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Repetition: Riktade grafer
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Grafer

Sammanfattning

® Vi borjar denna féreldasning med att sammanfatta och
paminna om grundlaggande begrepp och terminologi
kring grafer.

® Detta amne har mycket 6verlap med optimeringslara
och andra kurser, men i den har foreldsningen lagger vi
storre vikt vid den datavetenskaplig sidan.
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Grafer

Vad ar en graf?
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Grafer

Vad ar en graf?
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Grafer

Vad ar en graf?
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Grafer

Vad ar en graf?

® Grafer studeras flitigt inom matematiken, t.ex. i
kurserna TATA32 (diskret matematik) och TATA64
(grafteor).

® Grafer anvands i allmanhet for att modellera
relationer/associationer mellan olika objekt. Det &r en
matematisk abstraktion som ar oerhort anvandbar
inom manga falt.

® | datavetenskapen ser vi grafer som en icke-linjar

datastruktur som tillater mer flexibilitet 4n andra mer
traditionella datastrukturer.
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Grafer

Formell definition

Definition: Graf
En graf G = (V, E) ar ett par av tva médngder: V och E, dar
FE bestar av par av elementfran V,dwvs. ECV x V.
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Grafer

Formell defintion

® 1V motsvarar noderna i grafen. Mangden bestar av
godtyckliga objekt, exakt vad det ar beror pa
tilldmpningsomrade.

® [ motsvarar bagarna i grafen. Dessa definieras av vilka
noder som bagen lankar ihop. Vad denna association av
noder betyder beror pa tillampningsomrade.
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Grafer

Grannskap
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Grafer

Grannskap
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Grafer

Grannskap

LINKOPING
II.“ UNIVERSITY



8/106

Grafer

Grannskap
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Grafer

Grannskap
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Grafer

Grannskap
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Grafer

Grannskap

Grannskapet till A
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Grafer

Grannskap

Defintion: Grannskap

® Tva noder u,v € V sags vara grannar om (u,v) € E
(eller (v,u) € E).

® Grannskapet av en nod u dar mangden av alla noder v
sadana att w och v ar grannar.
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Grafer

Vandring
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Grafer

Vandring

(A, B)
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Grafer

Vandring

(A, B, D)
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Grafer

Vandring

(A,B,D, F)
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Grafer

Vandring

(A, B, D, F,G)
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Grafer

Vandring

(A,B,D,F,G, F)
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Grafer

Vandring

(A,B,D,F,G, F,E)
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Grafer

Vandring

Vandring

En vandring i en graf G = (V, E)) &r en sekvens av noder

(v1,v2,...,vy,) sadana att v; och v, &r grannar for alla
i=1,2,....n—1.
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Grafer

Vag
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Grafer

Vag

(A, B)
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Grafer

Vag

(A, B, D)
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Grafer

Vag

(A,B,D, F)
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Grafer

Vag

(A, B, D, F,G)
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Grafer

Vag

(A, B, D, F,G, D)

LINKOPING
II.“ UNIVERSITY



12/106

Grafer

Vag

(A,B,D,F,G,D,C)
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Grafer

Vag

Definition: Vag
En vdg i en graf G = (V, E) &@r en vandring dér bagar ej
aterupprepas.
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Grafer

Stig
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Grafer

Stig

(A, E)
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Grafer

Stig

(A, E,G)
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Grafer

Stig

(A, E,G,F)
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Grafer

Stig

(A, E,G, F,D)
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Grafer

Stig

(A, E,G,F,D,C)
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Grafer

Stig

Definition: Stig

Enstigi G = (V, E) ar en vandring dar inga noder far
aterupprepas.
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Grafer

Krets och cykel
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Grafer

Krets och cykel

(E,F,D,G,F,C, A E)
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Grafer

Krets och cykel

(E,G,F,D,B, A, E)
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Grafer

Krets och cykel

Defintion: Krets och cykel

® En krets ar en vdg, som borjar och slutar i samma nod.

® En cykel ar en stig som aven inkluderar en bage fran sista
noden tillbaka till forsta noden.
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Grafer

Vandring, vag, stig, krets och cykel

® Begreppen vandring, vag och stig ar nara relaterade.

® Specifikt handlar det om olika typer av sekvenser av
grannar.

® \/dgar dr ofta det som studeras inom datavetenskap, for

i manga fall &r det relativt enkelt att 6versatta
algoritmer mellan att jobba med vagar och stigar.
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Grafer

Nodgrad

deg(A) =3
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Grafer

Nodgrad

Defintion: Nodgrad

Nodgraden deg(v) forennod v € Vigrafen G = (V, E)
definieras som

deg(v) = {(v,u) € E|u eV},

vilket motsvarar antalet bagar som har v som en dndpunkt.
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Repetition: Grafer

Representation av grafer
Grafsokning
Heap
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Riktade grafer

En riktad graf
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Riktade grafer

En riktad graf

® | foregaende avsnitt diskuterades s.k. oriktade grafer,
d.v.s. grafer dar bagarna ar oordnade par.

® Dessa grafer anvands oftast for att representera
associativa eller kommutativa egenskaper mellan
objekten.

® Men i manga fall behdver vi representera ensidiga
relationer. Detta gors med s.k. riktade grafer.

® | en riktad graf har bagarna en riktning (d.v.s. de ar
pilar).
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Riktade grafer

Riktad graf

Definition: Riktad graf

En graf G = (V, E) ar riktad om paren (u,v) € E ar
ordnade, d.v.s. att (u,v) # (v, u) givet att u # v.
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Riktade grafer

Terminologi

® | en riktad graf har bagarna tva andpunkter, en startnod
och en slutnod.

® | riktade grafer har varje nod v bade inkommande och
utgdende bagar, d.v.s. bagar som har v som slut—
respektive startnod.

® Varje riktad graf har en relaterad graf som kallas
grafens transponat. Detta ar den graf dar alla bagars
riktning vands.
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Riktade grafer

Nodgrad

deg(A) =3
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Riktade grafer

Nodgrad

degt(4) =2
degt(BE) =1

degt(B)/~ 1
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Riktade grafer

Nodgrad

deg” (A) =1

deg™ (E) =2
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Riktade grafer

Nodgrad

® | riktade grafer blir begreppet nodgrad mindre tydligt.

® Detta eftersom att vi nu har tva typer av bagar,
inkommande och utgaende, som har olika betydelse.

® P.g.a. detta definierar vi for varje nod v, inkommande
nodgrad som antalet bagar som har v som slutnod, och
utgadende nodgrad som antalet bagar som har v som
startnod.
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Riktade grafer

Nodgrad

Definition: Nodgrad for riktade grafer

For en riktad graf G = (V, E) definierar vi for varje v € V:
® deg®(v) = |{s | (v,s) € E}| (utgdende bagar)
¢ deg” (v) = {u| (u,v) € E}| (inkommande bagar)
Notera: deg(v) = deg™ (v) + deg™ (v)
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Riktade grafer

Viktade grafer
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Riktade grafer

Viktade grafer

® En viktad graf ar (oftast) en riktad graf.

o Viktade grafer associerar en vikt eller kostnad for
vardera bage. Vad denna vikt eller kostnad
representerar beror pa tillampningsomrade.

® Dessa typer av grafer ar oerhort vanliga inom
optimeringslara, natverksteori och andra praktiska
tillampningsomraden.
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Riktade grafer

Viktade grafer

Definition: Viktade grafer

En viktad graf &r en graf G, = (V, E') med en tillhérande
avbildning w : E — R som motsvarar en bages vikt.
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Repetition: Grafer
Repetition: Riktade grafer

Grafsokning
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Representation av grafer

Hur lagrar vi en graf?

® Som tidigare namnt sa anvands grafer ofta som en
icke-linjar datastruktur for relationer/associationer
mellan olika objekt.

® Detta innebar att vi maste kunna lagra denna data pa
nagot satt samtidigt som vi bibehaller grafstrukturen.

® | detta kapitel presenteras ett antal olika satt att lagra
en graf m.h.a. tidigare anvanda datastrukturer.
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Representation av grafer

Mal med representationen

® |agra noder

® |agra bagar

® |agra eventuella vikter

® insattning (noder och bagar)
® borttagning (noder och bagar)

® sokning (?)
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Representation av grafer

Idé #1

Ide #1

Lagra alla noder i en array och alla bagar som par i en annan
array.
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Representation av grafer

noder: | A|B|C|D|E|F|G]

Linjar representation

bégar:’A,B|A,C|A,E|B,D|C,D|C,F|D,F|D,G|E,F|E,G|F,G‘
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Representation av grafer

Analys av linjar representation

Insattning av nod: O (|V)
Insattning av bage: O (|E|)
Borttagning av nod: O (|V])
Borttagning av bage: O (| E)
Hitta om nod existerar: O (|V])
Hitta om bage existerar: O (|E|)

Om allting halls sorterat blir det istallet logaritmiska
tidskomplexiteter...

Vi kan dock gora dnnu battre!
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Representation av grafer

Observation

Givet |V| =n:

-1
® Om oriktad graf = |E| < 71(712)

® Om riktad graf = |E| < n(n — 1)
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Representation av grafer

Observation

FE definieras som par av noder.

Det finns n(n — 1) unika par av noder som kan bildas.
l.o.m. att bagar definieras som par av noder sa kommer
en riktad bage motsvara exakt ett av dessa unika par.
Sa antalet riktade bagar &r som mest n(n — 1).

| oriktade grafer &r (u,v) = (v, u), d.v.s. att ordningen
pa noderna i bagen spelar ingen roll. Da motsvarar
vardera bage exakt tva mojliga par, sa vi far maximalt

-1
M unika oriktade bagar.
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Representation av grafer

Idé #2

ldé #2

Lagra bagarna som en matris!
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Representation av grafer

Grannmatris
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0 1 2 3 4 5 6
noder: | A|B|C|D|E|F|C|

II LINKOPING
@ UNIVERSITY



Representation av grafer

Grannmatris

0
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6

noder: [A|B|C|D|E|F|G]
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Representation av grafer

Grannmatris

41/106

0 1 2 3 4 5 6
noder: [A|B|C|D|E|F|G]
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Representation av grafer

Grannmatris
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Representation av grafer

Grannmatris

0
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Representation av grafer

Grannmatris
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Representation av grafer

Grannmatris

41/106

0 1 2 3 4 5 6
noder: [A|B|C|D|E|F|G]
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Representation av grafer

Grannmatris
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Representation av grafer

Grannmatris
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Representation av grafer

Grannmatris
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Representation av grafer

Grannmatris
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Representation av grafer

Grannmatris

0 1 2 3 4 5 6
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Representation av grafer
Grannmatris

0 1 2 3 4 5 6
noder: [A|B|C|D|E|F|G]
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Representation av grafer

Grannmatris

0 1 2 3 4 5 6
noder: [A|B|C|D|E|F|G]
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Representation av grafer

Analys av grannmatris

Insattning av bagar: O (1)

Borttagning av bagar: O (1)

Hitta bage: O (1)

Inséttning av nod: O (|V]?)

Borttagning av nod: O (|V[?)

Hitta nod (om noder &r sorterade): O (log |V|)
Hitta nod (om noder ar osorterade): O (|V])
Minnesanvindning: O (|V| + |V |?)
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Representation av grafer

Varfor O (|V[?)?
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Representation av grafer
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Representation av grafer
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Representation av grafer

Varfor O (|V[?)?
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Representation av grafer

Varfor O (|V[?)?

noder: EE
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Representation av grafer
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Representation av grafer

Varfor O (|V[?)?

noder: EE
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Representation av grafer

Varfor O (|V[?)?

noder: EE
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Representation av grafer

Varfor O (|V[?)?

® Varje gang vi lagger till en ny nod sa oker storleken pa
matrisen, och darfor maste den omallokeras, vilket tar
O (|V[?) for den behéver kopiera hela matrisen.

® Vikan anta att noderna ar sorterade for da kan vi
binarsoka fram dem (dock maste vi hitta dess sorterade
plats vid insattning, men det spelar ingen roll for den
dominerande termen dr omallokeringen av matrisen).
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Representation av grafer

Slutsatser om grannmatris

® Anvander en del minne
® Vildigt snabb om bagarna andras ofta

® Vivill helst inte andra noderna for det ar dyrt
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Representation av grafer

Idé #3

ldé #3

For varje nod, lagra vilka noder den har en bage fill
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Representation av grafer

Grannlista
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Q"™ |Q|w |
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Representation av grafer

Grannlista
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Representation av grafer

Grannlista

Q"™ |Q|w |
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Representation av grafer

Grannlista

Q"™ |Q|w |
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Representation av grafer

Grannlista
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Representation av grafer

Grannlista
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Representation av grafer

Grannlista
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Representation av grafer

Grannlista
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Representation av grafer

Grannlista
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Representation av grafer

Grannlista
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Representation av grafer

Grannlista
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Representation av grafer

Grannlista
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Representation av grafer

Analys av grannlista

® Antag hashtabell innehallandes dynamiska arrayer
® Insattning av noder och bagar amorterat O (1)

® Borttagning av nod ar O (|V|)

® Borttagning av bage ar O (max,cy {deg(v)})

® Hitta nod &r amorterat O (1)

® Hitta bage ar O (V)

¢ Minnesanvandning: O (|V| + |E|)
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Representation av grafer

Jamforelse grannmatris och grannlista

Grannmatris

Insattning nod: O (|V|?)
Insattning bage: O (1)
Ta bort nod: O (|V|?)
Ta bort bage: O (1)

Hitta nod: O (log |V'|)
Hitta bage: O (1)
Minne: O (V| + |V |?)

49/106

Grannlista

Insattning nod: O (1)

Insattning bage: O (1)

Ta bort nod: O (|V])

Ta bort bage: O (max,cy {deg(v)})
Hitta nod: O (1) amorterat

Hitta bage: O (|V|)

Minne: O (|V| + |E|)
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Representation av grafer

Jamforelse grannmatris och grannlista

Grannmatris

Insattning nod: O (|V|?)
Insattning bage: O (1)
Ta bort nod: O (|V|?)
Ta bort bage: O (1)

Hitta nod: O (log |V'|)
Hitta bage: O (1)
Minne: O (V| + |V |?)
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Grannlista

Insattning nod: O (1)

Insattning bage: O (1)

Ta bort nod: O (|V])

Ta bort bage: O (max,cy {deg(v)})
Hitta nod: O (1) amorterat

Hitta bage: O (|V|)

Minne: O (|V| + |E|)

Ingen klockren vinnare...
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Representation av grafer

Avslutande ord

Grannmatriser och grannlistor &r bra pa olika saker.

Grannmatriser ar en oerhort effektiv representation i grafer med manga
bagar och dar noderna ér relativt oférandrade.

Grannlistor ar bra i glesa grafer dar det ar relativt fa bagar, men dar noderna
ar nagot mer dynamiska.

Notera specifiktatt |[V| + 1 < |E| < |V|(|[V]| = 1)

Om |E| € © (|V|2) s& kommer grannlistans minnesanvandning i regel vara
vérre an grannmatrisens, och borttagning av bégar i grannlistan blir O (|V])
(ty vi har en néstan komplett graf)

Om |E| € O (|V]) sa ar grannlistans minnesanvandning mycket battre &n

grannmatrisen, och borttagning av bagar i grannlistan blir O (1) (ty vi har
ungefar en bage per nod, sa deg(v) ~ 1 for alla v)
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Grafsdkning

Lankad representation

class Node
{
public:
int data;
vector<Node*> edges;

iy
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Representation av grafer

Lankad representation

® | manga fall anvands varken grannmatriser eller grannlistor.

® Typiskt exempel ar lankade listor, tradstrukturer o.s.v. dar en fullstandig graf
ar dyrare an det simplare alternativet.

® Det finns en hel drés med grafproblem som inte kraver en fullstandig
representation av en graf, trots att problemet fundamentalt &r en graf.

® Ett typiskt exempel pa detta dr om vi lagrar noderna i ett rutnat, eller om
strukturen inte kraver borttagning/insattning av noder eller bagar.

® | dessa fall kan det exempelvis racka med en lankad struktur av noder, dar
varje nod lagrar nagon data samt alla grannoder.
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Representation av grafer

Implicita grafer

vector<int> get_neighbours(int node)
{
vector<int> neighbours { };
// berékna alla grannar till "node’
return neighbours;

}
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Representation av grafer

Implicita grafer

® Ett annat typiskt exempel ndr en fullstandig representation av grafer inte
kan anvandas ar nar grafen ar pa tok for stor..

® Vad hander t.ex. om antalet noder och bagar &r sd manga att det inte far
plats i minnet, men vi kan for varje nod berdkna deterministiskt vad alla
grannar ar?

® Detta kallas oftast for att vi har en implict graf.

54/106
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Representation av grafer

Hitta alla noder

Hur kan vi hitta alla noder for dessa representationer?
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Repetition: Grafer
Repetition: Riktade grafer
Representation av grafer

ua b wON R

Heap
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Grafsdkning

Rekursiv sokning — lankad struktur

vector<Node*> find_nodes(Node* node)
if (node == nullptr) return { };

vector<Node*> neighbours { };
for (Node* next : node->edges)

{

vector<Node*> nodes {
o e find_nodes(next);

fér (Node* curr : nodes)
neighbours.push_back(curr);
3

return neighbours;
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Grafsdkning

Rekursiv sokning — lankad struktur

vector<Node*> find_nodes(Node* node)
if (pode == nullptr) return { };

vector<Nede*> neighbours { };
for (Node* next : node->edges)

{

vector<Node*>-nodes , {
o e find_nodes(fhext);

fér (Node* curr : nodes)
neighbours.push_back(curr);
3

return neighbours;
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Grafsdkning

Rekursiv sokning — lankad struktur

® Vi gor som tidigare och hittar alla noder rekursivt!

® | det har fallet gar vi igenom alla grannar och berédknar
alla noder som gar att hitta fran dem och lagger till dem
i var lista 6ver noder.

® Detta funkar utmarkt for den givna grafen!

58/106
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Grafsdkning

Ett problem

59/106

vector<Node*> find_nodes(Node* node)
if (node == nullptr) return { };

vector<Node*> nodes { node };
for (Node* next : node->edges)
{
vector<Node*> neighbours {
find_nodes(next);

3
for (Node* curr : neighbours)
nodes.push_back(curr);
3

return nodes;
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Grafsdkning

Ett problem

59/106

vector<Node*> find_nodes(Node* node)
If (node == nullptr) return { };

veetor<Node*> nodes { node };
for (Nede*snext : node->edges)
{
vector<Nodé*> nedighbours {
find_nodes(next)s

3
for (Node* curr : neighbours)
nodes.push_back(curr);
3

return nodes;
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Grafsdkning

Ett problem

® Ett mindre problem uppstar om vi lagger till en bage
fran nod 2 till nod 3, for da dyker namligen nod 3 upp
tva ganger i var lista, vilket vi vill undvika.

® For att 16sa detta gor viom var vector till ett set

(eller unordered_set om vara noder har en
hashfunktion definierad)

60/106
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Grafsdkning

Losning!

61/106

set<Node*> find_nodes(Node* node)
if (node == nullptr) return { };

set<Node*> nodes { node };
for (Node* next : node->edges)
{
set<Node*> neighbours {
find_nodes(next);

3
for (Node* curr : neighbours)
nodes.push_back(curr);
3

return nodes;
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Grafsdkning

Losning!

61/106

set<Node*> find_nodes(Node* node)
if (pode == nullptr) return { };

set<Node*> nodes { node };
for (Node* next : node->edges)
{
set<Node*> Ineighbours {
find_nodes(next);

3
for (Node* curr : neighbours)
nodes.push_back(curr);
3

return nodes;
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Grafsdkning

Ett nytt problem...

o‘:’e

62/106

set<Node*> find_nodes(Node* node)
if (node == nullptr) return { };

set<Node*> nodes { node };
for (Node* next : node->edges)
{
set<Node*> neighbours {
find_nodes(next);

3
for (Node* curr : neighbours)
nodes.push_back(curr);
3

return nodes;
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Grafsdkning

Ett nytt problem...

o‘:’e

62/106

set<Node*> find_nodes(Node* node)
if/(node == nullptr) return { };

set<Node*> nodes { node };
for “(Node* snexty : node->edges)
{
set<Node*> ‘neighbours {
find_nodes(next);

3
for (Node* curr : neighboups)
nodes.push_back(curr);
3

return nodes;

II LINKOPING
@ UNIVERSITY



Grafsdkning

Ett nytt problem...

® Nar vi lagger till en bage fran nod 3 tillbaka till nod 0
kraschar vart program for att det far slut pa minne...?!

® Det som hander &r att vi har introducerat en cykel i var
graf. Detta innebar att nar vi soker efter grannar till nod
3 sa kommer vi tillbaka till nod 0 och bérjar i princip om
sokningen fran borjan.

® Detta problemet ar i regel vad som gor grafsokning till
en egen klass av problem.

® | Gsning ar dock forvanansvart simpel...

63/106
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Grafsdkning

Djupet-forst-sokning (DFS)

® [ osningen ar att vi kontrollerar huruvida en nod redan
har hittats innan vi sdker efter dess grannar.

® Om noden redan har hittats behover vi inte kolla den
igen sa vi avbryter.

® Vi skriver om funktionen sa att rekursiva steg har
tillgang till behallaren av hittade noder.
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Grafsdkning

Djupet-forst-sokning (DFS)

o‘:’e

65/106

void find_nodes_help(Node* node, set<Node*>& found)

if (node == nullptr) return { };
if (found.count(node) > 0) return { };

found.insert(node);
for (Node* next : node->edges)
find_nodes_help(next, found);

w

set<Node*> find_nodes(Node* node)

set<Node*> nodes { };
find_nodes_help(node, nodes);
return nodes;

}
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Grafsdkning

Djupet-forst-sokning (DFS)

o‘:’e

65/106

void find_nodes_help(Node* node, set<Node*>& found)

if (pode == nullptr) return { };
if (found.count(node) > 0) return { };

found .dnserit (node);
for (Node*/next_: node->edges)
find_nodes_help(next, found);

w

set<Node*> find_nodes(Node* node)

set<Node*> nodes { };
find_nodes_help(node, nodes);
return nodes;

}
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Grafsdkning

Djupet-forst-sokning (DFS)

® Som tidigare diskuterat i kursen ar i regel rekursiva
I6sningar nagot dyrare an iterativa varianter.

® S3 vitestar att implementera DFS iterativt istéllet.

® Nyckelobservationen hér ar att vi maste halla koll pa
vilka noder vi ska besdka harnast genom att successivt
lagga till nya noder nar de upptéacks.

® Nasta nod vi vill besdka ar i regel den senaste vi hittade
(om vi vill fa samma beteende som den rekursiva
implementationen) sa en stack later [ampligt!

66/106
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Grafsdkning

Iterativ variant

set<Node*> DFS(Node* start)
{
set<Node*> found;
stack<Node*> stack;
stack.push(start);
while (!stack.empty())
{
Node* node { stack.top() };
stack.pop();
if (node == nullptr) continue;
if (found.count(node) > 0) continue;
found.insert(node);
for (Node* next : node->edges)
stack.push(next);

}

return found;

67/106
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Grafsdkning

djupet-forst-sokning (DFS)

a stack

roune: [ | [ [ [ []]
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Grafsdkning

djupet-forst-sokning (DFS)
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Grafsdkning

djupet-forst-sokning (DFS)
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Grafsdkning

djupet-forst-sokning (DFS)
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Grafsdkning

djupet-forst-sokning (DFS)
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Grafsdkning

djupet-forst-sokning (DFS)
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Grafsdkning

djupet-forst-sokning (DFS)
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Grafsdkning

djupet-forst-sokning (DFS)

a stack

roune:[a] [ [ [ [ ]]

=] [ ] ]
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Grafsdkning

djupet-forst-sokning (DFS)

a 1} stack

(®) 7 H
o @ O
HE

-4
o
o
>
o
hS
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Grafsdkning

djupet-forst-sokning (DFS)

a 1} stack

found:’A|E| | | | | ‘
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Grafsdkning

djupet-forst-sokning (DFS)

a <> stack

found:’A|E| | | | | ‘

LINKOPING
II.“ UNIVERSITY



68/106

Grafsdkning

djupet-forst-sokning (DFS)

a <> stack

found:’A|E| | | | | ‘

ool [ 1]
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Grafsdkning

djupet-forst-sokning (DFS)

a stack

found:’A|E| | | | | ‘

ool [ 1]
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Grafsdkning

djupet-forst-sokning (DFS)

a stack

found:’A|E| | | | | ‘
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Grafsdkning

djupet-forst-sokning (DFS)

a stack

found:’A|E|G| | | | ‘
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Grafsdkning

djupet-forst-sokning (DFS)

a @ stack

GQ@@ -

found:’A|E|G| | | | ‘
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Grafsdkning

djupet-forst-sokning (DFS)

a @ stack

@Qg@

found:’A|E|G| | | | ‘

s [ ] ]

LINKOPING
II.“ UNIVERSITY



68/106

Grafsdkning

djupet-forst-sokning (DFS)

a stack

found:’A|E|G| | | | ‘

s [ ] ]
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Grafsdkning

djupet-forst-sokning (DFS)

a @ stack
@ :

found:’A|E|G| | | | ‘
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Grafsdkning

djupet-forst-sokning (DFS)

a @ stack
@ :

roun: [4]5]a o] | | |
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Grafsdkning

djupet-forst-sokning (DFS)

a @ stack
© :

roun: [4]5]a o] | | |
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Grafsdkning

djupet-forst-sokning (DFS)

a @ stack

(5)
O s

roun: [4]5]a o] | | |

=] [ ] ]
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Grafsdkning

djupet-forst-sokning (DFS)

a @ stack

(5)
G

roun: [4]5]a o] | | |

=] [ ] ]
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Grafsdkning

djupet-forst-sokning (DFS)

(5)
G

roun: [4]5]a o] | | |

2]
o
of=lo] | JE
=~
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Grafsdkning

djupet-forst-sokning (DFS)

roun: [4]5]a o] | | |
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Grafsdkning

djupet-forst-sokning (DFS)

(42
®
;

roun: [4]5]a o] | | |

stack

=] [ ] ]
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Grafsdkning

djupet-forst-sokning (DFS)

stack

(4)
+ @
O,

rouna: (4[5 ]a]o]c] | |

=] [ ] ]
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Grafsdkning

djupet-forst-sokning (DFS)

stack

(%)
@@@
(2)

rouna: (4[5 ]a]o]c] | |

=] [ ] ]
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Grafsdkning

djupet-forst-sokning (DFS)

(%)
@@g
(2)

rouna: (4[5 ]a]o]c] | |

2]
o
o=~ | |&
=~
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Grafsdkning

djupet-forst-sokning (DFS)

(=)
o
@
BODEE}

rouna: (4[5 ]a]o]c] | |

LINKOPING
II.“ UNIVERSITY



68/106

Grafsdkning

djupet-forst-sokning (DFS)
a @ stack

2 (é
©

rouna: (4[5 ]a o] c]r] |

=] [ ] ]
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Grafsdkning

djupet-forst-sokning (DFS)
a @ stack

=] [ ] ]

rouna: (4[5 ]a o] c]r] |
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Grafsdkning

djupet-forst-sokning (DFS)

rouna: (4[5 ]a o] c]r] |
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Grafsdkning

djupet-forst-sokning (DFS)

()
o)
e@@@

rouna: (4[5 ]a o] c]r] |

l=[s[ T3

LINKOPING
II.“ UNIVERSITY



68/106

Grafsdkning

djupet-forst-sokning (DFS)

()
o)
e@@@

rouna: (4[5 ]a o] c]r] |

[[=[sT=[ 5
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Grafsdkning

djupet-forst-sokning (DFS)

rouna: (4[5 ]a o] c]r] |
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Grafsdkning

djupet-forst-sokning (DFS)

]
—+
Q
O
F

°a
O. lé
)

rouna: (4[5 ]a o] c]r] |

[o]=]s]=]a]
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Grafsdkning

djupet-forst-sokning (DFS)

rouna: (4[5 ]a o] c]r] |

]
—+
Q
O
F

[o]=]s]=]a]
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Grafsdkning

djupet-forst-sokning (DFS)

rouna: (4[5 ]a o] c]r] |
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Grafsdkning

djupet-forst-sokning (DFS)

ouna: (4[5 [ o][c[r] |
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Grafsdkning

djupet-forst-sokning (DFS)

rouna: (4[5 ]a o] c]r] |

[[=[sT=[ 5
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Grafsdkning

djupet-forst-sokning (DFS)

(2
()
@a@a

rouna: (4[5 ]a o] c]r] |

l=[s[ T3
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Grafsdkning

djupet-forst-sokning (DFS)

(2
()
@an

rouna: (4[5 ]a[o[c]r] |

l=[s[ T3
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Grafsdkning

djupet-forst-sokning (DFS)

rouna: (4[5 ]a o] c]r] |
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Grafsdkning

djupet-forst-sokning (DFS)

a @ stack

(5)
G

rouna: (4[5 ]a o] c]r] |

=] [ ] ]
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Grafsdkning

djupet-forst-sokning (DFS)

a @ stack

(5)
G

rouna: (4[5 ]a[o]c[r] |

=] [ ] ]
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Grafsdkning

djupet-forst-sokning (DFS)

a stack

rouna: (4[5 ]a o] c]r] |

=] [ ] ]
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Grafsdkning

djupet-forst-sokning (DFS)

a stack

rouna: (4[5 ]a o] c]r] |
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Grafsdkning

djupet-forst-sokning (DFS)

a stack

rouna: (4[5 ]a o] r]5]
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Grafsdkning

djupet-forst-sokning (DFS)

(4) stack
@§° =

rouna: (4[5 ]a o] r]5]
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Grafsdkning

djupet-forst-sokning (DFS)

rouna: (4[5 ]a o] r]5]

stack

o= [ ] ]
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Grafsdkning

djupet-forst-sokning (DFS)

a stack

rouna: (4[5 ]a o] r]5]

o= [ ] ]
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Grafsdkning

djupet-forst-sokning (DFS)

() -

rouna: (4[5 ]a o] r]5]
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Grafsdkning

djupet-forst-sokning (DFS)

() -

rouna: [ 4[5 ][] r]5]
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Grafsdkning

djupet-forst-sokning (DFS)

a stack

rouna: (4[5 ]a o] r]5]
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Grafsdkning

djupet-forst-sokning (DFS)

stack

(4)
@@ ]
Q I

rouna: (4[5 ]a o] r]5]

LINKOPING
II.“ UNIVERSITY



68/106

Grafsdkning

djupet-forst-sokning (DFS)

stack

(4)
@@ ]
Q I

rouna: (4[5 ]a ][] r]5]
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Grafsdkning

djupet-forst-sokning (DFS)

a stack

rouna: (4[5 ]a o] r]5]
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Grafsdkning

Kan vi gora i ndgon annan ordning?
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Grafsdkning

Byt ut stacken mot en ko!

set<Node*> DFS(Node* start)
{
set<Node*> found;
queue<Node*> queue;
queue.push(start);
while (!queue.empty())
{
Node* node { queue.front() };
queue.pop();
if (node == nullptr) continue;
if (found.count(node) > 0) continue;
found.insert(node);
for (Node* next : neighbours)
queue.push(next);

return found;
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Grafsdkning

bredden-forst-sokning (BFS)

e

roune: | | [ [ [ []]
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Grafsdkning

bredden-forst-sokning (BFS)
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bredden-forst-sokning (BFS)
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bredden-forst-sokning (BFS)
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bredden-forst-sokning (BFS)
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bredden-forst-sokning (BFS)
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Grafsdkning

bredden-forst-sokning (BFS)

fe]
c
[¢]
c
(0]

L] [=]<]

II LINKOPING
@ UNIVERSITY



71/106

Grafsdkning

bredden-forst-sokning (BFS)

roune:[a] [ [ [ [ ] ]
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Grafsdkning

bredden-forst-sokning (BFS)

0@
Lok
(3) ) -
O

roune:[a] [ [ [ [ ] ]
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Grafsdkning

bredden-forst-sokning (BFS)

0@
Lok
(3) ) -
O

found:’A|C| | | | | ‘
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Grafsdkning

bredden-forst-sokning (BFS)

(e [
Lap
(5) e |
=0

found:’A|C| | | | | ‘
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Grafsdkning

bredden-forst-sokning (BFS)

queue

(4)
@:
© (¢)

found:’A|C| | | | | ‘

L] [=]+]
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Grafsdkning

bredden-forst-sokning (BFS)

found:’A|C| | | | | ‘

queue

L] [=]+]
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Grafsdkning

bredden-forst-sokning (BFS)

a8

found:’A|C| | | | | ‘
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Grafsdkning

Jamférelse DFS och BFS

Bade DFS och BFS hittar garanterat alla noder som ar sammanhéangande
med startnoden.

DFS &r nagot enklare att implementera da det (enkelt) kan goéras rekursivt.
BFS traverserar den kortaste vagen till varje nod (bevis gors i inlamningen)
DFS hittar en vag snabbt, men vi kan inte saga nagot sarskilt om den vagen.
DFS kommer tidigt hitta noder som ligger langt bort, medan BFS maste
traversera lager for lager i grafen (forst alla som &r ett steg fran startnoden,
sedan alla som &r tva steg bort, 0.s.v.).

Dessa egenskaper gor att BFS och DFS lampar sig for olika andamal: BFS
anvands i regel nar en kortaste vag ar viktig, men i andra fall tenderar DFS
att vara mer naturligt och enklare.

Tidskomplexiteten for BFS och DFS dar samma (vad den &r lamnas till
inlamningen)

Pa nésta slide diskuterar vi hur man anvander BFS och DFS for att hitta vagar.
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Hitta kortaste vag mellan tva noder

vector<Node*> shortest_path(Node* start, int end_id)

unordered_map<Node*, Node*> from;
queue<pair<Node*, Node*>> queue;
queue.push({ start, nullptr });
while (!queue.empty())
{
auto [curr, prev] = queue.front();
queue.pop();
if (from.count(curr) > 0) continue;
if (curr->id == end_id)
return produce_path(from, curr);
parents[curr] = prev;
for (Node* next : curr->edges)
queue.push({ next, curr });

return { }; // ingen vag hittade
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Hitta kortaste vag mellan tva noder

vector<Node*> produce_path(unordered_map<Node*,

{

Node* end)

vector<Node*> path;
Node* curr { end };
while (curr != nullptr)

path.push_back(curr);
curr = from.at(curr);

}

reverse(path.begin(), path.end());
return path;

Node*> const& from,
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Billigaste vag

Definition: Billigaste vag

| en viktad graf G, = (V, E) ges kostnaden for en vdg
P = (v1,v9,...,vy,) av

1

c(P) =) w(vi,vit1)
1

3
|

i

En billigaste vag ar en vag P sadan att ¢(P) < ¢(Q) for alla
vagar (. Dessa vagar hittas m.h.a. Dijkstras algoritm.
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Grafsdkning
Dijkstras algoritm

® Dijkstras algoritm (kdnd fran TAOPQ7) &r en variant av
bredden forst sokning, men istéllet for att soka i lager,
sa soker vi hela tiden langs den hittills billigaste vagen.

® For att gora detta maste vi likt tidgare halla koll pa mer
information, specifikt hur kostnaden av den hittills
billigaste vagen till varje utforskad nod.

® Detta innebar att vi varken kan anvanda en stack eller
en ko. Istallet vill vi ha en s.k. prioritetsko dar vi alltid
plockar ut den billigaste vagen.

® Hur implementerar vi egentligen det?
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Representation av grafer
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Heap

Mal med prioritetsko

SIa upp hogst prioritet: O (1)
Ta bort hogst prioritet: Helst battre &an O (n)

® Insattningen: Helst battre an O (n)

Antag att hogsta prioritet ar det minsta vardet
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Idé

Idé #1

Anvand ett balanserat binart soktrad, da ar allt O (log n)!
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ldé

® Ett balanserat binart soktrad kan hitta (och ta bort) det
minsta vardet i O (log n) tid, vilket inte &r fullt sa bra
som vad vi siktar pa.

® Men insattning gors i O (log n) vilket absout &r battre
an O (n).

® S3 ett balanserat binart soktrad duger inte for vara
dndamal, men vi kan gora vissa observationer for att
forbattra detta...
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Observation #1

Observation #1

Att hitta rotnoden i ett trad gors i O (1).
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Idé #2

Idé #2

Behall det balanserade binara tradet men skippa
sokstrukturen. Lagra istallet det minsta vardet i roten.
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Idé #2

® Om vi ser till att rotnoden alltid innehaller det minsta
vardet kan vi enkelt sld upp deti O (1).

® .. Men vi vill kunna ta bort det minsta vardet ocksa.

® For att gbra det maste vi dels byta plats pa rotnoden
och en I6vnod, och sedan hitta det varde som ar minst
nar roten ar borta och flytta det till rotnoden.

® Den naiva ldsningen pa detta ar att soka hela
strukturen, vilket tar O (n).

® Men vi vill gbra battre...
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Observation #2

Observation #2

Om vi strukturerar tradet s.a. det nast-minsta vardet ocksa
kan hittas i konstant tid sa blir borttagningen mycket enklare.
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Idé #3

Idé #3

Se till att det ndst-minsta vardet alltid ligger som ett barn till
roten.
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Vad vi har hittills
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Vad vi har hittills
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Idé #4

Idé #4

Vad hander om vi sager att alla barn ska vara stérre an sina
foraldrar?
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Mer struktur
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Mer struktur
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Mer struktur

ta bort

Hitta ndgon I6vnod: O (log n)
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Mer struktur

ta bort
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Mer struktur

Men balang4 garanterat...
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Mer struktur

Idén att varje nod ska vara mindre an sina barn maste uppratthallas efter
varje operation.

Detta gor att borttagning av rotnoden blir nagot mer involverat.

Vi behover forst och framst hitta en I6vnod (vilken som helst), vilket tar
O (logn) (givet att tradet &r balanserat)

Sedan byter vi plats pa rotnoden och den funna lévnoden.

Efter det vill vi att det ndst-minsta vardet nu ska ligga i roten, men den ar latt
att hitta: den &r en av barnen till rotnoden.

Vi byter plats pa dessa tva, och sedan upprepar vi den har processen tills
tradets struktur ar aterstalld.

Denna swap-kedja beséker som mest varje niva i tridet, s& O (log n) (givet
att tradet ar balanserat)

... men ingenstans garanterar vi att balansen uppratthalls...
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Nastan komplett trad

Definition: Komplett— och nastan komplett trad

e Ett trad 7 ar komplett om det har exakt 2 — 1 noder
fordelade i exakt & nivaer.

® Etttrad T ar ndstan komplett om alla nivar férutom sista
ar fulla, och den sista nivan ar fylld fran vanster till hoger.

® Foljd: Ett nastan komplett trad ar balanserat
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Idé #5

Idé #5

® |agravar prioritetsko i ett nastan komplett trad, d.v.s. fyll
varje niva fran vanster till hoger vid insattning.

® Vid borttagning, valj alltid den 16vnod som ar mest till
hoger pa sista nivan
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Nastan komplett trad

ta bort

Hitta den specifika Ivnoden: O (n)
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Nastan komplett trad

® |.0.m. att tradet ar nastan komplett och vi alltid tar bort
den mest hogra I6vnoden pa sista nivan sa kommer vi
efter borttagning fortsatta ha ett komplett trad.

® P.g.a. detta kan vi garantera att tradet ocksa alltid ar
balanserat.

® Detta gor att antalet nivaer alltid ar O (logn)

® Nackdelen dock ar ju att vi inte har ett smidigt satt att
hitta den mest hogra noden i sista noden.

® Men detta gar att 16sa genom att fundera pa hur ett
nastan komplett trad kan lagras...
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Lagra ett nastan komplett trad i en dynamisk array
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Lagra ett ndstan komplett trad i en dynamisk array
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Lagra ett ndstan komplett trad i en dynamisk array

Det stora problemet med att lagra generella trad i en
array ar att det kan finnas stora luckor i tradet, d.v.s. att
I6vnoder kan i princip forekomma vart som helst.

Men i ett ndstan komplett trad vet vi att varje niva ar
fylld, férutom potentiellt sista.

Men den sista nivan fylls fran vanster till hoger.

Sa vad det innebar ar att vi i princip kan spara varje
lageritradetien array.

Specifikt kan vi sedan lagra varje lager i sekvens i en
dynamisk array som representerar hela grafen.
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Lagra ett nastan komplett trad i en dynamisk array

Avbildning fran trad till array

Vi avbildar ett ndstan komplett trad till en array sahar:
® Rotnoden lagras pa index 0
® Nod pa index 7 lagrar sitt vdanstra barn pa index 27 + 1

® Nod pa index 7 lagrar sitt hogra barn pa index 2i + 2
7 —

1
® Nod pa index 7 har nod pa index { J som foralder
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Slutsats

® Med denna avbildning kan gora féljande observationer:

® |nsattning av ny I6vnod langst till hoger ar ekvivalent
med att stoppa in sist i en array = O (1) amorterat

® Borttagning av den sista l6vnoden ar ekvivalent med att
ta bort sista elementet i en array = O (1) amorterat

® Med detta kan vi till sist fardigstalla var prioritetsko
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Heaps

Definition: Heap

® En min-heap ar ett binart trad H dar:

(i) H ar ett ndstan komplett trad

(ii) Varje nod i H ar mindre an bada sina barn
® En max-heap ar ett binart trad H dar:

(i) H ar ett ndstan komplett trad
(ii) Varje nod i H ar stérre an bada sina barn
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Heaps, egenskaper

® Hitta minsta/storsta: O (1)
® Insattning: O (logn)
® Borttagning: O (logn)
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Implementation

class Min_Heap

public:
Min_Heap() = default;
void push(int value);

int pop_min();
int peek_min() const;

private:

void sift_down(unsigned index);
void sift_up(unsigned index);

vector<int> values;

’
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Implementation: Hjdlpfunktioner

unsigned left(unsigned index)

{
3

return 2*index + 1;

unsigned right(unsigned index)

{
}

return 2*index + 2;

unsigned parent(unsigned index)

{
}

return (index - 1) / 2;
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Implementation: sift-down

void Min_Heap::sift_down(unsigned index)

{
if (index >= values.size()) return;
unsigned 1 { left (index) }; // hitta vansterbarn
unsigned r { right(index) }; // hitta hégerbarn

// om véanster inte finns sa& finns inga barn
if (1 >= values.size()) return;

unsigned next { 1 }; // hitta det minsta barnet
if (r < values.size() && values[r] < values[1])
next = r;

// om vi redan ar mindre an vart minsta barn ar vi klara
if (values[index] < values[next]) return;

// annars byter vi plats med minsta barnet och rekurserar
swap(values[index], values[next]);
sift_down(next);
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Implementation: sift-up

void Min_Heap::sift_up(unsigned index)

{

if (index == 0 || index >= values.size()) return;

// hitta foréaldern
unsigned p { parent(index) };

// om heap egenskapen redan ar uppfylld &r vi klara
if (values[p] < values[index]) return;

// annars byter vi vardena och rekurserar
swap(values[p], values[index]);
sift_up(p);
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Implementation: Insattning, borttagning och hitta

105/106

void Min_Heap::push(int value)

}

values.push_back(value); // lagg till som sista Llévnod
sift_up(values.size() - 1); // flytta uppat tills det &ar en heap igen

int Min_Heap: :pop_min()

{

}

int min { values.front() }; // spara det minsta véardet
swap(values.front(), values.back()); // byt plats med sista Llovnod
values.pop_back(); // ta bort sista lévnoden

sift_down(0); // flytta nedat tills det ar en heap igen

int Min_Heap::peek_min()

return values.front();
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Avslut

® Kan man gora battre?

® Ja, det finns t.ex. nagot som heter en Fibonacci heap dar insattning blir
O (1) amorterat.

® En Fibonacci heap utdkar dven funktionaliteten av prioritetskon till att
kunna uppdatera prioriteten av redan befintliga nycklar, vilket den kan gora i
O (1) amorterat.

® En Fibonacci heap ar dock mer komplicerad att implementera och analysera.
® Fibonacci heaps bygger pa den nagot simplare Binomial heap

® https://www.cs.usfca.edu/~galles/visualization/
FibonacciHeap.html
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