TDDE73 - Programmering,
datastrukturer och
algoritmer

Grafer
Christoffer Holm

Institutionen for datavetenskap

II LINKOPING
o UNIVERSITY

Repetition: Grafer
Repetition: Riktade grafer
Representation av grafer
Grafsdkning

Heap

Repetition: Riktade grafer
Representation av grafer
Grafsokning

Heap

ua b wON R

LINKOPING
I I." UNIVERSITY

Grafer

Sammanfattning

® Vi borjar denna féreldasning med att sammanfatta och
paminna om grundlaggande begrepp och terminologi
kring grafer.

® Detta amne har mycket 6verlap med optimeringslara
och andra kurser, men i den har foreldsningen lagger vi
storre vikt vid den datavetenskaplig sidan.

3/106

LINKOPING
II.“ UNIVERSITY

4/106

Grafer

Vad ar en graf?

LINKOPING
II.“ UNIVERSITY

4/106

Grafer

Vad ar en graf?

LINKOPING
II.“ UNIVERSITY

4/106

Grafer

Vad ar en graf?

LINKOPING
II.“ UNIVERSITY

Grafer

Vad ar en graf?

® Grafer studeras flitigt inom matematiken, t.ex. i
kurserna TATA32 (diskret matematik) och TATA64
(grafteor).

® Grafer anvands i allmanhet for att modellera
relationer/associationer mellan olika objekt. Det &r en
matematisk abstraktion som ar oerhort anvandbar
inom manga falt.

® | datavetenskapen ser vi grafer som en icke-linjar

datastruktur som tillater mer flexibilitet 4n andra mer
traditionella datastrukturer.

5/106

LINKOPING
II.“ UNIVERSITY

6/106

Grafer

Formell definition

Definition: Graf
En graf G = (V, E) ar ett par av tva médngder: V och E, dar
FE bestar av par av elementfran V,dwvs. ECV x V.

LINKOPING
II.“ UNIVERSITY

Grafer

Formell defintion

® 1V motsvarar noderna i grafen. Mangden bestar av
godtyckliga objekt, exakt vad det ar beror pa
tilldmpningsomrade.

® [motsvarar bagarna i grafen. Dessa definieras av vilka
noder som bagen lankar ihop. Vad denna association av
noder betyder beror pa tillampningsomrade.

7/106

LINKOPING
II.“ UNIVERSITY

8/106

Grafer

Grannskap

LINKOPING
II.“ UNIVERSITY

8/106

Grafer

Grannskap

LINKOPING
II.“ UNIVERSITY

8/106

Grafer

Grannskap

LINKOPING
II.“ UNIVERSITY

8/106

Grafer

Grannskap

LINKOPING
II.“ UNIVERSITY

8/106

Grafer

Grannskap

LINKOPING
II.“ UNIVERSITY

8/106

Grafer

Grannskap

LINKOPING
II.“ UNIVERSITY

8/106

Grafer

Grannskap

Grannskapet till A

LINKOPING
II." UNIVERSITY

Grafer

Grannskap

Defintion: Grannskap

® Tva noder u,v € V sags vara grannar om (u,v) € E
(eller (v,u) € E).

® Grannskapet av en nod u dar mangden av alla noder v
sadana att w och v ar grannar.

9/106

LINKOPING
II." UNIVERSITY

10/106

Grafer

Vandring

LINKOPING
II.“ UNIVERSITY

10/106

Grafer

Vandring

(A, B)

LINKOPING
II.“ UNIVERSITY

10/106

Grafer

Vandring

(A, B, D)

LINKOPING
II.“ UNIVERSITY

10/106

Grafer

Vandring

(A,B,D, F)

LINKOPING
II.“ UNIVERSITY

10/106

Grafer

Vandring

(A, B, D, F,G)

LINKOPING
II.“ UNIVERSITY

10/106

Grafer

Vandring

(A,B,D,F,G, F)

LINKOPING
II.“ UNIVERSITY

10/106

Grafer

Vandring

(A,B,D,F,G, F,E)

II LINKOPING
@ UNIVERSITY

11/106

Grafer

Vandring

Vandring

En vandring i en graf G = (V, E)) &r en sekvens av noder

(v1,v2,...,vy,) sadana att v; och v, &r grannar for alla
i=1,2,....n—1.

II LINKOPING
@ UNIVERSITY

12/106

Grafer

Vag

LINKOPING
II.“ UNIVERSITY

12/106

Grafer

Vag

(A, B)

LINKOPING
II.“ UNIVERSITY

12/106

Grafer

Vag

(A, B, D)

LINKOPING
II.“ UNIVERSITY

12/106

Grafer

Vag

(A,B,D, F)

LINKOPING
II.“ UNIVERSITY

12/106

Grafer

Vag

(A, B, D, F,G)

LINKOPING
II.“ UNIVERSITY

12/106

Grafer

Vag

(A, B, D, F,G, D)

LINKOPING
II.“ UNIVERSITY

12/106

Grafer

Vag

(A,B,D,F,G,D,C)

LINKOPING
II." UNIVERSITY

13/106

Grafer

Vag

Definition: Vag
En vdg i en graf G = (V, E) &@r en vandring dér bagar ej
aterupprepas.

LINKOPING
II." UNIVERSITY

14/106

Grafer

Stig

LINKOPING
II.“ UNIVERSITY

14/106

Grafer

Stig

(A, E)

LINKOPING
II.“ UNIVERSITY

14/106

Grafer

Stig

(A, E,G)

LINKOPING
II.“ UNIVERSITY

14/106

Grafer

Stig

(A, E,G,F)

LINKOPING
II.“ UNIVERSITY

14/106

Grafer

Stig

(A, E,G, F,D)

LINKOPING
II.“ UNIVERSITY

14/106

Grafer

Stig

(A, E,G,F,D,C)

LINKOPING
II.“ UNIVERSITY

15/106

Grafer

Stig

Definition: Stig

Enstigi G = (V, E) ar en vandring dar inga noder far
aterupprepas.

LINKOPING
II." UNIVERSITY

16/106

Grafer

Krets och cykel

LINKOPING
II.“ UNIVERSITY

16/106

Grafer

Krets och cykel

(E,F,D,G,F,C, A E)

II LINKOPING
() UNIVERSITY

16/106

Grafer

Krets och cykel

(E,G,F,D,B, A, E)

II LINKOPING
() UNIVERSITY

17/106

Grafer

Krets och cykel

Defintion: Krets och cykel

® En krets ar en vdg, som borjar och slutar i samma nod.

® En cykel ar en stig som aven inkluderar en bage fran sista
noden tillbaka till forsta noden.

LINKOPING
II." UNIVERSITY

Grafer

Vandring, vag, stig, krets och cykel

® Begreppen vandring, vag och stig ar nara relaterade.

® Specifikt handlar det om olika typer av sekvenser av
grannar.

® \/dgar dr ofta det som studeras inom datavetenskap, for

i manga fall &r det relativt enkelt att 6versatta
algoritmer mellan att jobba med vagar och stigar.

18/106

LINKOPING
II.“ UNIVERSITY

19/106

Grafer

Nodgrad

deg(A) =3

II LINKOPING
@ UNIVERSITY

20/106

Grafer

Nodgrad

Defintion: Nodgrad

Nodgraden deg(v) forennod v € Vigrafen G = (V, E)
definieras som

deg(v) = {(v,u) € E|u eV},

vilket motsvarar antalet bagar som har v som en dndpunkt.

LINKOPING
II." UNIVERSITY

Repetition: Grafer

Representation av grafer
Grafsokning
Heap

ua b wON R

LINKOPING
I I.“ UNIVERSITY

22/106

Riktade grafer

En riktad graf

LINKOPING
II.“ UNIVERSITY

23/106

Riktade grafer

En riktad graf

® | foregaende avsnitt diskuterades s.k. oriktade grafer,
d.v.s. grafer dar bagarna ar oordnade par.

® Dessa grafer anvands oftast for att representera
associativa eller kommutativa egenskaper mellan
objekten.

® Men i manga fall behdver vi representera ensidiga
relationer. Detta gors med s.k. riktade grafer.

® | en riktad graf har bagarna en riktning (d.v.s. de ar
pilar).

LINKOPING
II.“ UNIVERSITY

24/106

Riktade grafer

Riktad graf

Definition: Riktad graf

En graf G = (V, E) ar riktad om paren (u,v) € E ar
ordnade, d.v.s. att (u,v) # (v, u) givet att u # v.

LINKOPING
II.“ UNIVERSITY

25/106

Riktade grafer

Terminologi

® | en riktad graf har bagarna tva andpunkter, en startnod
och en slutnod.

® | riktade grafer har varje nod v bade inkommande och
utgdende bagar, d.v.s. bagar som har v som slut—
respektive startnod.

® Varje riktad graf har en relaterad graf som kallas
grafens transponat. Detta ar den graf dar alla bagars
riktning vands.

LINKOPING
II.“ UNIVERSITY

26/106

Riktade grafer

Nodgrad

deg(A) =3

II LINKOPING
@ UNIVERSITY

Riktade grafer

Nodgrad

degt(4) =2
degt(BE) =1

degt(B)/~ 1

26/106

II LINKOPING
@ UNIVERSITY

26/106

Riktade grafer

Nodgrad

deg” (A) =1

deg™ (E) =2

II LINKOPING
@ UNIVERSITY

Riktade grafer

Nodgrad

® | riktade grafer blir begreppet nodgrad mindre tydligt.

® Detta eftersom att vi nu har tva typer av bagar,
inkommande och utgaende, som har olika betydelse.

® P.g.a. detta definierar vi for varje nod v, inkommande
nodgrad som antalet bagar som har v som slutnod, och
utgadende nodgrad som antalet bagar som har v som
startnod.

27/106

LINKOPING
II.“ UNIVERSITY

28/106

Riktade grafer

Nodgrad

Definition: Nodgrad for riktade grafer

For en riktad graf G = (V, E) definierar vi for varje v € V:
® deg®(v) = |{s | (v,s) € E}| (utgdende bagar)
¢ deg” (v) = {u| (u,v) € E}| (inkommande bagar)
Notera: deg(v) = deg™ (v) + deg™ (v)

LINKOPING
II." UNIVERSITY

29/106

Riktade grafer

Viktade grafer

40—
s
()
8.5
e / 3.1 13
; \
13.
\710 7o 0.0+
: —4.1
" 3.0

LINKOPING
II.“ UNIVERSITY

Riktade grafer

Viktade grafer

® En viktad graf ar (oftast) en riktad graf.

o Viktade grafer associerar en vikt eller kostnad for
vardera bage. Vad denna vikt eller kostnad
representerar beror pa tillampningsomrade.

® Dessa typer av grafer ar oerhort vanliga inom
optimeringslara, natverksteori och andra praktiska
tillampningsomraden.

30/106

LINKOPING
II.“ UNIVERSITY

31/106

Riktade grafer

Viktade grafer

Definition: Viktade grafer

En viktad graf &r en graf G, = (V, E') med en tillhérande
avbildning w : E — R som motsvarar en bages vikt.

LINKOPING
II.“ UNIVERSITY

Repetition: Grafer
Repetition: Riktade grafer

Grafsokning
Heap

ua b wON R

LINKOPING
I I.“ UNIVERSITY

Representation av grafer

Hur lagrar vi en graf?

® Som tidigare namnt sa anvands grafer ofta som en
icke-linjar datastruktur for relationer/associationer
mellan olika objekt.

® Detta innebar att vi maste kunna lagra denna data pa
nagot satt samtidigt som vi bibehaller grafstrukturen.

® | detta kapitel presenteras ett antal olika satt att lagra
en graf m.h.a. tidigare anvanda datastrukturer.

33/106

LINKOPING
II.“ UNIVERSITY

34/106

Representation av grafer

Mal med representationen

® |agra noder

® |agra bagar

® |agra eventuella vikter

® insattning (noder och bagar)
® borttagning (noder och bagar)

® sokning (?)

LINKOPING
II.“ UNIVERSITY

35/106

Representation av grafer

Idé #1

Ide #1

Lagra alla noder i en array och alla bagar som par i en annan
array.

LINKOPING
II.“ UNIVERSITY

36/106

Representation av grafer

noder: | A|B|C|D|E|F|G]

Linjar representation

bégar:’A,B|A,C|A,E|B,D|C,D|C,F|D,F|D,G|E,F|E,G|F,G‘

II LINKOPING
@ UNIVERSITY

Representation av grafer

Analys av linjar representation

Insattning av nod: O (|V)
Insattning av bage: O (|E|)
Borttagning av nod: O (|V])
Borttagning av bage: O (| E)
Hitta om nod existerar: O (|V])
Hitta om bage existerar: O (|E|)

Om allting halls sorterat blir det istallet logaritmiska
tidskomplexiteter...

Vi kan dock gora dnnu battre!

37/106

LINKOPING
UNIVERSITY

38/106

Representation av grafer

Observation

Givet |V| =n:

-1
® Om oriktad graf = |E| < 71(712)

® Om riktad graf = |E| < n(n — 1)

LINKOPING
II.“ UNIVERSITY

Representation av grafer

Observation

FE definieras som par av noder.

Det finns n(n — 1) unika par av noder som kan bildas.
l.o.m. att bagar definieras som par av noder sa kommer
en riktad bage motsvara exakt ett av dessa unika par.
Sa antalet riktade bagar &r som mest n(n — 1).

| oriktade grafer &r (u,v) = (v, u), d.v.s. att ordningen
pa noderna i bagen spelar ingen roll. Da motsvarar
vardera bage exakt tva mojliga par, sa vi far maximalt

-1
M unika oriktade bagar.

39/106

LINKOPING
UNIVERSITY

40/106

Representation av grafer

Idé #2

ldé #2

Lagra bagarna som en matris!

LINKOPING
II." UNIVERSITY

Representation av grafer

Grannmatris

41/106

0 1 2 3 4 5 6
noder: | A|B|C|D|E|F|C|

II LINKOPING
@ UNIVERSITY

Representation av grafer

Grannmatris

0

1

2

3

4

5

41/106

6

noder: [A|B|C|D|E|F|G]

0

2

3

4

5

6

1

II LINKOPING
@ UNIVERSITY

Representation av grafer

Grannmatris

41/106

0 1 2 3 4 5 6
noder: [A|B|C|D|E|F|G]

0 11

II LINKOPING
@ UNIVERSITY

Representation av grafer

Grannmatris

0

1

2

3

4

5

41/106

6

noder: [A|B|C|D|E|F|G]

0

1

2

3

5

6

1

1

II LINKOPING
@ UNIVERSITY

Representation av grafer

Grannmatris

0

1

2

3

4

5

41/106

6

noder: [A|B|C|D|E|F|G]

0

1

2

3

5

6

1

1

II LINKOPING
@ UNIVERSITY

Representation av grafer

Grannmatris

0

1

2

3

4

5

41/106

6

noder: [A|B|C|D|E|F|G]

0

1

2

3

5

6

1

1

II LINKOPING
() UNIVERSITY

Representation av grafer

Grannmatris

41/106

0 1 2 3 4 5 6
noder: [A|B|C|D|E|F|G]

II LINKOPING
() UNIVERSITY

41/106

Representation av grafer

Grannmatris

0 1 2 3 4 5 6
noder: [A|B|C|D|E|F|G]

II LINKOPING
() UNIVERSITY

41/106

Representation av grafer

Grannmatris

0 1 2 3 4 5 6
noder: [A|B|C|D|E|F|G]

II LINKOPING
() UNIVERSITY

41/106

Representation av grafer

Grannmatris

0 1 2 3 4 5 6
noder: [A|B|C|D|E|F|G]

II LINKOPING
() UNIVERSITY

41/106

Representation av grafer

Grannmatris

0 1 2 3 4 5 6
noder: [A|B|C|D|E|F|G]

II LINKOPING
() UNIVERSITY

41/106

Representation av grafer

Grannmatris

0 1 2 3 4 5 6
noder: [A|B|C|D|E|F|G]

II LINKOPING
() UNIVERSITY

41/106

Representation av grafer
Grannmatris

0 1 2 3 4 5 6
noder: [A|B|C|D|E|F|G]

0

1
1

ok~

=

O|O|O|Fr|»

==

[N N - ==

II LINKOPING
@ UNIVERSITY

41/106

Representation av grafer

Grannmatris

0 1 2 3 4 5 6
noder: [A|B|C|D|E|F|G]

II LINKOPING
@ UNIVERSITY

Representation av grafer

Analys av grannmatris

Insattning av bagar: O (1)

Borttagning av bagar: O (1)

Hitta bage: O (1)

Inséttning av nod: O (|V]?)

Borttagning av nod: O (|V[?)

Hitta nod (om noder &r sorterade): O (log |V|)
Hitta nod (om noder ar osorterade): O (|V])
Minnesanvindning: O (|V| + |V |?)

42/106

LINKOPING
UNIVERSITY

Representation av grafer

Varfor O (|V[?)?

43/106

LINKOPING
II.“ UNIVERSITY

Representation av grafer

Varfor O (|V[?)?

43/106

LINKOPING
II.“ UNIVERSITY

Representation av grafer

Varfor O (|V[?)?

43/106

LINKOPING
II.“ UNIVERSITY

Representation av grafer

Varfor O (|V[?)?

43/106

LINKOPING
II.“ UNIVERSITY

Representation av grafer

Varfor O (|V[?)?

43/106

LINKOPING
II.“ UNIVERSITY

Representation av grafer

Varfor O (|V[?)?

43/106

LINKOPING
UNIVERSITY

43/106

Representation av grafer

Varfor O (|V[?)?

II LINKOPING
@ UNIVERSITY

43/106

Representation av grafer

Varfor O (|V[?)?

noder: EE

o
=~

(RN TSNEe

O|O|O|w

LINKOPING
II.“ UNIVERSITY

43/106

Representation av grafer

Varfor O (|V[?)?

noder: EE

o
=~

(RN TSNEe

O|O|O|w

LINKOPING
II.“ UNIVERSITY

43/106

Representation av grafer

Varfor O (|V[?)?

noder: EE

o
=~

(RN TSNEe

—|lo|lo|e

LINKOPING
II.“ UNIVERSITY

43/106

Representation av grafer

Varfor O (|V[?)?

noder: EE

o
=~

(RN TSNEe

R|lo|lo|e

LINKOPING
II.“ UNIVERSITY

Representation av grafer

Varfor O (|V[?)?

® Varje gang vi lagger till en ny nod sa oker storleken pa
matrisen, och darfor maste den omallokeras, vilket tar
O (|V[?) for den behéver kopiera hela matrisen.

® Vikan anta att noderna ar sorterade for da kan vi
binarsoka fram dem (dock maste vi hitta dess sorterade
plats vid insattning, men det spelar ingen roll for den
dominerande termen dr omallokeringen av matrisen).

44/106

LINKOPING
II.“ UNIVERSITY

Representation av grafer

Slutsatser om grannmatris

® Anvander en del minne
® Vildigt snabb om bagarna andras ofta

® Vivill helst inte andra noderna for det ar dyrt

45/106

LINKOPING
II.“ UNIVERSITY

46/106

Representation av grafer

Idé #3

ldé #3

For varje nod, lagra vilka noder den har en bage fill

LINKOPING
II.“ UNIVERSITY

Representation av grafer

Grannlista

47/106

Q"™ |Q|w |

II LINKOPING
@ UNIVERSITY

Representation av grafer

Grannlista

47/106

Q"™ |Q|w |

II LINKOPING
@ UNIVERSITY

Representation av grafer

Grannlista

Q"™ |Q|w |

]c]]

Al]
—{al []
—L L[[]
—L [[]
—L L[[]
—L T 1]

47/106

II LINKOPING
@ UNIVERSITY

Representation av grafer

Grannlista

Q"™ |Q|w |

HH

47/106

II LINKOPING
@ UNIVERSITY

Representation av grafer

Grannlista

HE
o] <]
=]

l
=]
B

=

Q"™ |Q|w |

i

47/106

II LINKOPING
@ UNIVERSITY

Representation av grafer

Grannlista

HE
o] <]
=]

l
-]
=

slel |]

=

Q"™ |Q|w |

i

47/106

II LINKOPING
@ UNIVERSITY

Representation av grafer

Grannlista

=]

!

HEE
HEE
=]

=]
o)
B
|

|
o]

Q"™ |Q|w |

ﬁ

47/106

II LINKOPING
@ UNIVERSITY

Representation av grafer

Grannlista

HE
o] <]
=]

l
i
=
=]

o[=]=]
ol e
L]

Q"™ |Q|w |

ﬁ

47/106

II LINKOPING
@ UNIVERSITY

Representation av grafer

Grannlista

HE
o] <]
=]

l
i
=
=]

B

o[=]=]
ol e
L]

Q"™ |Q|w |

@

47/106

II LINKOPING
@ UNIVERSITY

Representation av grafer

Grannlista

HE
o] <]
=]

l
i
=
=]

HE
=0
HE

B

|
o
=
=)
||

Q"™ |Q|w |

@

47/106

II LINKOPING
@ UNIVERSITY

Representation av grafer

Grannlista

=[]

Bl
=]

l
i
=
=]

DEE
DEQ
o|[o)]
gD

Q"™ |Q|w |

|
=
=
|

47/106

II LINKOPING
@ UNIVERSITY

Representation av grafer

Grannlista

=[]

Bl
=]

l
i
=
=]

DEE
DEQ
o|[o)]
5[]

Q"™ |Q|w |

|
=
B
=]

47/106

II LINKOPING
@ UNIVERSITY

48/106

Representation av grafer

Analys av grannlista

® Antag hashtabell innehallandes dynamiska arrayer
® Insattning av noder och bagar amorterat O (1)

® Borttagning av nod ar O (|V|)

® Borttagning av bage ar O (max,cy {deg(v)})

® Hitta nod &r amorterat O (1)

® Hitta bage ar O (V)

¢ Minnesanvandning: O (|V| + |E|)

LINKOPING
II.“ UNIVERSITY

Representation av grafer

Jamforelse grannmatris och grannlista

Grannmatris

Insattning nod: O (|V|?)
Insattning bage: O (1)
Ta bort nod: O (|V|?)
Ta bort bage: O (1)

Hitta nod: O (log |V'|)
Hitta bage: O (1)
Minne: O (V| + |V |?)

49/106

Grannlista

Insattning nod: O (1)

Insattning bage: O (1)

Ta bort nod: O (|V])

Ta bort bage: O (max,cy {deg(v)})
Hitta nod: O (1) amorterat

Hitta bage: O (|V|)

Minne: O (|V| + |E|)

LINKOPING
UNIVERSITY

Representation av grafer

Jamforelse grannmatris och grannlista

Grannmatris

Insattning nod: O (|V|?)
Insattning bage: O (1)
Ta bort nod: O (|V|?)
Ta bort bage: O (1)

Hitta nod: O (log |V'|)
Hitta bage: O (1)
Minne: O (V| + |V |?)

49/106

Grannlista

Insattning nod: O (1)

Insattning bage: O (1)

Ta bort nod: O (|V])

Ta bort bage: O (max,cy {deg(v)})
Hitta nod: O (1) amorterat

Hitta bage: O (|V|)

Minne: O (|V| + |E|)

Ingen klockren vinnare...

LINKOPING
UNIVERSITY

50/106

Representation av grafer

Avslutande ord

Grannmatriser och grannlistor &r bra pa olika saker.

Grannmatriser ar en oerhort effektiv representation i grafer med manga
bagar och dar noderna ér relativt oférandrade.

Grannlistor ar bra i glesa grafer dar det ar relativt fa bagar, men dar noderna
ar nagot mer dynamiska.

Notera specifiktatt |[V| + 1 < |E| < |V|(|[V]| = 1)

Om |E| € © (|V|2) s& kommer grannlistans minnesanvandning i regel vara
vérre an grannmatrisens, och borttagning av bégar i grannlistan blir O (|V])
(ty vi har en néstan komplett graf)

Om |E| € O (|V]) sa ar grannlistans minnesanvandning mycket battre &n

grannmatrisen, och borttagning av bagar i grannlistan blir O (1) (ty vi har
ungefar en bage per nod, sa deg(v) ~ 1 for alla v)

LINKOPING
UNIVERSITY

51/106

Grafsdkning

Lankad representation

class Node
{
public:
int data;
vector<Node*> edges;

iy

LINKOPING
II.“ UNIVERSITY

52/106

Representation av grafer

Lankad representation

® | manga fall anvands varken grannmatriser eller grannlistor.

® Typiskt exempel ar lankade listor, tradstrukturer o.s.v. dar en fullstandig graf
ar dyrare an det simplare alternativet.

® Det finns en hel drés med grafproblem som inte kraver en fullstandig
representation av en graf, trots att problemet fundamentalt &r en graf.

® Ett typiskt exempel pa detta dr om vi lagrar noderna i ett rutnat, eller om
strukturen inte kraver borttagning/insattning av noder eller bagar.

® | dessa fall kan det exempelvis racka med en lankad struktur av noder, dar
varje nod lagrar nagon data samt alla grannoder.

II LINKOPING
@ UNIVERSITY

53/106

Representation av grafer

Implicita grafer

vector<int> get_neighbours(int node)
{
vector<int> neighbours { };
// berékna alla grannar till "node’
return neighbours;

}

LINKOPING
II.“ UNIVERSITY

Representation av grafer

Implicita grafer

® Ett annat typiskt exempel ndr en fullstandig representation av grafer inte
kan anvandas ar nar grafen ar pa tok for stor..

® Vad hander t.ex. om antalet noder och bagar &r sd manga att det inte far
plats i minnet, men vi kan for varje nod berdkna deterministiskt vad alla
grannar ar?

® Detta kallas oftast for att vi har en implict graf.

54/106

II LINKOPING
@ UNIVERSITY

55/106

Representation av grafer

Hitta alla noder

Hur kan vi hitta alla noder for dessa representationer?

LINKOPING
II.“ UNIVERSITY

Repetition: Grafer
Repetition: Riktade grafer
Representation av grafer

ua b wON R

Heap

LINKOPING
I I." UNIVERSITY

57/106

Grafsdkning

Rekursiv sokning — lankad struktur

vector<Node*> find_nodes(Node* node)
if (node == nullptr) return { };

vector<Node*> neighbours { };
for (Node* next : node->edges)

{

vector<Node*> nodes {
o e find_nodes(next);

fér (Node* curr : nodes)
neighbours.push_back(curr);
3

return neighbours;

II LINKOPING
@ UNIVERSITY

57/106

Grafsdkning

Rekursiv sokning — lankad struktur

vector<Node*> find_nodes(Node* node)
if (pode == nullptr) return { };

vector<Nede*> neighbours { };
for (Node* next : node->edges)

{

vector<Node*>-nodes , {
o e find_nodes(fhext);

fér (Node* curr : nodes)
neighbours.push_back(curr);
3

return neighbours;

II LINKOPING
@ UNIVERSITY

Grafsdkning

Rekursiv sokning — lankad struktur

® Vi gor som tidigare och hittar alla noder rekursivt!

® | det har fallet gar vi igenom alla grannar och berédknar
alla noder som gar att hitta fran dem och lagger till dem
i var lista 6ver noder.

® Detta funkar utmarkt for den givna grafen!

58/106

LINKOPING
II.“ UNIVERSITY

Grafsdkning

Ett problem

59/106

vector<Node*> find_nodes(Node* node)
if (node == nullptr) return { };

vector<Node*> nodes { node };
for (Node* next : node->edges)
{
vector<Node*> neighbours {
find_nodes(next);

3
for (Node* curr : neighbours)
nodes.push_back(curr);
3

return nodes;

LINKOPING
UNIVERSITY

Grafsdkning

Ett problem

59/106

vector<Node*> find_nodes(Node* node)
If (node == nullptr) return { };

veetor<Node*> nodes { node };
for (Nede*snext : node->edges)
{
vector<Nodé*> nedighbours {
find_nodes(next)s

3
for (Node* curr : neighbours)
nodes.push_back(curr);
3

return nodes;

LINKOPING
UNIVERSITY

Grafsdkning

Ett problem

® Ett mindre problem uppstar om vi lagger till en bage
fran nod 2 till nod 3, for da dyker namligen nod 3 upp
tva ganger i var lista, vilket vi vill undvika.

® For att 16sa detta gor viom var vector till ett set

(eller unordered_set om vara noder har en
hashfunktion definierad)

60/106

LINKOPING
II.“ UNIVERSITY

Grafsdkning

Losning!

61/106

set<Node*> find_nodes(Node* node)
if (node == nullptr) return { };

set<Node*> nodes { node };
for (Node* next : node->edges)
{
set<Node*> neighbours {
find_nodes(next);

3
for (Node* curr : neighbours)
nodes.push_back(curr);
3

return nodes;

LINKOPING
UNIVERSITY

Grafsdkning

Losning!

61/106

set<Node*> find_nodes(Node* node)
if (pode == nullptr) return { };

set<Node*> nodes { node };
for (Node* next : node->edges)
{
set<Node*> Ineighbours {
find_nodes(next);

3
for (Node* curr : neighbours)
nodes.push_back(curr);
3

return nodes;

LINKOPING
UNIVERSITY

Grafsdkning

Ett nytt problem...

o‘:’e

62/106

set<Node*> find_nodes(Node* node)
if (node == nullptr) return { };

set<Node*> nodes { node };
for (Node* next : node->edges)
{
set<Node*> neighbours {
find_nodes(next);

3
for (Node* curr : neighbours)
nodes.push_back(curr);
3

return nodes;

LINKOPING
UNIVERSITY

Grafsdkning

Ett nytt problem...

o‘:’e

62/106

set<Node*> find_nodes(Node* node)
if/(node == nullptr) return { };

set<Node*> nodes { node };
for “(Node* snexty : node->edges)
{
set<Node*> ‘neighbours {
find_nodes(next);

3
for (Node* curr : neighboups)
nodes.push_back(curr);
3

return nodes;

II LINKOPING
@ UNIVERSITY

Grafsdkning

Ett nytt problem...

® Nar vi lagger till en bage fran nod 3 tillbaka till nod 0
kraschar vart program for att det far slut pa minne...?!

® Det som hander &r att vi har introducerat en cykel i var
graf. Detta innebar att nar vi soker efter grannar till nod
3 sa kommer vi tillbaka till nod 0 och bérjar i princip om
sokningen fran borjan.

® Detta problemet ar i regel vad som gor grafsokning till
en egen klass av problem.

® | Gsning ar dock forvanansvart simpel...

63/106

LINKOPING
II.“ UNIVERSITY

64/106

Grafsdkning

Djupet-forst-sokning (DFS)

® [osningen ar att vi kontrollerar huruvida en nod redan
har hittats innan vi sdker efter dess grannar.

® Om noden redan har hittats behover vi inte kolla den
igen sa vi avbryter.

® Vi skriver om funktionen sa att rekursiva steg har
tillgang till behallaren av hittade noder.

LINKOPING
II.“ UNIVERSITY

Grafsdkning

Djupet-forst-sokning (DFS)

o‘:’e

65/106

void find_nodes_help(Node* node, set<Node*>& found)

if (node == nullptr) return { };
if (found.count(node) > 0) return { };

found.insert(node);
for (Node* next : node->edges)
find_nodes_help(next, found);

w

set<Node*> find_nodes(Node* node)

set<Node*> nodes { };
find_nodes_help(node, nodes);
return nodes;

}

LINKOPING
UNIVERSITY

Grafsdkning

Djupet-forst-sokning (DFS)

o‘:’e

65/106

void find_nodes_help(Node* node, set<Node*>& found)

if (pode == nullptr) return { };
if (found.count(node) > 0) return { };

found .dnserit (node);
for (Node*/next_: node->edges)
find_nodes_help(next, found);

w

set<Node*> find_nodes(Node* node)

set<Node*> nodes { };
find_nodes_help(node, nodes);
return nodes;

}

LINKOPING
UNIVERSITY

Grafsdkning

Djupet-forst-sokning (DFS)

® Som tidigare diskuterat i kursen ar i regel rekursiva
I6sningar nagot dyrare an iterativa varianter.

® S3 vitestar att implementera DFS iterativt istéllet.

® Nyckelobservationen hér ar att vi maste halla koll pa
vilka noder vi ska besdka harnast genom att successivt
lagga till nya noder nar de upptéacks.

® Nasta nod vi vill besdka ar i regel den senaste vi hittade
(om vi vill fa samma beteende som den rekursiva
implementationen) sa en stack later [ampligt!

66/106

LINKOPING
II.“ UNIVERSITY

Grafsdkning

Iterativ variant

set<Node*> DFS(Node* start)
{
set<Node*> found;
stack<Node*> stack;
stack.push(start);
while (!stack.empty())
{
Node* node { stack.top() };
stack.pop();
if (node == nullptr) continue;
if (found.count(node) > 0) continue;
found.insert(node);
for (Node* next : node->edges)
stack.push(next);

}

return found;

67/106

LINKOPING
UNIVERSITY

68/106

Grafsdkning

djupet-forst-sokning (DFS)

a stack

roune: [| [[[[]]

LINKOPING
II.“ UNIVERSITY

68/106

Grafsdkning

djupet-forst-sokning (DFS)

II LINKOPING
@ UNIVERSITY

68/106

Grafsdkning

djupet-forst-sokning (DFS)

II LINKOPING
@ UNIVERSITY

68/106

Grafsdkning

djupet-forst-sokning (DFS)

II LINKOPING
@ UNIVERSITY

68/106

Grafsdkning

djupet-forst-sokning (DFS)

II LINKOPING
@ UNIVERSITY

68/106

Grafsdkning

djupet-forst-sokning (DFS)

II LINKOPING
@ UNIVERSITY

68/106

Grafsdkning

djupet-forst-sokning (DFS)

II LINKOPING
@ UNIVERSITY

68/106

Grafsdkning

djupet-forst-sokning (DFS)

a stack

roune:[a] [[[[]]

=] []]

LINKOPING
II.“ UNIVERSITY

68/106

Grafsdkning

djupet-forst-sokning (DFS)

a 1} stack

(®) 7 H
o @ O
HE

-4
o
o
>
o
hS

LINKOPING
II.“ UNIVERSITY

68/106

Grafsdkning

djupet-forst-sokning (DFS)

a 1} stack

found:’A|E| | | | | ‘

LINKOPING
II.“ UNIVERSITY

68/106

Grafsdkning

djupet-forst-sokning (DFS)

a <> stack

found:’A|E| | | | | ‘

LINKOPING
II.“ UNIVERSITY

68/106

Grafsdkning

djupet-forst-sokning (DFS)

a <> stack

found:’A|E| | | | | ‘

ool [1]

LINKOPING
II.“ UNIVERSITY

68/106

Grafsdkning

djupet-forst-sokning (DFS)

a stack

found:’A|E| | | | | ‘

ool [1]

LINKOPING
II.“ UNIVERSITY

68/106

Grafsdkning

djupet-forst-sokning (DFS)

a stack

found:’A|E| | | | | ‘

LINKOPING
II.“ UNIVERSITY

68/106

Grafsdkning

djupet-forst-sokning (DFS)

a stack

found:’A|E|G| | | | ‘

LINKOPING
II.“ UNIVERSITY

68/106

Grafsdkning

djupet-forst-sokning (DFS)

a @ stack

GQ@@ -

found:’A|E|G| | | | ‘

LINKOPING
II.“ UNIVERSITY

68/106

Grafsdkning

djupet-forst-sokning (DFS)

a @ stack

@Qg@

found:’A|E|G| | | | ‘

s []]

LINKOPING
II.“ UNIVERSITY

68/106

Grafsdkning

djupet-forst-sokning (DFS)

a stack

found:’A|E|G| | | | ‘

s []]

LINKOPING
II.“ UNIVERSITY

68/106

Grafsdkning

djupet-forst-sokning (DFS)

a @ stack
@ :

found:’A|E|G| | | | ‘

LINKOPING
II.“ UNIVERSITY

68/106

Grafsdkning

djupet-forst-sokning (DFS)

a @ stack
@ :

roun: [4]5]a o] | | |

LINKOPING
II.“ UNIVERSITY

68/106

Grafsdkning

djupet-forst-sokning (DFS)

a @ stack
© :

roun: [4]5]a o] | | |

LINKOPING
II.“ UNIVERSITY

68/106

Grafsdkning

djupet-forst-sokning (DFS)

a @ stack

(5)
O s

roun: [4]5]a o] | | |

=] []]

LINKOPING
II.“ UNIVERSITY

68/106

Grafsdkning

djupet-forst-sokning (DFS)

a @ stack

(5)
G

roun: [4]5]a o] | | |

=] []]

LINKOPING
II.“ UNIVERSITY

68/106

Grafsdkning

djupet-forst-sokning (DFS)

(5)
G

roun: [4]5]a o] | | |

2]
o
of=lo] | JE
=~

LINKOPING
II.“ UNIVERSITY

68/106

Grafsdkning

djupet-forst-sokning (DFS)

roun: [4]5]a o] | | |

LINKOPING
II.“ UNIVERSITY

68/106

Grafsdkning

djupet-forst-sokning (DFS)

(42
®
;

roun: [4]5]a o] | | |

stack

=] []]

II LINKOPING
@ UNIVERSITY

68/106

Grafsdkning

djupet-forst-sokning (DFS)

stack

(4)
+ @
O,

rouna: (4[5]a]o]c] | |

=] []]

LINKOPING
II.“ UNIVERSITY

68/106

Grafsdkning

djupet-forst-sokning (DFS)

stack

(%)
@@@
(2)

rouna: (4[5]a]o]c] | |

=] []]

LINKOPING
II.“ UNIVERSITY

68/106

Grafsdkning

djupet-forst-sokning (DFS)

(%)
@@g
(2)

rouna: (4[5]a]o]c] | |

2]
o
o=~ | |&
=~

LINKOPING
II.“ UNIVERSITY

68/106

Grafsdkning

djupet-forst-sokning (DFS)

(=)
o
@
BODEE}

rouna: (4[5]a]o]c] | |

LINKOPING
II.“ UNIVERSITY

68/106

Grafsdkning

djupet-forst-sokning (DFS)
a @ stack

2 (é
©

rouna: (4[5]a o] c]r] |

=] []]

LINKOPING
II.“ UNIVERSITY

68/106

Grafsdkning

djupet-forst-sokning (DFS)
a @ stack

=] []]

rouna: (4[5]a o] c]r] |

LINKOPING
II.“ UNIVERSITY

68/106

Grafsdkning

djupet-forst-sokning (DFS)

rouna: (4[5]a o] c]r] |

LINKOPING
II.“ UNIVERSITY

68/106

Grafsdkning

djupet-forst-sokning (DFS)

()
o)
e@@@

rouna: (4[5]a o] c]r] |

l=[s[T3

LINKOPING
II.“ UNIVERSITY

68/106

Grafsdkning

djupet-forst-sokning (DFS)

()
o)
e@@@

rouna: (4[5]a o] c]r] |

[[=[sT=[5

LINKOPING
II.“ UNIVERSITY

68/106

Grafsdkning

djupet-forst-sokning (DFS)

rouna: (4[5]a o] c]r] |

LINKOPING
II.“ UNIVERSITY

68/106

Grafsdkning

djupet-forst-sokning (DFS)

]
—+
Q
O
F

°a
O. lé
)

rouna: (4[5]a o] c]r] |

[o]=]s]=]a]

LINKOPING
II.“ UNIVERSITY

68/106

Grafsdkning

djupet-forst-sokning (DFS)

rouna: (4[5]a o] c]r] |

]
—+
Q
O
F

[o]=]s]=]a]

II LINKOPING
@ UNIVERSITY

68/106

Grafsdkning

djupet-forst-sokning (DFS)

rouna: (4[5]a o] c]r] |

II LINKOPING
@ UNIVERSITY

68/106

Grafsdkning

djupet-forst-sokning (DFS)

ouna: (4[5 [o][c[r] |

II LINKOPING
@ UNIVERSITY

68/106

Grafsdkning

djupet-forst-sokning (DFS)

rouna: (4[5]a o] c]r] |

[[=[sT=[5

LINKOPING
II.“ UNIVERSITY

68/106

Grafsdkning

djupet-forst-sokning (DFS)

(2
()
@a@a

rouna: (4[5]a o] c]r] |

l=[s[T3

II LINKOPING
@ UNIVERSITY

68/106

Grafsdkning

djupet-forst-sokning (DFS)

(2
()
@an

rouna: (4[5]a[o[c]r] |

l=[s[T3

II LINKOPING
@ UNIVERSITY

68/106

Grafsdkning

djupet-forst-sokning (DFS)

rouna: (4[5]a o] c]r] |

LINKOPING
II.“ UNIVERSITY

68/106

Grafsdkning

djupet-forst-sokning (DFS)

a @ stack

(5)
G

rouna: (4[5]a o] c]r] |

=] []]

LINKOPING
II.“ UNIVERSITY

68/106

Grafsdkning

djupet-forst-sokning (DFS)

a @ stack

(5)
G

rouna: (4[5]a[o]c[r] |

=] []]

LINKOPING
II.“ UNIVERSITY

68/106

Grafsdkning

djupet-forst-sokning (DFS)

a stack

rouna: (4[5]a o] c]r] |

=] []]

LINKOPING
II.“ UNIVERSITY

68/106

Grafsdkning

djupet-forst-sokning (DFS)

a stack

rouna: (4[5]a o] c]r] |

LINKOPING
II.“ UNIVERSITY

68/106

Grafsdkning

djupet-forst-sokning (DFS)

a stack

rouna: (4[5]a o] r]5]

LINKOPING
II.“ UNIVERSITY

68/106

Grafsdkning

djupet-forst-sokning (DFS)

(4) stack
@§° =

rouna: (4[5]a o] r]5]

LINKOPING
II.“ UNIVERSITY

68/106

Grafsdkning

djupet-forst-sokning (DFS)

rouna: (4[5]a o] r]5]

stack

o= []]

LINKOPING
II.“ UNIVERSITY

68/106

Grafsdkning

djupet-forst-sokning (DFS)

a stack

rouna: (4[5]a o] r]5]

o= []]

LINKOPING
II.“ UNIVERSITY

68/106

Grafsdkning

djupet-forst-sokning (DFS)

() -

rouna: (4[5]a o] r]5]

LINKOPING
II.“ UNIVERSITY

68/106

Grafsdkning

djupet-forst-sokning (DFS)

() -

rouna: [4[5][] r]5]

LINKOPING
II.“ UNIVERSITY

68/106

Grafsdkning

djupet-forst-sokning (DFS)

a stack

rouna: (4[5]a o] r]5]

LINKOPING
II.“ UNIVERSITY

68/106

Grafsdkning

djupet-forst-sokning (DFS)

stack

(4)
@@]
Q I

rouna: (4[5]a o] r]5]

LINKOPING
II.“ UNIVERSITY

68/106

Grafsdkning

djupet-forst-sokning (DFS)

stack

(4)
@@]
Q I

rouna: (4[5]a][] r]5]

LINKOPING
II.“ UNIVERSITY

68/106

Grafsdkning

djupet-forst-sokning (DFS)

a stack

rouna: (4[5]a o] r]5]

LINKOPING
II.“ UNIVERSITY

69/106

Grafsdkning

Kan vi gora i ndgon annan ordning?

LINKOPING
II.“ UNIVERSITY

Grafsdkning

Byt ut stacken mot en ko!

set<Node*> DFS(Node* start)
{
set<Node*> found;
queue<Node*> queue;
queue.push(start);
while (!queue.empty())
{
Node* node { queue.front() };
queue.pop();
if (node == nullptr) continue;
if (found.count(node) > 0) continue;
found.insert(node);
for (Node* next : neighbours)
queue.push(next);

return found;

70/106

LINKOPING
UNIVERSITY

71/106

Grafsdkning

bredden-forst-sokning (BFS)

e

roune: | | [[[[]]

II LINKOPING
@ UNIVERSITY

71/106

Grafsdkning

bredden-forst-sokning (BFS)

II LINKOPING
@ UNIVERSITY

71/106

Grafsdkning

bredden-forst-sokning (BFS)

II LINKOPING
@ UNIVERSITY

71/106

Grafsdkning

bredden-forst-sokning (BFS)

II LINKOPING
@ UNIVERSITY

71/106

Grafsdkning

bredden-forst-sokning (BFS)

II LINKOPING
@ UNIVERSITY

71/106

Grafsdkning

bredden-forst-sokning (BFS)

II LINKOPING
@ UNIVERSITY

71/106

Grafsdkning

bredden-forst-sokning (BFS)

fe]
c
[¢]
c
(0]

L] [=]<]

II LINKOPING
@ UNIVERSITY

71/106

Grafsdkning

bredden-forst-sokning (BFS)

roune:[a] [[[[]]

fe]
c
[¢]
c
(0]

L] [=]<]

II LINKOPING
@ UNIVERSITY

71/106

Grafsdkning

bredden-forst-sokning (BFS)

0@
Lok
(3)) -
O

roune:[a] [[[[]]

II LINKOPING
@ UNIVERSITY

71/106

Grafsdkning

bredden-forst-sokning (BFS)

0@
Lok
(3)) -
O

found:’A|C| | | | | ‘

II LINKOPING
@ UNIVERSITY

71/106

Grafsdkning

bredden-forst-sokning (BFS)

(e [
Lap
(5) e |
=0

found:’A|C| | | | | ‘

II LINKOPING
@ UNIVERSITY

71/106

Grafsdkning

bredden-forst-sokning (BFS)

queue

(4)
@:
© (¢)

found:’A|C| | | | | ‘

L] [=]+]

LINKOPING
II.“ UNIVERSITY

71/106

Grafsdkning

bredden-forst-sokning (BFS)

found:’A|C| | | | | ‘

queue

L] [=]+]

LINKOPING
II.“ UNIVERSITY

71/106

Grafsdkning

bredden-forst-sokning (BFS)

a8

found:’A|C| | | | | ‘

II LINKOPING
@ UNIVERSITY

71/106

Grafsdkning

bredden-forst-sokning (BFS)

a8

found:’A|C|E| | | | ‘

II LINKOPING
@ UNIVERSITY

71/106

Grafsdkning

bredden-forst-sokning (BFS)

8

found:’A|C|E| | | | ‘

II LINKOPING
@ UNIVERSITY

71/106

Grafsdkning

bredden-forst-sokning (BFS)

S

found:’A|C|E| | | | ‘

fe]
c
[¢]
c
(0]

HEREE

II LINKOPING
@ UNIVERSITY

71/106

Grafsdkning

bredden-forst-sokning (BFS)

found:’A|C|E| | | | ‘

queue

HEREE

LINKOPING
II.“ UNIVERSITY

71/106

Grafsdkning

bredden-forst-sokning (BFS)
(@ [

@@ o H

found:’A|C|E| | | | ‘

II LINKOPING
@ UNIVERSITY

71/106

Grafsdkning

bredden-forst-sokning (BFS)
(@ [

@@ o H

found:’A|C|E|F| | | ‘

II LINKOPING
@ UNIVERSITY

71/106

Grafsdkning

bredden-forst-sokning (BFS)
Q @ o]
Ok

(2]

found:’A|C|E|F| | | ‘

II LINKOPING
@ UNIVERSITY

71/106

Grafsdkning

bredden-forst-sokning (BFS)

(o)
& B
)

found:’A|C|E|F| | | ‘

fe]
c
[¢]
c
(0]

L[] [=]e]

II LINKOPING
@ UNIVERSITY

71/106

Grafsdkning

bredden-forst-sokning (BFS)

fe]
c
[¢]
c
(0]

L[] [=]e]

s

found:’A|C|E|F| | | ‘

II LINKOPING
@ UNIVERSITY

71/106

Grafsdkning

bredden-forst-sokning (BFS)

fe]
c
[¢]
c
(0]

L[[=[s]<]

s

found:’A|C|E|F| | | ‘

II LINKOPING
@ UNIVERSITY

71/106

Grafsdkning

bredden-forst-sokning (BFS)

fe]
c
[¢]
c
(0]

"’@3@

L[[=[s]<]

found:’A|C|E|F| | | ‘

II LINKOPING
@ UNIVERSITY

71/106

Grafsdkning

bredden-forst-sokning (BFS)

e o
\é B [z

found:’A|C|E|F| | | ‘

II LINKOPING
@ UNIVERSITY

71/106

Grafsdkning

bredden-forst-sokning (BFS)

found:’A|C|E|F| | | ‘

queue

| [o]=]s]=]

LINKOPING
II.“ UNIVERSITY

71/106

Grafsdkning

bredden-forst-sokning (BFS)

fe]
c
[¢]
c
(0]

\é eg@

L[[e]=]5]

found:’A|C|E|F| | | ‘

II LINKOPING
@ UNIVERSITY

71/106

Grafsdkning

bredden-forst-sokning (BFS)

fe]
c
[¢]
c
(0]

\é eg@

L[[e]=]5]

found:’A|C|E|F|G| | ‘

II LINKOPING
@ UNIVERSITY

71/106

Grafsdkning

bredden-forst-sokning (BFS)

queue

OO
(& aae’@

L[[e]=]5]

found:’A|C|E|F|G| | ‘

LINKOPING
II.“ UNIVERSITY

71/106

Grafsdkning

bredden-forst-sokning (BFS)

queue

Q D]
o H

ola VNG
G@ 3

y 0

found:’A|C|E|F|G| | ‘

LINKOPING
II.“ UNIVERSITY

71/106

Grafsdkning
bredden-forst-sokning (BFS)
queue
(4) D
() :
(&) ¢
(r) >

found:’A|C|E|F|G| | ‘

LINKOPING
II.“ UNIVERSITY

71/106

Grafsdkning

bredden-forst-sokning (BFS)

L

found:’A|C|E|F|G| | ‘

queue

HEERE

LINKOPING
II.“ UNIVERSITY

71/106

Grafsdkning

bredden-forst-sokning (BFS)

L

found:’A|C|E|F|G|D| ‘

queue

HEERE

LINKOPING
II.“ UNIVERSITY

71/106

Grafsdkning

bredden-forst-sokning (BFS)

L

found:’A|C|E|F|G|D| ‘

queue

HEERE

LINKOPING
II.“ UNIVERSITY

71/106

Grafsdkning

bredden-forst-sokning (BFS)

L

found:’A|C|E|F|G|D| ‘

queue

| [=]s]a]+]

LINKOPING
II.“ UNIVERSITY

71/106

Grafsdkning

bredden-forst-sokning (BFS)

0@ ()
s @O,G’e

found:’A|C|E|F|G|D| ‘

queue

| [=]s]a]+]

LINKOPING
II.“ UNIVERSITY

71/106

Grafsdkning

bredden-forst-sokning (BFS)

0@ ()
s @O,G’e

found:’A|C|E|F|G|D| ‘

2
[o]=]=[a]=]t
@

LINKOPING
II.“ UNIVERSITY

71/106

Grafsdkning

bredden-forst-sokning (BFS)

found:’A|C|E|F|G|D| ‘

2
[o]=]=[a]=]t
@

LINKOPING
II.“ UNIVERSITY

71/106

Grafsdkning

bredden-forst-sokning (BFS)

queue

| [el=]s]<]

found:’A|C|E|F|G|D| ‘

LINKOPING
II.“ UNIVERSITY

71/106

Grafsdkning

bredden-forst-sokning (BFS)

queue

| [el=]s]<]

found:’A|C|E|F|G|D| ‘

LINKOPING
II.“ UNIVERSITY

71/106

Grafsdkning

bredden-forst-sokning (BFS)

found:’A|C|E|F|G|D| ‘

queue

| [el=]s]<]

LINKOPING
II.“ UNIVERSITY

71/106

Grafsdkning

bredden-forst-sokning (BFS)

fe]
c
[¢]
c
(0]

\é eg@

L[[e]=]5]

found:’A|C|E|F|G|D| ‘

II LINKOPING
@ UNIVERSITY

71/106

Grafsdkning

bredden-forst-sokning (BFS)

fe]
c
[¢]
c
(0]

\é eg@

L[[e]=]5]

found:’A|C|E|F|G|D| ‘

II LINKOPING
@ UNIVERSITY

71/106

Grafsdkning

bredden-forst-sokning (BFS)

found:’A|C|E|F|G|D| ‘

queue

L[[e]=]5]

LINKOPING
II.“ UNIVERSITY

71/106

Grafsdkning

bredden-forst-sokning (BFS)

L

found:’A|C|E|F|G|D| ‘

queue

HEERE

LINKOPING
II.“ UNIVERSITY

71/106

Grafsdkning

bredden-forst-sokning (BFS)

L

found:’A|C|E|F|G|D| ‘

queue

HEERE

LINKOPING
II.“ UNIVERSITY

71/106

Grafsdkning

bredden-forst-sokning (BFS)

found:’A|C|E|F|G|D| ‘

queue

HEERE

LINKOPING
II.“ UNIVERSITY

71/106

Grafsdkning

bredden-forst-sokning (BFS)

found:’A|C|E|F|G|D| ‘

LINKOPING
II.“ UNIVERSITY

71/106

Grafsdkning

bredden-forst-sokning (BFS)

found:’A|C|E|F|G|D|B‘

LINKOPING
II.“ UNIVERSITY

71/106

Grafsdkning

bredden-forst-sokning (BFS)
° (5)

found:’A|C|E|F|G|D|B‘

LINKOPING
II.“ UNIVERSITY

71/106

Grafsdkning

bredden-forst-sokning (BFS)

queue

L] [=]e]

found:’A|C|E|F|G|D|B‘

LINKOPING
II.“ UNIVERSITY

71/106

Grafsdkning

bredden-forst-sokning (BFS)

found:’A|C|E|F|G|D|B‘

queue

L] [=]e]

LINKOPING
II.“ UNIVERSITY

71/106

Grafsdkning

bredden-forst-sokning (BFS)

(4)
@:
O

found:’A|C|E|F|G|D|B‘

LINKOPING
II.“ UNIVERSITY

71/106

Grafsdkning

bredden-forst-sokning (BFS)

(4)
@:
O

found:’A|C|E|F|G|D|B‘

LINKOPING
II.“ UNIVERSITY

71/106

Grafsdkning

bredden-forst-sokning (BFS)

B |

found:’A|C|E|F|G|D|B‘

LINKOPING
II.“ UNIVERSITY

71/106

Grafsdkning

bredden-forst-sokning (BFS)

@a

A2 |

found:’A|C|E|F|G|D|B‘

LINKOPING
II.“ UNIVERSITY

71/106

Grafsdkning

bredden-forst-sokning (BFS)

@a

A2 |

found:|A|C|E|F|G|D|B‘

LINKOPING
II.“ UNIVERSITY

71/106

Grafsdkning

bredden-forst-sokning (BFS)

queue

found:’A|C|E|F|G|D|B‘

LINKOPING
II.“ UNIVERSITY

Grafsdkning

Jamférelse DFS och BFS

(.

9

DFS ordning

|

aefefofc]r]e]

72/106

(r—.

e

BFS ordning

[plelefrfefe]e]

LINKOPING
UNIVERSITY

Grafsdkning

Jamférelse DFS och BFS

(D

9

DFS ordning

|

aefefofc]r]e]

72/106

(r—.

e

BFS ordning

[plelefrfefe]e]

LINKOPING
UNIVERSITY

Grafsdkning

Jamférelse DFS och BFS

DFS ordning

[2lefefo]c]r]e

|

72/106

(r—.

e

BFS ordning

[plelefrfefe]e]

II LINKOPING
@ UNIVERSITY

Grafsdkning

Jamférelse DFS och BFS

DFS ordning

[2lefefo]c]r]e

|

72/106

(r—.

e

BFS ordning

[plelefrfefe]e]

II LINKOPING
@ UNIVERSITY

Grafsdkning

Jamférelse DFS och BFS

DFS ordning

[2lefefo]c]r]e

|

72/106

(r—.

e

BFS ordning

[plelefrfefe]e]

II LINKOPING
@ UNIVERSITY

Grafsdkning

Jamférelse DFS och BFS

DFS ordning

[2lefefo]c]r]e

|

72/106

(r—.

e

BFS ordning

[plelefrfefe]e]

II LINKOPING
@ UNIVERSITY

Grafsdkning

Jamférelse DFS och BFS

DFS ordning

[2lefefo]c]r]e

|

72/106

(r—.

e

BFS ordning

[plelefrfefe]e]

II LINKOPING
@ UNIVERSITY

72/106

Grafsdkning

Jamférelse DFS och BFS

DFS ordning BFS ordning

[2lefefofcfe o] [plelefrfefe]e]

II LINKOPING
@ UNIVERSITY

Grafsdkning

Jamférelse DFS och BFS

DFS ordning

[2lefefo]c]r]e

|

72/106

BFS ordning

[plelefrfefe]e]

II LINKOPING
@ UNIVERSITY

Grafsdkning

Jamférelse DFS och BFS

aouC

DFS ordning

[2lefefo]c]r]e

|

72/106

BFS ordning

[plelefrfefe]e]

II LINKOPING
@ UNIVERSITY

Grafsdkning

Jamférelse DFS och BFS

aouC

DFS ordning

[2lefefo]c]r]e

|

72/106

BFS ordning

[plelefrfefe]e]

II LINKOPING
@ UNIVERSITY

Grafsdkning

Jamférelse DFS och BFS

aouC

DFS ordning

[2lefefo]c]r]e

|

72/106

BFS ordning

[plelefrfefe]e]

II LINKOPING
@ UNIVERSITY

Grafsdkning

Jamférelse DFS och BFS

aouC

DFS ordning

[2lefefo]c]r]e

|

72/106

BFS ordning

[plelefrfefe]e]

II LINKOPING
@ UNIVERSITY

72/106

Grafsokning

Jamforelse DFS och BFS

DFS ordning BFS ordning

[alefefojcfr]e] [alcfelrlefo]e]

II LINKOPING
@ UNIVERSITY

Grafsdkning

Jamférelse DFS och BFS

Bade DFS och BFS hittar garanterat alla noder som ar sammanhéangande
med startnoden.

DFS &r nagot enklare att implementera da det (enkelt) kan goéras rekursivt.
BFS traverserar den kortaste vagen till varje nod (bevis gors i inlamningen)
DFS hittar en vag snabbt, men vi kan inte saga nagot sarskilt om den vagen.
DFS kommer tidigt hitta noder som ligger langt bort, medan BFS maste
traversera lager for lager i grafen (forst alla som &r ett steg fran startnoden,
sedan alla som &r tva steg bort, 0.s.v.).

Dessa egenskaper gor att BFS och DFS lampar sig for olika andamal: BFS
anvands i regel nar en kortaste vag ar viktig, men i andra fall tenderar DFS
att vara mer naturligt och enklare.

Tidskomplexiteten for BFS och DFS dar samma (vad den &r lamnas till
inlamningen)

Pa nésta slide diskuterar vi hur man anvander BFS och DFS for att hitta vagar.

73/106

LINKOPING
UNIVERSITY

74 /106

Grafsdkning

Hitta en kortaste vdg mellan A och F'

queue

II LINKOPING
@ UNIVERSITY

74 /106

Grafsdkning

Hitta en kortaste vdg mellan A och F'

queue

LINKOPING
II.“ UNIVERSITY

74 /106

Grafsdkning

Hitta en kortaste vdg mellan A och F'

queue

roune:[a] [| | []]

reoms [| [[[]]

LINKOPING
II.“ UNIVERSITY

74 /106

Grafsdkning

Hitta en kortaste vdg mellan A och F'

queue

roune:[a] [| | []]

reoms [| [[[]]

LINKOPING
II.“ UNIVERSITY

74 /106

Grafsdkning

Hitta en kortaste vdg mellan A och F'

queue

roune:[a] [| | []]

reoms [| [[[]]

LINKOPING
II.“ UNIVERSITY

74 /106

Grafsdkning

Hitta en kortaste vdg mellan A och F'

queue

roune:[a] [| | []]

reoms [| [[[]]

LINKOPING
II.“ UNIVERSITY

74 /106

Grafsdkning

Hitta en kortaste vdg mellan A och F'

queue

C, A
()
@

roune:[a] [| | []]

reoms [| [[[]]

LINKOPING
II.“ UNIVERSITY

74 /106

Grafsdkning

Hitta en kortaste vdg mellan A och F'

queue

o
0

a
found: (4 [| | | | |

reoms [| [[[]]

II LINKOPING
@ UNIVERSITY

74 /106

Grafsdkning

Hitta en kortaste vdg mellan A och F'

queue

0

roune:[a] [| | []]

reoms [| [[[]]

LINKOPING
II.“ UNIVERSITY

74 /106

Grafsdkning

Hitta en kortaste vdg mellan A och F'

queue

0

found:’A|C| | | | | ‘

reoms [—[a] [[|]]

LINKOPING
II.“ UNIVERSITY

74 /106

Grafsdkning

Hitta en kortaste vdg mellan A och F'

queue

0

found:’A|C| | | | | ‘

reoms [—[a] [[|]]

LINKOPING
II.“ UNIVERSITY

74 /106

Grafsdkning

Hitta en kortaste vdg mellan A och F'

queue

o
") F,C

found:’A|C| | | | |

reoms [-[a] | [] |

LINKOPING
II.“ UNIVERSITY

74 /106

Grafsdkning

Hitta en kortaste vdg mellan A och F'

queue

0
o

G
O

found:’A|C| | | | | ‘

reoms [—[a] [[|]]

II LINKOPING
@ UNIVERSITY

74 /106

Grafsdkning

Hitta en kortaste vdg mellan A och F'

queue

) [

found:’A|C| | | | | ‘

reoms [—[a] [[|]]

LINKOPING
II.“ UNIVERSITY

74 /106

Grafsdkning

Hitta en kortaste vdg mellan A och F'

queue

) [

found:’A|C|E| | | | ‘

erme (T2 [l []]|

II LINKOPING
@ UNIVERSITY

74 /106

Grafsdkning

Hitta en kortaste vdg mellan A och F'

gqueue
) [

found:’A|C|E| | | | ‘

erme (T2 [l []]|

II LINKOPING
@ UNIVERSITY

74 /106

Grafsdkning

Hitta en kortaste vdg mellan A och F'

queue
O
()

found:’A|C|E| | | | ‘

erme (T2 [l []]|

II LINKOPING
@ UNIVERSITY

74 /106

Grafsdkning

Hitta en kortaste vdg mellan A och F'

queue

0
(<)

G
O

found:’A|C’|E| | | | ‘

erme (T2 [l []]|

II LINKOPING
@ UNIVERSITY

Grafsdkning

Hitta en kortaste vdg mellan A och F'

queue

0

OWNNES

=0
(2)

found:’A|C|E| | | | ‘

erme (T2 [l []]|

74 /106

LINKOPING
II.“ UNIVERSITY

74 /106

Grafsdkning

Hitta en kortaste vdg mellan A och F'

queue

o

found:’A|C|E|F| | | ‘

from:’—|A|A|C| | | ‘

II LINKOPING
@ UNIVERSITY

74 /106

Grafsdkning

Hitta en kortaste vdg mellan A och F'

queue

o

found:’A|C|EF | | ‘

from:’—|A|AC | | ‘

II LINKOPING
@ UNIVERSITY

74 /106

Grafsdkning

Hitta en kortaste vdg mellan A och F'

queue

o

found:’A|C|EF | | ‘

from:’—|A|AC | | ‘

II LINKOPING
@ UNIVERSITY

Grafsdkning

74 /106

Hitta en kortaste vdg mellan A och F'

queue

0

G
O

found:’ A

clefr] | |]

from:’ -

alafe] |]]

II LINKOPING
@ UNIVERSITY

Grafsdkning

74 /106

Hitta en kortaste vdg mellan A och F'

queue

0

G
O

found:’ A

clefr] | |]

from:’ -

alafe] |]]

II LINKOPING
@ UNIVERSITY

74 /106

Grafsdkning

Hitta en kortaste vdg mellan A och F'

queue

o

found:’A|C|E|F| | | ‘

from:’—|A|A|C| | | ‘

II LINKOPING
@ UNIVERSITY

74 /106

Grafsdkning

Hitta en kortaste vdg mellan A och F'

queue

o

found:’A|C|E|F| | | ‘

from:’—|A|A|C| | | ‘

II LINKOPING
@ UNIVERSITY

75/106

Grafsdkning

Hitta kortaste vag mellan tva noder

vector<Node*> shortest_path(Node* start, int end_id)

unordered_map<Node*, Node*> from;
queue<pair<Node*, Node*>> queue;
queue.push({ start, nullptr });
while (!queue.empty())
{
auto [curr, prev] = queue.front();
queue.pop();
if (from.count(curr) > 0) continue;
if (curr->id == end_id)
return produce_path(from, curr);
parents[curr] = prev;
for (Node* next : curr->edges)
queue.push({ next, curr });

return { }; // ingen vag hittade

II LINKOPING
@ UNIVERSITY

Grafsdkning

Hitta kortaste vag mellan tva noder

vector<Node*> produce_path(unordered_map<Node*,

{

Node* end)

vector<Node*> path;
Node* curr { end };
while (curr != nullptr)

path.push_back(curr);
curr = from.at(curr);

}

reverse(path.begin(), path.end());
return path;

Node*> const& from,

75/106

LINKOPING
UNIVERSITY

76/106

Grafsokning

Billigaste vag

Definition: Billigaste vag

| en viktad graf G, = (V, E) ges kostnaden for en vdg
P = (v1,v9,...,vy,) av

1

c(P) =) w(vi,vit1)
1

3
|

i

En billigaste vag ar en vag P sadan att ¢(P) < ¢(Q) for alla
vagar (. Dessa vagar hittas m.h.a. Dijkstras algoritm.

LINKOPING
II." UNIVERSITY

Grafsdkning
Dijkstras algoritm

® Dijkstras algoritm (kdnd fran TAOPQ7) &r en variant av
bredden forst sokning, men istéllet for att soka i lager,
sa soker vi hela tiden langs den hittills billigaste vagen.

® For att gora detta maste vi likt tidgare halla koll pa mer
information, specifikt hur kostnaden av den hittills
billigaste vagen till varje utforskad nod.

® Detta innebar att vi varken kan anvanda en stack eller
en ko. Istallet vill vi ha en s.k. prioritetsko dar vi alltid
plockar ut den billigaste vagen.

® Hur implementerar vi egentligen det?

77/106

LINKOPING
II.“ UNIVERSITY

Repetition: Grafer
Repetition: Riktade grafer
Representation av grafer
Grafsokning

ua b wON R

LINKOPING
I I." UNIVERSITY

79/106

Heap

Mal med prioritetsko

SIa upp hogst prioritet: O (1)
Ta bort hogst prioritet: Helst battre &an O (n)

® Insattningen: Helst battre an O (n)

Antag att hogsta prioritet ar det minsta vardet

LINKOPING
II.“ UNIVERSITY

80/106

Heap

Idé

Idé #1

Anvand ett balanserat binart soktrad, da ar allt O (log n)!

LINKOPING
II." UNIVERSITY

81/106

Heap

ldé

® Ett balanserat binart soktrad kan hitta (och ta bort) det
minsta vardet i O (log n) tid, vilket inte &r fullt sa bra
som vad vi siktar pa.

® Men insattning gors i O (log n) vilket absout &r battre
an O (n).

® S3 ett balanserat binart soktrad duger inte for vara
dndamal, men vi kan gora vissa observationer for att
forbattra detta...

LINKOPING
II.“ UNIVERSITY

82/106

Heap

Observation #1

Observation #1

Att hitta rotnoden i ett trad gors i O (1).

LINKOPING
II." UNIVERSITY

83/106

Heap

Idé #2

Idé #2

Behall det balanserade binara tradet men skippa
sokstrukturen. Lagra istallet det minsta vardet i roten.

LINKOPING
II.“ UNIVERSITY

84/106

Heap

Idé #2

® Om vi ser till att rotnoden alltid innehaller det minsta
vardet kan vi enkelt sld upp deti O (1).

® .. Men vi vill kunna ta bort det minsta vardet ocksa.

® For att gbra det maste vi dels byta plats pa rotnoden
och en I6vnod, och sedan hitta det varde som ar minst
nar roten ar borta och flytta det till rotnoden.

® Den naiva ldsningen pa detta ar att soka hela
strukturen, vilket tar O (n).

® Men vi vill gbra battre...

LINKOPING
II.“ UNIVERSITY

85/106

Heap

Observation #2

Observation #2

Om vi strukturerar tradet s.a. det nast-minsta vardet ocksa
kan hittas i konstant tid sa blir borttagningen mycket enklare.

LINKOPING
II." UNIVERSITY

86/106

Heap

Idé #3

Idé #3

Se till att det ndst-minsta vardet alltid ligger som ett barn till
roten.

LINKOPING
II." UNIVERSITY

Heap

Vad vi har hittills

© & © ©

87/106

LINKOPING
II.“ UNIVERSITY

Heap

Vad vi har hittills

minst!

© & © ©

87/106

LINKOPING
II.“ UNIVERSITY

Heap

Vad vi har hittills

ta bort

®
(@ (15)
& ®» & ©

87/106

LINKOPING
II.“ UNIVERSITY

Heap

Vad vi har hittills

ta bort

©

(@ (15)
& ®» & ©

87/106

LINKOPING
II.“ UNIVERSITY

87/106

Heap

Vad vi har hittills

ta bort

LINKOPING
II.“ UNIVERSITY

Heap

Vad vi har hittills

©

o @ A/(abort
0 ® © O

87/106

LINKOPING
II.“ UNIVERSITY

Heap

Vad vi har hittills

inte minst

®
(@ (1)
@ ®

87/106

LINKOPING
II.“ UNIVERSITY

Heap

Vad vi har hittills

inte minst

minst!

87/106

LINKOPING
II.“ UNIVERSITY

Heap

Vad vi har hittills

inte minst

®
(4 ()
0 ® ©

87/106

LINKOPING
II.“ UNIVERSITY

Heap

Vad vi har hittills

0 ® ©

87/106

LINKOPING
II.“ UNIVERSITY

Heap

Vad vi har hittills

minst!
B0
O (1)
@& @ G,

ndst-minst

87/106

LINKOPING
II.“ UNIVERSITY

87/106

Heap

Vad vi har hittills

minst!

(4)
struktefenforuten...
g @ G

st-minst

II LINKOPING
@ UNIVERSITY

88/106

Heap

Idé #4

Idé #4

Vad hander om vi sager att alla barn ska vara stérre an sina
foraldrar?

II LINKOPING
@ UNIVERSITY

Heap

Mer struktur

& © ()

89/106

LINKOPING
II.“ UNIVERSITY

Heap

Mer struktur

minst!

(42 0
& © ()

89/106

LINKOPING
II.“ UNIVERSITY

89/106

Heap

Mer struktur

ta bort

LINKOPING
II.“ UNIVERSITY

Heap

Mer struktur

ta bort

Hitta ndgon I6vnod: O (log n)

89/106

LINKOPING
II.“ UNIVERSITY

Heap

Mer struktur

ta bort

Hitta ndgon I6vnod: O (log n)

89/106

LINKOPING
II.“ UNIVERSITY

89/106

Heap

Mer struktur

ta bort
Byt plats

LINKOPING
II.“ UNIVERSITY

Heap

Mer struktur

ta bort

89/106

LINKOPING
II.“ UNIVERSITY

89/106

Heap

Mer struktur

LINKOPING
II.“ UNIVERSITY

89/106

Heap

Mer struktur

LINKOPING
II.“ UNIVERSITY

89/106

Heap

Mer struktur

LINKOPING
II.“ UNIVERSITY

89/106

Heap

Mer struktur

LINKOPING
II.“ UNIVERSITY

89/106

Heap

Mer struktur

LINKOPING
II.“ UNIVERSITY

89/106

Heap

Mer struktur

Strhélls!
&) (32)

II LINKOPING
@ UNIVERSITY

89/106

Heap

Mer struktur

Men balang4 garanterat...
O

II LINKOPING
@ UNIVERSITY

Heap

Mer struktur

Idén att varje nod ska vara mindre an sina barn maste uppratthallas efter
varje operation.

Detta gor att borttagning av rotnoden blir nagot mer involverat.

Vi behover forst och framst hitta en I6vnod (vilken som helst), vilket tar
O (logn) (givet att tradet &r balanserat)

Sedan byter vi plats pa rotnoden och den funna lévnoden.

Efter det vill vi att det ndst-minsta vardet nu ska ligga i roten, men den ar latt
att hitta: den &r en av barnen till rotnoden.

Vi byter plats pa dessa tva, och sedan upprepar vi den har processen tills
tradets struktur ar aterstalld.

Denna swap-kedja beséker som mest varje niva i tridet, s& O (log n) (givet
att tradet ar balanserat)

... men ingenstans garanterar vi att balansen uppratthalls...

90/106

LINKOPING
UNIVERSITY

91/106

Heap

Nastan komplett trad

Definition: Komplett— och nastan komplett trad

e Ett trad 7 ar komplett om det har exakt 2 — 1 noder
fordelade i exakt & nivaer.

® Etttrad T ar ndstan komplett om alla nivar férutom sista
ar fulla, och den sista nivan ar fylld fran vanster till hoger.

® Foljd: Ett nastan komplett trad ar balanserat

LINKOPING
II." UNIVERSITY

92/106

Heap

Idé #5

Idé #5

® |agravar prioritetsko i ett nastan komplett trad, d.v.s. fyll
varje niva fran vanster till hoger vid insattning.

® Vid borttagning, valj alltid den 16vnod som ar mest till
hoger pa sista nivan

LINKOPING
II." UNIVERSITY

Heap

Nastan komplett trad

® ® @)

93/106

LINKOPING
II.“ UNIVERSITY

Heap

Nastan komplett trad

ta bort

©
0 ®

OBROENOERO
® ® @)

93/106

LINKOPING
II.“ UNIVERSITY

Heap

Nastan komplett trad

ta bort

Hitta den specifika Ivnoden: O (n)

93/106

LINKOPING
II.“ UNIVERSITY

93/106

Heap

Nastan komplett trad

ta bort

LINKOPING
II.“ UNIVERSITY

Heap

Nastan komplett trad

ta bort

93/106

LINKOPING
II.“ UNIVERSITY

Heap

Nastan komplett trad

Fel!

()

ORNORNONRO
0JO

93/106

LINKOPING
II.“ UNIVERSITY

93/106

Heap

Nastan komplett trad

LINKOPING
II.“ UNIVERSITY

93/106

Heap

Nastan komplett trad

LINKOPING
II.“ UNIVERSITY

Heap

Nastan komplett trad

Fel! (:)

ONORNONRO
0JO

&)
=)

93/106

LINKOPING
II.“ UNIVERSITY

Heap

Nastan komplett trad

Fel! (:)

()
ORNONONNO
‘E' ‘E' minst

93/106

LINKOPING
II.“ UNIVERSITY

93/106

Heap

Nastan komplett trad

LINKOPING
II.“ UNIVERSITY

Heap

Nastan komplett trad

ORRORBNORRO
OJO

93/106

LINKOPING
II.“ UNIVERSITY

94/106

Heap
Nastan komplett trad

® |.0.m. att tradet ar nastan komplett och vi alltid tar bort
den mest hogra I6vnoden pa sista nivan sa kommer vi
efter borttagning fortsatta ha ett komplett trad.

® P.g.a. detta kan vi garantera att tradet ocksa alltid ar
balanserat.

® Detta gor att antalet nivaer alltid ar O (logn)

® Nackdelen dock ar ju att vi inte har ett smidigt satt att
hitta den mest hogra noden i sista noden.

® Men detta gar att 16sa genom att fundera pa hur ett
nastan komplett trad kan lagras...

LINKOPING
II.“ UNIVERSITY

95/106

Heap

Lagra ett nastan komplett trad i en dynamisk array

II LINKOPING
@ UNIVERSITY

95/106

Heap

Lagra ett nastan komplett trad i en dynamisk array

o]}]

II LINKOPING
@ UNIVERSITY

95/106

Heap

Lagra ett ndstan komplett trad i en dynamisk array

PEON

o

=
]

II LINKOPING
@ UNIVERSITY

95/106

Heap

Lagra ett ndstan komplett trad i en dynamisk array

II LINKOPING
@ UNIVERSITY

95/106

Heap

Lagra ett ndstan komplett trad i en dynamisk array

II LINKOPING
@ UNIVERSITY

Heap

Lagra ett ndstan komplett trad i en dynamisk array

Det stora problemet med att lagra generella trad i en
array ar att det kan finnas stora luckor i tradet, d.v.s. att
I6vnoder kan i princip forekomma vart som helst.

Men i ett ndstan komplett trad vet vi att varje niva ar
fylld, férutom potentiellt sista.

Men den sista nivan fylls fran vanster till hoger.

Sa vad det innebar ar att vi i princip kan spara varje
lageritradetien array.

Specifikt kan vi sedan lagra varje lager i sekvens i en
dynamisk array som representerar hela grafen.

96/106

LINKOPING
UNIVERSITY

97/106

Heap

Lagra ett nastan komplett trad i en dynamisk array

Avbildning fran trad till array

Vi avbildar ett ndstan komplett trad till en array sahar:
® Rotnoden lagras pa index 0
® Nod pa index 7 lagrar sitt vdanstra barn pa index 27 + 1

® Nod pa index 7 lagrar sitt hogra barn pa index 2i + 2
7 —

1
® Nod pa index 7 har nod pa index { J som foralder

LINKOPING
II." UNIVERSITY

98/106

Heap

Slutsats

® Med denna avbildning kan gora féljande observationer:

® |nsattning av ny I6vnod langst till hoger ar ekvivalent
med att stoppa in sist i en array = O (1) amorterat

® Borttagning av den sista l6vnoden ar ekvivalent med att
ta bort sista elementet i en array = O (1) amorterat

® Med detta kan vi till sist fardigstalla var prioritetsko

LINKOPING
II.“ UNIVERSITY

99/106

Heap

Heaps

Definition: Heap

® En min-heap ar ett binart trad H dar:

(i) H ar ett ndstan komplett trad

(ii) Varje nod i H ar mindre an bada sina barn
® En max-heap ar ett binart trad H dar:

(i) H ar ett ndstan komplett trad
(ii) Varje nod i H ar stérre an bada sina barn

LINKOPING
II." UNIVERSITY

Heap

Heaps, egenskaper

® Hitta minsta/storsta: O (1)
® Insattning: O (logn)
® Borttagning: O (logn)

100/ 106

LINKOPING
II.“ UNIVERSITY

101/106

Heap

Implementation

class Min_Heap

public:
Min_Heap() = default;
void push(int value);

int pop_min();
int peek_min() const;

private:

void sift_down(unsigned index);
void sift_up(unsigned index);

vector<int> values;

’

II LINKOPING
@ UNIVERSITY

102/106

Heap

Implementation: Hjdlpfunktioner

unsigned left(unsigned index)

{
3

return 2*index + 1;

unsigned right(unsigned index)

{
}

return 2*index + 2;

unsigned parent(unsigned index)

{
}

return (index - 1) / 2;

II LINKOPING
@ UNIVERSITY

103/106

Heap

Implementation: sift-down

void Min_Heap::sift_down(unsigned index)

{
if (index >= values.size()) return;
unsigned 1 { left (index) }; // hitta vansterbarn
unsigned r { right(index) }; // hitta hégerbarn

// om véanster inte finns sa& finns inga barn
if (1 >= values.size()) return;

unsigned next { 1 }; // hitta det minsta barnet
if (r < values.size() && values[r] < values[1])
next = r;

// om vi redan ar mindre an vart minsta barn ar vi klara
if (values[index] < values[next]) return;

// annars byter vi plats med minsta barnet och rekurserar
swap(values[index], values[next]);
sift_down(next);

LINKOPING
UNIVERSITY

104 /106

Heap

Implementation: sift-up

void Min_Heap::sift_up(unsigned index)

{

if (index == 0 || index >= values.size()) return;

// hitta foréaldern
unsigned p { parent(index) };

// om heap egenskapen redan ar uppfylld &r vi klara
if (values[p] < values[index]) return;

// annars byter vi vardena och rekurserar
swap(values[p], values[index]);
sift_up(p);

II LINKOPING
@ UNIVERSITY

Heap

Implementation: Insattning, borttagning och hitta

105/106

void Min_Heap::push(int value)

}

values.push_back(value); // lagg till som sista Llévnod
sift_up(values.size() - 1); // flytta uppat tills det &ar en heap igen

int Min_Heap: :pop_min()

{

}

int min { values.front() }; // spara det minsta véardet
swap(values.front(), values.back()); // byt plats med sista Llovnod
values.pop_back(); // ta bort sista lévnoden

sift_down(0); // flytta nedat tills det ar en heap igen

int Min_Heap::peek_min()

return values.front();

LINKOPING
UNIVERSITY

106/106

Heap

Avslut

® Kan man gora battre?

® Ja, det finns t.ex. nagot som heter en Fibonacci heap dar insattning blir
O (1) amorterat.

® En Fibonacci heap utdkar dven funktionaliteten av prioritetskon till att
kunna uppdatera prioriteten av redan befintliga nycklar, vilket den kan gora i
O (1) amorterat.

® En Fibonacci heap ar dock mer komplicerad att implementera och analysera.
® Fibonacci heaps bygger pa den nagot simplare Binomial heap

® https://www.cs.usfca.edu/~galles/visualization/
FibonacciHeap.html

II LINKOPING
@ UNIVERSITY

https://www.cs.usfca.edu/~galles/visualization/FibonacciHeap.html
https://www.cs.usfca.edu/~galles/visualization/FibonacciHeap.html

II LINKOPING
o UNIVERSITY

www.liu.se

	Repetition: Grafer
	Repetition: Riktade grafer
	Representation av grafer
	Grafsökning
	Heap

