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Grafer
Sammanfattning

• Vi börjar denna föreläsning med att sammanfatta och
påminna om grundläggande begrepp och terminologi
kring grafer.

• Detta ämne har mycket överlap med optimeringslära
och andra kurser, men i den här föreläsningen lägger vi
större vikt vid den datavetenskaplig sidan.
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Grafer
Vad är en graf?

• Grafer studeras flitigt inom matematiken, t.ex. i
kurserna TATA32 (diskret matematik) och TATA64
(grafteor).

• Grafer används i allmänhet för att modellera
relationer/associationer mellan olika objekt. Det är en
matematisk abstraktion som är oerhört användbar
inom många fält.

• I datavetenskapen ser vi grafer som en icke‐linjär
datastruktur som tillåter mer flexibilitet än andra mer
traditionella datastrukturer.
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Grafer
Formell definition

Definition: Graf

En grafG = (V,E) är ett par av två mängder: V och E, där
E består av par av element från V , d.v.s. E ⊆ V × V .
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Grafer
Formell defintion

• V motsvarar noderna i grafen. Mängden består av
godtyckliga objekt, exakt vad det är beror på
tillämpningsområde.

• E motsvarar bågarna i grafen. Dessa definieras av vilka
noder som bågen länkar ihop. Vad denna association av
noder betyder beror på tillämpningsområde.
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Grafer
Grannskap

Defintion: Grannskap

• Två noder u, v ∈ V sägs vara grannar om (u, v) ∈ E
(eller (v, u) ∈ E).

• Grannskapet av en nod u är mängden av alla noder v
sådana att u och v är grannar.
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Grafer
Vandring

Vandring

En vandring i en grafG = (V,E) är en sekvens av noder
⟨v1, v2, . . . , vn⟩ sådana att vi och vi+1 är grannar för alla
i = 1, 2, . . . , n− 1.
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Grafer
Väg

Definition: Väg

En väg i en grafG = (V,E) är en vandring där bågar ej
återupprepas.
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Grafer
Stig

Definition: Stig

En stig iG = (V,E) är en vandring där inga noder får
återupprepas.
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Grafer
Krets och cykel

Defintion: Krets och cykel

• En krets är en väg, som börjar och slutar i samma nod.
• En cykel är en stig som även inkluderar en båge från sista

noden tillbaka till första noden.
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Grafer
Vandring, väg, stig, krets och cykel

• Begreppen vandring, väg och stig är nära relaterade.
• Specifikt handlar det om olika typer av sekvenser av

grannar.
• Vägar är ofta det som studeras inom datavetenskap, för

i många fall är det relativt enkelt att översätta
algoritmer mellan att jobba med vägar och stigar.
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Grafer
Nodgrad

Defintion: Nodgrad

Nodgraden deg(v) för en nod v ∈ V i grafenG = (V,E)
definieras som

deg(v) = |{(v, u) ∈ E | u ∈ V }| ,

vilket motsvarar antalet bågar som har v som en ändpunkt.
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Riktade grafer
En riktad graf

• I föregående avsnitt diskuterades s.k. oriktade grafer,
d.v.s. grafer där bågarna är oordnade par.

• Dessa grafer används oftast för att representera
associativa eller kommutativa egenskaper mellan
objekten.

• Men i många fall behöver vi representera ensidiga
relationer. Detta görs med s.k. riktade grafer.

• I en riktad graf har bågarna en riktning (d.v.s. de är
pilar).
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Riktade grafer
Riktad graf

Definition: Riktad graf

En grafG = (V,E) är riktad om paren (u, v) ∈ E är
ordnade, d.v.s. att (u, v) ̸= (v, u) givet att u ̸= v.
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Riktade grafer
Terminologi

• I en riktad graf har bågarna två ändpunkter, en startnod
och en slutnod.

• I riktade grafer har varje nod v både inkommande och
utgående bågar, d.v.s. bågar som har v som slut–
respektive startnod.

• Varje riktad graf har en relaterad graf som kallas
grafens transponat. Detta är den graf där alla bågars
riktning vänds.
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Riktade grafer
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Riktade grafer
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Riktade grafer
Nodgrad

• I riktade grafer blir begreppet nodgrad mindre tydligt.
• Detta eftersom att vi nu har två typer av bågar,

inkommande och utgående, som har olika betydelse.
• P.g.a. detta definierar vi för varje nod v, inkommande

nodgrad som antalet bågar som har v som slutnod, och
utgående nodgrad som antalet bågar som har v som
startnod.
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Riktade grafer
Nodgrad

Definition: Nodgrad för riktade grafer

För en riktad grafG = (V,E) definierar vi för varje v ∈ V :
• deg+(v) = |{s | (v, s) ∈ E}| (utgående bågar)
• deg−(v) = |{u | (u, v) ∈ E}| (inkommande bågar)

Notera: deg(v) = deg−(v) + deg+(v)
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Riktade grafer
Viktade grafer
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Riktade grafer
Viktade grafer

• En viktad graf är (oftast) en riktad graf.
• Viktade grafer associerar en vikt eller kostnad för

vardera båge. Vad denna vikt eller kostnad
representerar beror på tillämpningsområde.

• Dessa typer av grafer är oerhört vanliga inom
optimeringslära, nätverksteori och andra praktiska
tillämpningsområden.
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Riktade grafer
Viktade grafer

Definition: Viktade grafer

En viktad graf är en grafGw = (V,E)med en tillhörande
avbildning w : E → R som motsvarar en båges vikt.
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Representation av grafer
Hur lagrar vi en graf?

• Som tidigare nämnt så används grafer ofta som en
icke‐linjär datastruktur för relationer/associationer
mellan olika objekt.

• Detta innebär att vi måste kunna lagra denna data på
något sätt samtidigt som vi bibehåller grafstrukturen.

• I detta kapitel presenteras ett antal olika sätt att lagra
en graf m.h.a. tidigare använda datastrukturer.
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Representation av grafer
Mål med representationen

• lagra noder
• lagra bågar
• lagra eventuella vikter
• insättning (noder och bågar)
• borttagning (noder och bågar)
• sökning (?)
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Representation av grafer
Idé #1

Ide #1

Lagra alla noder i en array och alla bågar som par i en annan
array.
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Representation av grafer
Linjär representation
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Representation av grafer
Analys av linjär representation

• Insättning av nod:O (|V |)
• Insättning av båge:O (|E|)
• Borttagning av nod:O (|V |)
• Borttagning av båge:O (|E|)
• Hitta om nod existerar:O (|V |)
• Hitta om båge existerar:O (|E|)
• Om allting hålls sorterat blir det istället logaritmiska

tidskomplexiteter...
• Vi kan dock göra ännu bättre!
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Representation av grafer
Observation

Givet |V | = n:

• Om oriktad graf⇒ |E| ≤ n(n− 1)

2
• Om riktad graf⇒ |E| ≤ n(n− 1)
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Representation av grafer
Observation

• E definieras som par av noder.
• Det finns n(n− 1) unika par av noder som kan bildas.
• I.o.m. att bågar definieras som par av noder så kommer

en riktad båge motsvara exakt ett av dessa unika par.
• Så antalet riktade bågar är som mest n(n− 1).
• I oriktade grafer är (u, v) = (v, u), d.v.s. att ordningen

på noderna i bågen spelar ingen roll. Då motsvarar
vardera båge exakt två möjliga par, så vi får maximalt
n(n− 1)

2
unika oriktade bågar.
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Representation av grafer
Idé #2

Idé #2

Lagra bågarna som en matris!
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Representation av grafer
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Representation av grafer
Analys av grannmatris

• Insättning av bågar:O (1)

• Borttagning av bågar:O (1)

• Hitta båge:O (1)

• Insättning av nod:O
(
|V |2

)
• Borttagning av nod:O

(
|V |2

)
• Hitta nod (om noder är sorterade):O (log |V |)
• Hitta nod (om noder är osorterade):O (|V |)
• Minnesanvändning:O

(
|V |+ |V |2

)
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Representation av grafer
VarförO

(
|V |2

)
?

• Varje gång vi lägger till en ny nod så öker storleken på
matrisen, och därför måste den omallokeras, vilket tar
O
(
|V |2

)
för den behöver kopiera hela matrisen.

• Vi kan anta att noderna är sorterade för då kan vi
binärsöka fram dem (dock måste vi hitta dess sorterade
plats vid insättning, men det spelar ingen roll för den
dominerande termen är omallokeringen av matrisen).
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Representation av grafer
Slutsatser om grannmatris

• Använder en del minne
• Väldigt snabb om bågarna ändras ofta
• Vi vill helst inte ändra noderna för det är dyrt
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Representation av grafer
Idé #3

Idé #3

För varje nod, lagra vilka noder den har en båge till
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Representation av grafer
Grannlista
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Representation av grafer
Analys av grannlista

• Antag hashtabell innehållandes dynamiska arrayer
• Insättning av noder och bågar amorteratO (1)

• Borttagning av nod ärO (|V |)
• Borttagning av båge ärO (maxv∈V {deg(v)})
• Hitta nod är amorteratO (1)

• Hitta båge ärO (|V |)
• Minnesanvändning:O (|V |+ |E|)
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Representation av grafer
Jämförelse grannmatris och grannlista

Grannmatris
• Insättning nod:O

(
|V |2

)
• Insättning båge:O (1)

• Ta bort nod:O
(
|V |2

)
• Ta bort båge:O (1)

• Hitta nod:O (log |V |)
• Hitta båge:O (1)

• Minne:O
(
|V |+ |V |2

)

Grannlista
• Insättning nod:O (1)

• Insättning båge:O (1)

• Ta bort nod:O (|V |)
• Ta bort båge:O (maxv∈V {deg(v)})
• Hitta nod:O (1) amorterat
• Hitta båge:O (|V |)
• Minne:O (|V |+ |E|)

Ingen klockren vinnare...
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Representation av grafer
Avslutande ord

• Grannmatriser och grannlistor är bra på olika saker.
• Grannmatriser är en oerhört effektiv representation i grafer med många

bågar och där noderna är relativt oförändrade.
• Grannlistor är bra i glesa grafer där det är relativt få bågar, men där noderna

är något mer dynamiska.
• Notera specifikt att |V |+ 1 ≤ |E| ≤ |V |(|V | − 1)

• Om |E| ∈ Θ
(
|V |2

)
så kommer grannlistans minnesanvändning i regel vara

värre än grannmatrisens, och borttagning av bågar i grannlistan blirO (|V |)
(ty vi har en nästan komplett graf)

• Om |E| ∈ O (|V |) så är grannlistans minnesanvändning mycket bättre än
grannmatrisen, och borttagning av bågar i grannlistan blirO (1) (ty vi har
ungefär en båge per nod, så deg(v) ≈ 1 för alla v)
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Grafsökning
Länkad representation

1 class Node
2 {
3 public:
4 int data;
5 vector<Node*> edges;
6 };
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Representation av grafer
Länkad representation

• I många fall används varken grannmatriser eller grannlistor.
• Typiskt exempel är länkade listor, trädstrukturer o.s.v. där en fullständig graf

är dyrare än det simplare alternativet.
• Det finns en hel drös med grafproblem som inte kräver en fullständig

representation av en graf, trots att problemet fundamentalt är en graf.
• Ett typiskt exempel på detta är om vi lagrar noderna i ett rutnät, eller om

strukturen inte kräver borttagning/insättning av noder eller bågar.
• I dessa fall kan det exempelvis räcka med en länkad struktur av noder, där

varje nod lagrar någon data samt alla grannoder.
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Representation av grafer
Implicita grafer

1 vector<int> get_neighbours(int node)
2 {
3 vector<int> neighbours { };
4 // beräkna alla grannar till `node`
5 return neighbours;
6 }
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Representation av grafer
Implicita grafer

• Ett annat typiskt exempel när en fullständig representation av grafer inte
kan användas är när grafen är på tok för stor..

• Vad händer t.ex. om antalet noder och bågar är så många att det inte får
plats i minnet, men vi kan för varje nod beräkna deterministiskt vad alla
grannar är?

• Detta kallas oftast för att vi har en implict graf.
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Representation av grafer
Hitta alla noder

Hur kan vi hitta alla noder för dessa representationer?



1 Repetition: Grafer
2 Repetition: Riktade grafer
3 Representation av grafer
4 Grafsökning
5 Heap
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Grafsökning
Rekursiv sökning – länkad struktur

0

1 2

3

1 vector<Node*> find_nodes(Node* node)
2 {
3 if (node == nullptr) return { };
4
5 vector<Node*> neighbours { };
6 for (Node* next : node->edges)
7 {
8 vector<Node*> nodes {
9 find_nodes(next);
10 };
11 for (Node* curr : nodes)
12 neighbours.push_back(curr);
13 }
14
15 return neighbours;
16 }

Funkar!
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Grafsökning
Rekursiv sökning – länkad struktur

• Vi gör som tidigare och hittar alla noder rekursivt!
• I det här fallet går vi igenom alla grannar och beräknar

alla noder som går att hitta från dem och lägger till dem
i vår lista över noder.

• Detta funkar utmärkt för den givna grafen!
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Grafsökning
Ett problem

0

1 2

3

1 vector<Node*> find_nodes(Node* node)
2 {
3 if (node == nullptr) return { };
4
5 vector<Node*> nodes { node };
6 for (Node* next : node->edges)
7 {
8 vector<Node*> neighbours {
9 find_nodes(next);
10 };
11 for (Node* curr : neighbours)
12 nodes.push_back(curr);
13 }
14
15 return nodes;
16 }

dubletter...
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Grafsökning
Ett problem

• Ett mindre problem uppstår om vi lägger till en båge
från nod 2 till nod 3, för då dyker nämligen nod 3 upp
två gånger i vår lista, vilket vi vill undvika.

• För att lösa detta gör vi om vår vector till ett set
(eller unordered_set om våra noder har en
hashfunktion definierad)
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Grafsökning
Lösning!

0

1 2

3

1 set<Node*> find_nodes(Node* node)
2 {
3 if (node == nullptr) return { };
4
5 set<Node*> nodes { node };
6 for (Node* next : node->edges)
7 {
8 set<Node*> neighbours {
9 find_nodes(next);
10 };
11 for (Node* curr : neighbours)
12 nodes.push_back(curr);
13 }
14
15 return nodes;
16 }

Funkar!
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Grafsökning
Ett nytt problem...

0

1 2

3

1 set<Node*> find_nodes(Node* node)
2 {
3 if (node == nullptr) return { };
4
5 set<Node*> nodes { node };
6 for (Node* next : node->edges)
7 {
8 set<Node*> neighbours {
9 find_nodes(next);
10 };
11 for (Node* curr : neighbours)
12 nodes.push_back(curr);
13 }
14
15 return nodes;
16 }

oändlig rekursion...
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7 {
8 set<Node*> neighbours {
9 find_nodes(next);
10 };
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13 }
14
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16 }
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Grafsökning
Ett nytt problem...

• När vi lägger till en båge från nod 3 tillbaka till nod 0
kraschar vårt program för att det får slut på minne...?!

• Det som händer är att vi har introducerat en cykel i vår
graf. Detta innebär att när vi söker efter grannar till nod
3 så kommer vi tillbaka till nod 0 och börjar i princip om
sökningen från början.

• Detta problemet är i regel vad som gör grafsökning till
en egen klass av problem.

• Lösning är dock förvånansvärt simpel...
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Grafsökning
Djupet‐först‐sökning (DFS)

• Lösningen är att vi kontrollerar huruvida en nod redan
har hittats innan vi söker efter dess grannar.

• Om noden redan har hittats behöver vi inte kolla den
igen så vi avbryter.

• Vi skriver om funktionen så att rekursiva steg har
tillgång till behållaren av hittade noder.
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Grafsökning
Djupet‐först‐sökning (DFS)

0

1 2

3

1 void find_nodes_help(Node* node, set<Node*>& found)
2 {
3 if (node == nullptr) return { };
4 if (found.count(node) > 0) return { };
5
6 found.insert(node);
7 for (Node* next : node->edges)
8 find_nodes_help(next, found);
9 }
10
11 set<Node*> find_nodes(Node* node)
12 {
13 set<Node*> nodes { };
14 find_nodes_help(node, nodes);
15 return nodes;
16 }

Funkar!
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Grafsökning
Djupet‐först‐sökning (DFS)

• Som tidigare diskuterat i kursen är i regel rekursiva
lösningar något dyrare än iterativa varianter.

• Så vi testar att implementera DFS iterativt istället.
• Nyckelobservationen här är att vi måste hålla koll på

vilka noder vi ska besöka härnäst genom att successivt
lägga till nya noder när de upptäcks.

• Nästa nod vi vill besöka är i regel den senaste vi hittade
(om vi vill få samma beteende som den rekursiva
implementationen) så en stack låter lämpligt!
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Grafsökning
Iterativ variant

1 set<Node*> DFS(Node* start)
2 {
3 set<Node*> found;
4 stack<Node*> stack;
5 stack.push(start);
6 while (!stack.empty())
7 {
8 Node* node { stack.top() };
9 stack.pop();

10 if (node == nullptr) continue;
11 if (found.count(node) > 0) continue;
12 found.insert(node);
13 for (Node* next : node->edges)
14 stack.push(next);
15 }
16 return found;
17 }
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Grafsökning
djupet‐först‐sökning (DFS)
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Kan vi göra i någon annan ordning?
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Grafsökning
Byt ut stacken mot en kö!

1 set<Node*> DFS(Node* start)
2 {
3 set<Node*> found;
4 queue<Node*> queue;
5 queue.push(start);
6 while (!queue.empty())
7 {
8 Node* node { queue.front() };
9 queue.pop();

10 if (node == nullptr) continue;
11 if (found.count(node) > 0) continue;
12 found.insert(node);
13 for (Node* next : neighbours)
14 queue.push(next);
15 }
16 return found;
17 }
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Grafsökning
Jämförelse DFS och BFS

• Både DFS och BFS hittar garanterat alla noder som är sammanhängande
med startnoden.

• DFS är något enklare att implementera då det (enkelt) kan göras rekursivt.
• BFS traverserar den kortaste vägen till varje nod (bevis görs i inlämningen)
• DFS hittar en väg snabbt, men vi kan inte säga något särskilt om den vägen.
• DFS kommer tidigt hitta noder som ligger långt bort, medan BFS måste

traversera lager för lager i grafen (först alla som är ett steg från startnoden,
sedan alla som är två steg bort, o.s.v.).

• Dessa egenskaper gör att BFS och DFS lämpar sig för olika ändamål: BFS
används i regel när en kortaste väg är viktig, men i andra fall tenderar DFS
att vara mer naturligt och enklare.

• Tidskomplexiteten för BFS och DFS är samma (vad den är lämnas till
inlämningen)

• På nästa slide diskuterar vi hur man använder BFS och DFS för att hitta vägar.
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Grafsökning
Hitta kortaste väg mellan två noder

1 vector<Node*> shortest_path(Node* start, int end_id)
2 {
3 unordered_map<Node*, Node*> from;
4 queue<pair<Node*, Node*>> queue;
5 queue.push({ start, nullptr });
6 while (!queue.empty())
7 {
8 auto [curr, prev] = queue.front();
9 queue.pop();
10 if (from.count(curr) > 0) continue;
11 if (curr->id == end_id)
12 return produce_path(from, curr);
13
14 parents[curr] = prev;
15 for (Node* next : curr->edges)
16 queue.push({ next, curr });
17 }
18 return { }; // ingen väg hittade
19 }
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Grafsökning
Hitta kortaste väg mellan två noder

1 vector<Node*> produce_path(unordered_map<Node*, Node*> const& from,
2 Node* end)
3 {
4 vector<Node*> path;
5 Node* curr { end };
6 while (curr != nullptr)
7 {
8 path.push_back(curr);
9 curr = from.at(curr);
10 }
11
12 reverse(path.begin(), path.end());
13 return path;
14 }
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Grafsökning
Billigaste väg

Definition: Billigaste väg

I en viktad grafGw = (V,E) ges kostnaden för en väg
P = ⟨v1, v2, . . . , vn⟩ av

c(P ) =

n−1∑
i=1

w(vi, vi+1)

En billigaste väg är en väg P sådan att c(P ) ≤ c(Q) för alla
vägarQ. Dessa vägar hittas m.h.a. Dijkstras algoritm.
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Grafsökning
Dijkstras algoritm

• Dijkstras algoritm (känd från TAOP07) är en variant av
bredden först sökning, men istället för att söka i lager,
så söker vi hela tiden längs den hittills billigaste vägen.

• För att göra detta måste vi likt tidgare hålla koll på mer
information, specifikt hur kostnaden av den hittills
billigaste vägen till varje utforskad nod.

• Detta innebär att vi varken kan använda en stack eller
en kö. Istället vill vi ha en s.k. prioritetskö där vi alltid
plockar ut den billigaste vägen.

• Hur implementerar vi egentligen det?



1 Repetition: Grafer
2 Repetition: Riktade grafer
3 Representation av grafer
4 Grafsökning
5 Heap
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Heap
Mål med prioritetskö

• Slå upp högst prioritet:O (1)

• Ta bort högst prioritet: Helst bättre änO (n)

• Insättningen: Helst bättre änO (n)

• Antag att högsta prioritet är detminsta värdet
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Heap
Idé

Idé #1

Använd ett balanserat binärt sökträd, då är alltO (log n)!
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Heap
Idé

• Ett balanserat binärt sökträd kan hitta (och ta bort) det
minsta värdet iO (log n) tid, vilket inte är fullt så bra
som vad vi siktar på.

• Men insättning görs iO (log n) vilket absout är bättre
änO (n).

• Så ett balanserat binärt sökträd duger inte för våra
ändamål, men vi kan göra vissa observationer för att
förbättra detta...
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Heap
Observation #1

Observation #1

Att hitta rotnoden i ett träd görs iO (1).
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Heap
Idé #2

Idé #2

Behåll det balanserade binära trädet men skippa
sökstrukturen. Lagra istället det minsta värdet i roten.
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Heap
Idé #2

• Om vi ser till att rotnoden alltid innehåller det minsta
värdet kan vi enkelt slå upp det iO (1).

• ... Men vi vill kunna ta bort det minsta värdet också.
• För att göra det måste vi dels byta plats på rotnoden

och en lövnod, och sedan hitta det värde som är minst
när roten är borta och flytta det till rotnoden.

• Den naiva lösningen på detta är att söka hela
strukturen, vilket tarO (n).

• Men vi vill göra bättre...
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Heap
Observation #2

Observation #2

Om vi strukturerar trädet s.a. det näst‐minsta värdet också
kan hittas i konstant tid så blir borttagningen mycket enklare.
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Heap
Idé #3

Idé #3

Se till att det näst‐minsta värdet alltid ligger som ett barn till
roten.
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Heap
Vad vi har hittills
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Vad vi har hittills
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Heap
Idé #4

Idé #4

Vad händer om vi säger att alla barn ska vara större än sina
föräldrar?



89 / 106

Heap
Mer struktur
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Heap
Mer struktur

• Idén att varje nod ska vara mindre än sina barn måste upprätthållas efter
varje operation.

• Detta gör att borttagning av rotnoden blir något mer involverat.
• Vi behöver först och främst hitta en lövnod (vilken som helst), vilket tar

O (logn) (givet att trädet är balanserat)
• Sedan byter vi plats på rotnoden och den funna lövnoden.
• Efter det vill vi att det näst‐minsta värdet nu ska ligga i roten, men den är lätt

att hitta: den är en av barnen till rotnoden.
• Vi byter plats på dessa två, och sedan upprepar vi den här processen tills

trädets struktur är återställd.
• Denna swap‐kedja besöker som mest varje nivå i trädet, såO (logn) (givet

att trädet är balanserat)
• ... men ingenstans garanterar vi att balansen upprätthålls...



91 / 106

Heap
Nästan komplett träd

Definition: Komplett– och nästan komplett träd

• Ett träd T är komplett om det har exakt 2k − 1 noder
fördelade i exakt k nivåer.

• Ett träd T är nästan komplett om alla nivår förutom sista
är fulla, och den sista nivån är fylld från vänster till höger.

• Följd: Ett nästan komplett träd är balanserat
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Heap
Idé #5

Idé #5

• Lagra vår prioritetskö i ett nästan komplett träd, d.v.s. fyll
varje nivå från vänster till höger vid insättning.

• Vid borttagning, välj alltid den lövnod som är mest till
höger på sista nivån
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Heap
Nästan komplett träd
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Heap
Nästan komplett träd
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Heap
Nästan komplett träd

• I.o.m. att trädet är nästan komplett och vi alltid tar bort
den mest högra lövnoden på sista nivån så kommer vi
efter borttagning fortsätta ha ett komplett träd.

• P.g.a. detta kan vi garantera att trädet också alltid är
balanserat.

• Detta gör att antalet nivåer alltid ärO (log n)
• Nackdelen dock är ju att vi inte har ett smidigt sätt att

hitta den mest högra noden i sista noden.
• Men detta går att lösa genom att fundera på hur ett

nästan komplett träd kan lagras...
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Lagra ett nästan komplett träd i en dynamisk array

0

1 2

3 4 5 6

7 8 9 10 11 12

0 1 2 3 4 5 6 7 8 9 10 11 12



95 / 106

Heap
Lagra ett nästan komplett träd i en dynamisk array

0

1 2

3 4 5 6

7 8 9 10 11 12

0 1 2 3 4 5 6 7 8 9 10 11 12



95 / 106

Heap
Lagra ett nästan komplett träd i en dynamisk array

0

1 2

3 4 5 6

7 8 9 10 11 12

0 1 2 3 4 5 6 7 8 9 10 11 12



95 / 106

Heap
Lagra ett nästan komplett träd i en dynamisk array

0

1 2

3 4 5 6

7 8 9 10 11 12

0 1 2 3 4 5 6 7 8 9 10 11 12



95 / 106

Heap
Lagra ett nästan komplett träd i en dynamisk array

0

1 2

3 4 5 6

7 8 9 10 11 12

0 1 2 3 4 5 6 7 8 9 10 11 12



96 / 106

Heap
Lagra ett nästan komplett träd i en dynamisk array

• Det stora problemet med att lagra generella träd i en
array är att det kan finnas stora luckor i trädet, d.v.s. att
lövnoder kan i princip förekomma vart som helst.

• Men i ett nästan komplett träd vet vi att varje nivå är
fylld, förutom potentiellt sista.

• Men den sista nivån fylls från vänster till höger.
• Så vad det innebär är att vi i princip kan spara varje

lager i trädet i en array.
• Specifikt kan vi sedan lagra varje lager i sekvens i en

dynamisk array som representerar hela grafen.
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Heap
Lagra ett nästan komplett träd i en dynamisk array

Avbildning från träd till array

Vi avbildar ett nästan komplett träd till en array såhär:
• Rotnoden lagras på index 0
• Nod på index i lagrar sitt vänstra barn på index 2i+ 1

• Nod på index i lagrar sitt högra barn på index 2i+ 2

• Nod på index i har nod på index
⌊
i− 1

2

⌋
som förälder
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Heap
Slutsats

• Med denna avbildning kan göra följande observationer:
• Insättning av ny lövnod längst till höger är ekvivalent

med att stoppa in sist i en array⇒ O (1) amorterat
• Borttagning av den sista lövnoden är ekvivalent med att

ta bort sista elementet i en array⇒ O (1) amorterat
• Med detta kan vi till sist färdigställa vår prioritetskö
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Heap
Heaps

Definition: Heap

• Enmin‐heap är ett binärt trädH där:
(i) H är ett nästan komplett träd
(ii) Varje nod iH ärmindre än båda sina barn

• Enmax‐heap är ett binärt trädH där:
(i) H är ett nästan komplett träd
(ii) Varje nod iH är större än båda sina barn
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Heap
Heaps, egenskaper

• Hitta minsta/största:O (1)

• Insättning:O (log n)

• Borttagning:O (log n)
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Heap
Implementation

1 class Min_Heap
2 {
3 public:
4
5 Min_Heap() = default;
6
7 void push(int value);
8
9 int pop_min();
10 int peek_min() const;
11
12 private:
13
14 void sift_down(unsigned index);
15 void sift_up(unsigned index);
16
17 vector<int> values;
18 };
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Heap
Implementation: Hjälpfunktioner

1 unsigned left(unsigned index)
2 {
3 return 2*index + 1;
4 }
5
6 unsigned right(unsigned index)
7 {
8 return 2*index + 2;
9 }
10
11 unsigned parent(unsigned index)
12 {
13 return (index - 1) / 2;
14 }
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Heap
Implementation: sift‐down

1 void Min_Heap::sift_down(unsigned index)
2 {
3 if (index >= values.size()) return;
4 unsigned l { left (index) }; // hitta vänsterbarn
5 unsigned r { right(index) }; // hitta högerbarn
6
7 // om vänster inte finns så finns inga barn
8 if (l >= values.size()) return;
9
10 unsigned next { l }; // hitta det minsta barnet
11 if (r < values.size() && values[r] < values[l])
12 next = r;
13
14 // om vi redan är mindre än vårt minsta barn är vi klara
15 if (values[index] < values[next]) return;
16
17 // annars byter vi plats med minsta barnet och rekurserar
18 swap(values[index], values[next]);
19 sift_down(next);
20 }
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Heap
Implementation: sift‐up

1 void Min_Heap::sift_up(unsigned index)
2 {
3 if (index == 0 || index >= values.size()) return;
4
5 // hitta föräldern
6 unsigned p { parent(index) };
7
8 // om heap egenskapen redan är uppfylld är vi klara
9 if (values[p] < values[index]) return;
10
11 // annars byter vi värdena och rekurserar
12 swap(values[p], values[index]);
13 sift_up(p);
14 }
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Heap
Implementation: Insättning, borttagning och hitta

1 void Min_Heap::push(int value)
2 {
3 values.push_back(value); // lägg till som sista lövnod
4 sift_up(values.size() - 1); // flytta uppåt tills det är en heap igen
5 }
6
7 int Min_Heap::pop_min()
8 {
9 int min { values.front() }; // spara det minsta värdet
10 swap(values.front(), values.back()); // byt plats med sista lövnod
11 values.pop_back(); // ta bort sista lövnoden
12 sift_down(0); // flytta nedåt tills det är en heap igen
13
14 }
15
16 int Min_Heap::peek_min()
17 {
18 return values.front();
19 }
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Heap
Avslut

• Kan man göra bättre?
• Ja, det finns t.ex. något som heter en Fibonacci heap där insättning blir

O (1) amorterat.
• En Fibonacci heap utökar även funktionaliteten av prioritetskön till att

kunna uppdatera prioriteten av redan befintliga nycklar, vilket den kan göra i
O (1) amorterat.

• En Fibonacci heap är dock mer komplicerad att implementera och analysera.
• Fibonacci heaps bygger på den något simplare Binomial heap
• https://www.cs.usfca.edu/~galles/visualization/

FibonacciHeap.html

https://www.cs.usfca.edu/~galles/visualization/FibonacciHeap.html
https://www.cs.usfca.edu/~galles/visualization/FibonacciHeap.html
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