than for the static completely connected network; however, a large number of switches is needed.
	Several communications can be performed in parallel.

	The Interconnection Network
	Mesh networks are cheaper than completely connected ones and provide relatively good performance.
	In order to transmit an information between certain nodes, routing through intermediate nodes is needed (max. 2*(n-1) intermediates for an n*n mesh).
	It is possible to provide wraparound connections: between nodes 1 and 13, 2 and 14, etc.
	Three dimensional meshes have been also implemented.

	The Interconnection Network
	2n nodes are arranged in an n-dimensional cube. Each node is connected to n neighbours.
	In order to transmit an information between certain nodes, routing through intermediate nodes is needed (maximum n intermediates).

	SIMD Computers
	SIMD computers are usually called array processors.
	PU’s are very simple: an ALU which executes the instruction broadcast by the CU, a few registers, and some local memory.
	The first SIMD computer: ILLIAC IV (1970s), 64 relatively powerful processors (mesh connection, see above).
	Newer SIMD computer: CM-2 (Connection Machine, by Thinking Machines Corporation, 65 536 very simple processors (connected as hypercube).
	Array processors are specialized for numerical problems formulated as matrix or vector calculations. Each PU computes one element of the result.

	MIMD computers
	Communication between processors is through shared memory. One processor can change the value in a location and the other processors can read the new value.
	With many processors, memory contention seriously degrades performance ﬁ such architectures don’t support a high number of processors.

	MIMD computers
	Communication between processors is through shared memory. One processor can change the value in a location and the other processors can read the new value.
	With many processors, memory contention seriously degrades performance ﬁ such architectures don’t support a high number of processors.

	MIMD computers
	Communication between processors is only by passing messages over the interconnection network.
	There is no competition of the processors for the shared memory ﬁ the number of processors is not limited by memory contention.
	The speed of the interconnection network is an important parameter for the overall performance.
	Modern large parallel computers do not have a system-wide shared memory.

	Muticore Architectures The Parallel Computer in Your Pocket
	Multicore chips:
	This is the only way to increase chip performance without excessive increase in power consumption:
	Instead of increasing processor frequency, use several processors and run each at lower frequency.
	Intel x86 Multicore architectures
	- Intel Core Duo
	- Intel Core i7

	ARM11 MPCore

	Intel Core Duo
	Intel Core i7
	ARM11 MPCore
	Multithreading
	A running program:
	one or several processes; each process:
	- one or several threads

	thread: a piece of sequential code executed in parallel with other threads.

	Multithreading
	Several threads can be active simultaneously on the same processor.
	Typically, the Operating System is scheduling threads on the processor.
	The OS is switching between threads so that one thread is active (running) on a processor at a time.

	Switching between threads implies saving/restoring the Program Counter, Registers, Status flags, etc.

	Hardware Multithreading
	Multithreaded processors provide hardware support for executing multithreaded code:
	separate program counter & register set for individual threads;
	instruction fetching on thread basis;
	hardware supported context switching.

	Hardware Multithreading
	Multithreaded processors provide hardware support for executing multithreaded code:
	separate program counter & register set for individual threads;
	instruction fetching on thread basis;
	hardware supported context switching.

	By handling several threads:
	There is greater chance to find instructions to execute in parallel on the available resources.
	When one thread is blocked, due to e.g. memory access or data dependencies, instructions from another thread can be executed.

	Multithreading can be implemented on both scalar and superscalar processors.

	Approaches to Multithreaded Execution
	Interleaved multithreading:

	Approaches to Multithreaded Execution
	Interleaved multithreading:
	Blocked multithreading:

	Approaches to Multithreaded Execution
	Interleaved multithreading:
	Blocked multithreading:

	Approaches to Multithreaded Execution
	Interleaved multithreading:
	Blocked multithreading:
	Simultaneous multithreading (SMT):

	Approaches to Multithreaded
	Approaches to Multithreaded
	Approaches to Multithreaded
	Approaches to Multithreaded
	Approaches to Multithreaded
	Approaches to Multithreaded
	Approaches to Multithreaded
	Multithreaded Processors
	Multithreaded Processors
	Yes:
	they execute parallel threads;
	certain sections of the processor are available in several copies (e.g. program counter, instruction registers + other registers);
	the processor appears to the operating system as several processors.

	Multithreaded Processors
	Yes:
	they execute parallel threads;
	certain sections of the processor are available in several copies (e.g. program counter, instruction registers + other registers);
	the processor appears to the operating system as several processors.

	No:
	only certain sections of the processor are available in several copies but we do not have several processors; the execution resources (e.g. functional units) are common.

	Multithreaded Processors
	IBM Power5, Power6:
	simultaneous multithreading;
	two threads/core;
	both power5 and power6 are dual core chips.

	Intel Montecito (Itanium 2 family):
	blocked multithreading (called by Intel temporal multithreading);
	two threads/core;
	Itanium 2 processors are dual core.

	Intel Pentium 4, Nehalem
	Pentium 4 was the first Intel processor to implement multithreading;
	simultaneous multithreading (called by Intel Hyperthreading);
	two threads/core (8 simultaneous threads per quad core);

	General Purpose GPUs
	The first GPUs (graphic processing units) were non-programmable 3D-graphic accelerators.
	Today’s GPUs are highly programmable and efficient.
	NVIDIA, AMD, etc. have introduced high performance GPUs that can be used for general purpose high performance computing: general purpose graphic processing units (GPGPUs).
	GPGPUs are multicore, multithreaded processors which also include SIMD capabilities.

	The NVIDIA Tesla GPGPU
	The NVIDIA Tesla GPGPU
	The NVIDIA Tesla GPGPU
	The NVIDIA Tesla GPGPU
	The NVIDIA Tesla GPGPU
	GPGPUS are optimised for throughput:
	each thread may take longer time to execute but there are hundreds of threads active;
	large amount of activity in parallel and large amount of data produced at the same time.

	Common CPU based parallel computers are primarily optimised for latency:
	each thread runs as fast as possible, but only a limited amount of threads are active.

	Throughput oriented applications for GPGPUs:
	extensive data parallelism: thousands of computations on independent data elements;
	limited process-level parallelism: large groups of threads run the same program; not so many different groups that run different programs.
	latency tolerant; the primary goal is the amount of work completed.

	Vector Processors
	Vector processors include in their instruction set, beside scalar instructions, also instructions operating on vectors.
	Array processors (SIMD) computers can operate on vectors by executing simultaneously the same instruction on pairs of vector elements; each instruction is executed by a separate processing element.
	Several computer architectures have implemented vector operations using the parallelism provided by pipelined functional units. Such architectures are called vector processors.

	Vector Processors
	Strictly speaking, vector processors are not parallel processors, although they behave like SIMD computers. There are not severa...
	Vector computers usually have vector registers which can store each 64 up to 128 words.
	Vector instructions:
	load vector from memory into vector register
	store vector into memory
	arithmetic and logic operations between vectors
	operations between vectors and scalars
	etc.

	The programmers is allowed to use operations on vectors; the compiler translates these instructions into vector instructions at machine level.

	Vector Processors
	Vector Unit
	Vector Instructions
	Vector Instructions
	Vector Instructions
	Multimedia Extensions to General Purpose Microprocessors
	Video and audio applications very often deal with large arrays of small data types (8 or 16 bits).
	Such applications exhibit a large potential of SIMD (vector) parallelism. General purpose microprocessors have been equipped with special instructions to exploit this potential of parallelism.
	The specialised multimedia instructions perform vector computations on bytes, half-words, or words.

	Multimedia Extensions to General Purpose Microprocessors
	MMX for Intel x86 family
	VIS for UltraSparc
	MDMX for MIPS
	MAX-2 for Hewlett-Packard PA-RISC
	NEON for ARM Cortex-A8, ARM Cortex-A9

	Multimedia Extensions to General Purpose Microprocessors
	Use the entire width of the data path (32 or 64 bits) when processing small data types used in signal processing (8, 12, or 16 bits).

	Multimedia Extensions to General Purpose Microprocessors
	Multimedia Extensions to General Purpose Microprocessors
	Multimedia Extensions to General Purpose Microprocessors
	Multimedia Extensions to General Purpose Microprocessors
	Packing and Unpacking:
	Flynn’s classification is based on the nature of the instruction flow executed by the computer and that of the data flow on which the instructions operate.
	Classical parallel mainframe computers (1970-1980-1990):
	IBM 370/390 Series
	CRAY X-MP, CRAY Y-MP, CRAY 3

	Modern multicore chips:
	Intel Core Duo, i5, i7; Arm MPC

	Each SM consists of:
	8 streaming processors (SPs);
	multithreaded instruction fetch and issue unit (MT issue);
	cache and shared memory;
	two Special Function Units (SFUs); each SFU also includes 4 floating point multipliers.

	Each SM is a multithreaded processor; it executes up to 768 concurrent threads.
	The SM architecture is based on a combination of SIMD and multithreading - single instruction multiple thread (SIMT):
	a warp consist of 32 parallel threads;
	each SM manages a group of 24 warps at a time (768 threads, in total);

	The NVIDIA Tesla (GeForce 8800) architecture:
	8 independent processing units (texture processor clusters - TPCs);
	each TPC consists of 2 streaming multiprocessors (SMs);
	each SM consists of 8 streaming processors (SPs).

	Each TPC consists of:
	two SMs, controlled by the SM controller (SMC);
	a texture unit (TU): is specialised for graphic processing; the TU can serve four threads per cycle.

	At each instruction issue the SM selects a ready warp for execution.
	Individual threads belonging to the active warp are mapped for execution on the SP cores.
	The 32 threads of the same warp execute code starting from the same address.
	Once a warp has been selected for execution by the SM, all threads execute the same instruction at a time; some threads can stay idle (due to branching).
	The SP (streaming processor) is the primary processing unit of an SM. It performs:
	floating point add, multiply, multiply-add;
	integer arithmetic, comparison, conversion.
	CDC Cyber 205
	CRAY
	IBM 3090
	NEC SX
	Fujitsu VP
	HITACHI S8000

	A vector unit consists of:
	pipelined functional units
	vector registers

	Vector registers:
	n general purpose vector registers Ri, 0 £ i £ n-1, each of length s;
	vector length register VL: stores the length l (0 £ l £ s) of the currently processed vectors;
	mask register M; stores a set of l bits, interpreted as boolean values; vector instructions can be executed in masked mode: vector register elements corresponding to a false value in M, are ignored.

	Performance Metrics
	Peak rate: the maximal computation rate that can be theoretically achieved when all modules are fully utilized. The peak rate is of no practical significance for the user. It is mostly used by vendor companies for marketing of their computers.
	Speedup: measures the gain we get by using a certain parallel computer to run a given parallel program in order to solve a specific problem.

