
TDDE73 ‐ Programmering,
datastrukturer och
algoritmer
Grafer

Christoffer Holm

Institutionen för datavetenskap

1 Representation av grafer
2 Grafsökning
3 Heap

1 Representation av grafer
2 Grafsökning
3 Heap

3 / 55

Representation av grafer
Mål med representationen

• lagra noder

• lagra bågar
• lagra eventuella vikter
• insättning (noder och bågar)
• borttagning (noder och bågar)
• sökning (?)

3 / 55

Representation av grafer
Mål med representationen

• lagra noder
• lagra bågar

• lagra eventuella vikter
• insättning (noder och bågar)
• borttagning (noder och bågar)
• sökning (?)

3 / 55

Representation av grafer
Mål med representationen

• lagra noder
• lagra bågar
• lagra eventuella vikter

• insättning (noder och bågar)
• borttagning (noder och bågar)
• sökning (?)

3 / 55

Representation av grafer
Mål med representationen

• lagra noder
• lagra bågar
• lagra eventuella vikter
• insättning (noder och bågar)

• borttagning (noder och bågar)
• sökning (?)

3 / 55

Representation av grafer
Mål med representationen

• lagra noder
• lagra bågar
• lagra eventuella vikter
• insättning (noder och bågar)
• borttagning (noder och bågar)

• sökning (?)

3 / 55

Representation av grafer
Mål med representationen

• lagra noder
• lagra bågar
• lagra eventuella vikter
• insättning (noder och bågar)
• borttagning (noder och bågar)
• sökning (?)

4 / 55

Representation av grafer
Idé #1

Ide #1

Lagra alla noder i en array och alla bågar som par i en annan
array.

5 / 55

Representation av grafer
Linjär representation

A

B

C

D

E

F
G

A B C D E F Gnoder:

A,B A,C A,E B,D C,D C, F D, F D,G E, F E,G F,Gbågar:

6 / 55

Representation av grafer
Analys av linjär representation

• Insättning av nod:O (|V |)

• Insättning av båge:O (|E|)
• Borttagning av nod:O (|V |)
• Borttagning av båge:O (|E|)
• Hitta om nod existerar:O (|V |)
• Hitta om båge existerar:O (|E|)
• Om allting hålls sorterat blir det istället logaritmiska

tidskomplexiteter...
• Vi kan dock göra ännu bättre!

6 / 55

Representation av grafer
Analys av linjär representation

• Insättning av nod:O (|V |)
• Insättning av båge:O (|E|)

• Borttagning av nod:O (|V |)
• Borttagning av båge:O (|E|)
• Hitta om nod existerar:O (|V |)
• Hitta om båge existerar:O (|E|)
• Om allting hålls sorterat blir det istället logaritmiska

tidskomplexiteter...
• Vi kan dock göra ännu bättre!

6 / 55

Representation av grafer
Analys av linjär representation

• Insättning av nod:O (|V |)
• Insättning av båge:O (|E|)
• Borttagning av nod:O (|V |)

• Borttagning av båge:O (|E|)
• Hitta om nod existerar:O (|V |)
• Hitta om båge existerar:O (|E|)
• Om allting hålls sorterat blir det istället logaritmiska

tidskomplexiteter...
• Vi kan dock göra ännu bättre!

6 / 55

Representation av grafer
Analys av linjär representation

• Insättning av nod:O (|V |)
• Insättning av båge:O (|E|)
• Borttagning av nod:O (|V |)
• Borttagning av båge:O (|E|)

• Hitta om nod existerar:O (|V |)
• Hitta om båge existerar:O (|E|)
• Om allting hålls sorterat blir det istället logaritmiska

tidskomplexiteter...
• Vi kan dock göra ännu bättre!

6 / 55

Representation av grafer
Analys av linjär representation

• Insättning av nod:O (|V |)
• Insättning av båge:O (|E|)
• Borttagning av nod:O (|V |)
• Borttagning av båge:O (|E|)
• Hitta om nod existerar:O (|V |)

• Hitta om båge existerar:O (|E|)
• Om allting hålls sorterat blir det istället logaritmiska

tidskomplexiteter...
• Vi kan dock göra ännu bättre!

6 / 55

Representation av grafer
Analys av linjär representation

• Insättning av nod:O (|V |)
• Insättning av båge:O (|E|)
• Borttagning av nod:O (|V |)
• Borttagning av båge:O (|E|)
• Hitta om nod existerar:O (|V |)
• Hitta om båge existerar:O (|E|)

• Om allting hålls sorterat blir det istället logaritmiska
tidskomplexiteter...

• Vi kan dock göra ännu bättre!

6 / 55

Representation av grafer
Analys av linjär representation

• Insättning av nod:O (|V |)
• Insättning av båge:O (|E|)
• Borttagning av nod:O (|V |)
• Borttagning av båge:O (|E|)
• Hitta om nod existerar:O (|V |)
• Hitta om båge existerar:O (|E|)
• Om allting hålls sorterat blir det istället logaritmiska

tidskomplexiteter...

• Vi kan dock göra ännu bättre!

6 / 55

Representation av grafer
Analys av linjär representation

• Insättning av nod:O (|V |)
• Insättning av båge:O (|E|)
• Borttagning av nod:O (|V |)
• Borttagning av båge:O (|E|)
• Hitta om nod existerar:O (|V |)
• Hitta om båge existerar:O (|E|)
• Om allting hålls sorterat blir det istället logaritmiska

tidskomplexiteter...
• Vi kan dock göra ännu bättre!

7 / 55

Representation av grafer
Observation

Givet |V | = n:

• Om oriktad graf⇒ |E| ≤ n(n− 1)

2
• Om riktad graf⇒ |E| ≤ n(n− 1)

8 / 55

Representation av grafer
Idé #2

Idé #2

Lagra bågarna som en matris!

9 / 55

Representation av grafer
Grannmatris

A

B

C

D

E

F
G

A

0

B

1

C

2

D

3

E

4

F

5

G

6

noder:

0 1 2 3 4 5 6

0

1

2

3

4

5

6

9 / 55

Representation av grafer
Grannmatris

A

B

C

D

E

F
G

A

0

B

1

C

2

D

3

E

4

F

5

G

6

noder:

0 1 2 3 4 5 6

0

1

2

3

4

5

6

1
1

9 / 55

Representation av grafer
Grannmatris

A

B

C

D

E

F
G

A

0

B

1

C

2

D

3

E

4

F

5

G

6

noder:

0 1 2 3 4 5 6

0

1

2

3

4

5

6

1
1

1

1

9 / 55

Representation av grafer
Grannmatris

A

B

C

D

E

F
G

A

0

B

1

C

2

D

3

E

4

F

5

G

6

noder:

0 1 2 3 4 5 6

0

1

2

3

4

5

6

1
1

1

1

1

1

9 / 55

Representation av grafer
Grannmatris

A

B

C

D

E

F
G

A

0

B

1

C

2

D

3

E

4

F

5

G

6

noder:

0 1 2 3 4 5 6

0

1

2

3

4

5

6

1
1

1

1

1

1

1

1

9 / 55

Representation av grafer
Grannmatris

A

B

C

D

E

F
G

A

0

B

1

C

2

D

3

E

4

F

5

G

6

noder:

0 1 2 3 4 5 6

0

1

2

3

4

5

6

1
1

1

1

1

1

1

1

1
1

9 / 55

Representation av grafer
Grannmatris

A

B

C

D

E

F
G

A

0

B

1

C

2

D

3

E

4

F

5

G

6

noder:

0 1 2 3 4 5 6

0

1

2

3

4

5

6

1
1

1

1

1

1

1

1

1
1

1

1

9 / 55

Representation av grafer
Grannmatris

A

B

C

D

E

F
G

A

0

B

1

C

2

D

3

E

4

F

5

G

6

noder:

0 1 2 3 4 5 6

0

1

2

3

4

5

6

1
1

1

1

1

1

1

1

1
1

1

1

1

1

9 / 55

Representation av grafer
Grannmatris

A

B

C

D

E

F
G

A

0

B

1

C

2

D

3

E

4

F

5

G

6

noder:

0 1 2 3 4 5 6

0

1

2

3

4

5

6

1
1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

9 / 55

Representation av grafer
Grannmatris

A

B

C

D

E

F
G

A

0

B

1

C

2

D

3

E

4

F

5

G

6

noder:

0 1 2 3 4 5 6

0

1

2

3

4

5

6

1
1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1
1

9 / 55

Representation av grafer
Grannmatris

A

B

C

D

E

F
G

A

0

B

1

C

2

D

3

E

4

F

5

G

6

noder:

0 1 2 3 4 5 6

0

1

2

3

4

5

6

1
1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1
1

1

1

9 / 55

Representation av grafer
Grannmatris

A

B

C

D

E

F
G

A

0

B

1

C

2

D

3

E

4

F

5

G

6

noder:

0 1 2 3 4 5 6

0

1

2

3

4

5

6

1
1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1
1

1

1

1
1

9 / 55

Representation av grafer
Grannmatris

A

B

C

D

E

F
G

A

0

B

1

C

2

D

3

E

4

F

5

G

6

noder:

0 1 2 3 4 5 6

0

1

2

3

4

5

6

1
1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1
1

1

1

1
1

0
0

0
0

0
0

0

0

0
0

0

0
0
0

0

0

0

0

0

0
0
0

0
0

0
0
0

9 / 55

Representation av grafer
Grannmatris

A

B

C

D

E

F
G

A

0

B

1

C

2

D

3

E

4

F

5

G

6

noder:

0 1 2 3 4 5 6

0

1

2

3

4

5

6

1
1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1
1

1

1

1
1

0
0

0
0

0
0

0

0

0
0

0

0
0
0

0

0

0

0

0

0
0
0

0
0

0
0
0

räcker för oriktade grafer

10 / 55

Representation av grafer
VarförO

(
|V |2

)
?

A B

C

A

0

B

1

C

2

noder:

0 1 2

0

1

2

0
0

0
0
0

1

0

1
0

10 / 55

Representation av grafer
VarförO

(
|V |2

)
?

A B

C

A

0

B

1

C

2

noder:

0 1 2

0

1

2

0
0

0
0
0

1

0

1
0

10 / 55

Representation av grafer
VarförO

(
|V |2

)
?

A B

C

A

0

B

1

C

2

noder:

0 1 2

0

1

2

0
0

0
0
0

1

0

1
1

10 / 55

Representation av grafer
VarförO

(
|V |2

)
?

A B

C

A

0

B

1

C

2

noder:

0 1 2

0

1

2

0
0

0
0
0

1

0

1
1

10 / 55

Representation av grafer
VarförO

(
|V |2

)
?

A B

C

D

A

0

B

1

C

2

noder:

0 1 2

0

1

2

0
0

0
0
0

1

0

1
1

10 / 55

Representation av grafer
VarförO

(
|V |2

)
?

A B

C

D

A

0

B

1

C

2

D

3

noder:

0 1 2

0

1

2

0
0

0
0
0

1

0

1
1

10 / 55

Representation av grafer
VarförO

(
|V |2

)
?

A B

C

D

A

0

B

1

C

2

D

3

noder:

0 1 2

0

1

2

0
0

0
0
0

1

0

1
1

omallokera!

10 / 55

Representation av grafer
VarförO

(
|V |2

)
?

A B

C

D

A

0

B

1

C

2

D

3

noder:

0 1 2 3

0

1

2

3

0
0

0
0
0

1

0

1
1

0
0

00 0 0
0

10 / 55

Representation av grafer
VarförO

(
|V |2

)
?

A B

C

D

A

0

B

1

C

2

D

3

noder:

0 1 2 3

0

1

2

3

0
0

0
0
0

1

0

1
1

0
0

00 0 0
0

10 / 55

Representation av grafer
VarförO

(
|V |2

)
?

A B

C

D

A

0

B

1

C

2

D

3

noder:

0 1 2 3

0

1

2

3

0
0

0
0
0

1

0

1
1

0
0

00 0 0
1

10 / 55

Representation av grafer
VarförO

(
|V |2

)
?

A B

C

D

A

0

B

1

C

2

D

3

noder:

0 1 2 3

0

1

2

3

0
0

0
0
0

1

0

1
1

0
0

00 0 0
1

11 / 55

Representation av grafer
Slutsatser om grannmatris

• Använder en del minne

• Väldigt snabb om bågarna ändras ofta
• Vi vill helst inte ändra noderna för det är dyrt

11 / 55

Representation av grafer
Slutsatser om grannmatris

• Använder en del minne
• Väldigt snabb om bågarna ändras ofta

• Vi vill helst inte ändra noderna för det är dyrt

11 / 55

Representation av grafer
Slutsatser om grannmatris

• Använder en del minne
• Väldigt snabb om bågarna ändras ofta
• Vi vill helst inte ändra noderna för det är dyrt

12 / 55

Representation av grafer
Idé #3

Idé #3

För varje nod, lagra vilka noder den har en båge till

13 / 55

Representation av grafer
Grannlista

A

B

C

D

E

F
G

A

B

C

D

E

F

G

13 / 55

Representation av grafer
Grannlista

A

B

C

D

E

F
G

A

B

C

D

E

F

G

B

A

13 / 55

Representation av grafer
Grannlista

A

B

C

D

E

F
G

A

B

C

D

E

F

G

B C

A

A

13 / 55

Representation av grafer
Grannlista

A

B

C

D

E

F
G

A

B

C

D

E

F

G

B C E

A

A

A

13 / 55

Representation av grafer
Grannlista

A

B

C

D

E

F
G

A

B

C

D

E

F

G

B C E

A D

A

B

A

13 / 55

Representation av grafer
Grannlista

A

B

C

D

E

F
G

A

B

C

D

E

F

G

B C E

A D

A D

B C

A

13 / 55

Representation av grafer
Grannlista

A

B

C

D

E

F
G

A

B

C

D

E

F

G

B C E

A D

A D F

B C

A

C

13 / 55

Representation av grafer
Grannlista

A

B

C

D

E

F
G

A

B

C

D

E

F

G

B C E

A D

A D F

B C F

A

C D

13 / 55

Representation av grafer
Grannlista

A

B

C

D

E

F
G

A

B

C

D

E

F

G

B C E

A D

A D F

B C F G

A

C D

D

13 / 55

Representation av grafer
Grannlista

A

B

C

D

E

F
G

A

B

C

D

E

F

G

B C E

A D

A D F

B C F G

A F

C D E

D

13 / 55

Representation av grafer
Grannlista

A

B

C

D

E

F
G

A

B

C

D

E

F

G

B C E

A D

A D F

B C F G

A F G

C D E

D E

13 / 55

Representation av grafer
Grannlista

A

B

C

D

E

F
G

A

B

C

D

E

F

G

B C E

A D

A D F

B C F G

A F G

C D E G

D E F

14 / 55

Representation av grafer
Jämförelse grannmatris och grannlista

Grannmatris
• Insättning nod:O

(
|V |2

)
• Insättning båge:O (1)

• Ta bort nod:O
(
|V |2

)
• Ta bort båge:O (1)

• Hitta nod:O (log |V |)
• Hitta båge:O (1)

• Minne:O
(
|V |+ |V |2

)

Grannlista
• Insättning nod:O (1)

• Insättning båge:O (1)

• Ta bort nod:O (|V |)
• Ta bort båge:O (maxv∈V {deg(v)})
• Hitta nod:O (1) amorterat
• Hitta båge:O (|V |)
• Minne:O (|V |+ |E|)

Ingen klockren vinnare...

14 / 55

Representation av grafer
Jämförelse grannmatris och grannlista

Grannmatris
• Insättning nod:O

(
|V |2

)
• Insättning båge:O (1)

• Ta bort nod:O
(
|V |2

)
• Ta bort båge:O (1)

• Hitta nod:O (log |V |)
• Hitta båge:O (1)

• Minne:O
(
|V |+ |V |2

)

Grannlista
• Insättning nod:O (1)

• Insättning båge:O (1)

• Ta bort nod:O (|V |)
• Ta bort båge:O (maxv∈V {deg(v)})
• Hitta nod:O (1) amorterat
• Hitta båge:O (|V |)
• Minne:O (|V |+ |E|)

Ingen klockren vinnare...

15 / 55

Grafsökning
Länkad representation

1 class Node
2 {
3 public:
4 int data;
5 vector<Node*> edges;
6 };

16 / 55

Representation av grafer
Implicita grafer

1 vector<int> get_neighbours(int node)
2 {
3 vector<int> neighbours { };
4 // beräkna alla grannar till `node`
5 return neighbours;
6 }

17 / 55

Representation av grafer
Hitta alla noder

Hur kan vi hitta alla noder för dessa representationer?

1 Representation av grafer
2 Grafsökning
3 Heap

19 / 55

Grafsökning
Rekursiv sökning – länkad struktur

0

1 2

3

1 vector<Node*> find_nodes(Node* node)
2 {
3 if (node == nullptr) return { };
4
5 vector<Node*> neighbours { };
6 for (Node* next : node->edges)
7 {
8 vector<Node*> nodes {
9 find_nodes(next);
10 };
11 for (Node* curr : nodes)
12 neighbours.push_back(curr);
13 }
14
15 return neighbours;
16 }

Funkar!

19 / 55

Grafsökning
Rekursiv sökning – länkad struktur

0

1 2

3

1 vector<Node*> find_nodes(Node* node)
2 {
3 if (node == nullptr) return { };
4
5 vector<Node*> neighbours { };
6 for (Node* next : node->edges)
7 {
8 vector<Node*> nodes {
9 find_nodes(next);
10 };
11 for (Node* curr : nodes)
12 neighbours.push_back(curr);
13 }
14
15 return neighbours;
16 }

Funkar!

20 / 55

Grafsökning
Ett problem

0

1 2

3

1 vector<Node*> find_nodes(Node* node)
2 {
3 if (node == nullptr) return { };
4
5 vector<Node*> nodes { node };
6 for (Node* next : node->edges)
7 {
8 vector<Node*> neighbours {
9 find_nodes(next);
10 };
11 for (Node* curr : neighbours)
12 nodes.push_back(curr);
13 }
14
15 return nodes;
16 }

dubletter...

20 / 55

Grafsökning
Ett problem

0

1 2

3

1 vector<Node*> find_nodes(Node* node)
2 {
3 if (node == nullptr) return { };
4
5 vector<Node*> nodes { node };
6 for (Node* next : node->edges)
7 {
8 vector<Node*> neighbours {
9 find_nodes(next);
10 };
11 for (Node* curr : neighbours)
12 nodes.push_back(curr);
13 }
14
15 return nodes;
16 }

dubletter...

21 / 55

Grafsökning
Lösning!

0

1 2

3

1 set<Node*> find_nodes(Node* node)
2 {
3 if (node == nullptr) return { };
4
5 set<Node*> nodes { node };
6 for (Node* next : node->edges)
7 {
8 set<Node*> neighbours {
9 find_nodes(next);
10 };
11 for (Node* curr : neighbours)
12 nodes.push_back(curr);
13 }
14
15 return nodes;
16 }

Funkar!

21 / 55

Grafsökning
Lösning!

0

1 2

3

1 set<Node*> find_nodes(Node* node)
2 {
3 if (node == nullptr) return { };
4
5 set<Node*> nodes { node };
6 for (Node* next : node->edges)
7 {
8 set<Node*> neighbours {
9 find_nodes(next);
10 };
11 for (Node* curr : neighbours)
12 nodes.push_back(curr);
13 }
14
15 return nodes;
16 }

Funkar!

22 / 55

Grafsökning
Ett nytt problem...

0

1 2

3

1 set<Node*> find_nodes(Node* node)
2 {
3 if (node == nullptr) return { };
4
5 set<Node*> nodes { node };
6 for (Node* next : node->edges)
7 {
8 set<Node*> neighbours {
9 find_nodes(next);
10 };
11 for (Node* curr : neighbours)
12 nodes.push_back(curr);
13 }
14
15 return nodes;
16 }

oändlig rekursion...

22 / 55

Grafsökning
Ett nytt problem...

0

1 2

3

1 set<Node*> find_nodes(Node* node)
2 {
3 if (node == nullptr) return { };
4
5 set<Node*> nodes { node };
6 for (Node* next : node->edges)
7 {
8 set<Node*> neighbours {
9 find_nodes(next);
10 };
11 for (Node* curr : neighbours)
12 nodes.push_back(curr);
13 }
14
15 return nodes;
16 }

oändlig rekursion...

23 / 55

Grafsökning
Djupet‐först‐sökning (DFS)

0

1 2

3

1 void find_nodes_help(Node* node, set<Node*>& found)
2 {
3 if (node == nullptr) return { };
4 if (found.count(node) > 0) return { };
5
6 found.insert(node);
7 for (Node* next : node->edges)
8 find_nodes_help(next, found);
9 }
10
11 set<Node*> find_nodes(Node* node)
12 {
13 set<Node*> nodes { };
14 find_nodes_help(node, nodes);
15 return nodes;
16 }

Funkar!

23 / 55

Grafsökning
Djupet‐först‐sökning (DFS)

0

1 2

3

1 void find_nodes_help(Node* node, set<Node*>& found)
2 {
3 if (node == nullptr) return { };
4 if (found.count(node) > 0) return { };
5
6 found.insert(node);
7 for (Node* next : node->edges)
8 find_nodes_help(next, found);
9 }
10
11 set<Node*> find_nodes(Node* node)
12 {
13 set<Node*> nodes { };
14 find_nodes_help(node, nodes);
15 return nodes;
16 }

Funkar!

24 / 55

Grafsökning
Iterativ variant

1 set<Node*> DFS(Node* start)
2 {
3 set<Node*> found;
4 stack<Node*> stack;
5 stack.push(start);
6 while (!stack.empty())
7 {
8 Node* node { stack.top() };
9 stack.pop();

10 if (node == nullptr) continue;
11 if (found.count(node) > 0) continue;
12 found.insert(node);
13 for (Node* next : node->edges)
14 stack.push(next);
15 }
16 return found;
17 }

25 / 55

Grafsökning
djupet‐först‐sökning (DFS)

A

B

C

D

E

F
G

found:

A

stack

25 / 55

Grafsökning
djupet‐först‐sökning (DFS)

A

B

C

D

E

F
G

found:

stack

25 / 55

Grafsökning
djupet‐först‐sökning (DFS)

A

B

C

D

E

F
G

Afound:

stack

25 / 55

Grafsökning
djupet‐först‐sökning (DFS)

A

B

C

D

E

F
G

Afound:

stack

25 / 55

Grafsökning
djupet‐först‐sökning (DFS)

A

B

C

D

E

F
G

Afound:

C

stack

25 / 55

Grafsökning
djupet‐först‐sökning (DFS)

A

B

C

D

E

F
G

Afound:

C

stack

25 / 55

Grafsökning
djupet‐först‐sökning (DFS)

A

B

C

D

E

F
G

Afound:

C

E

stack

25 / 55

Grafsökning
djupet‐först‐sökning (DFS)

A

B

C

D

E

F
G

Afound:

C

E

stack

25 / 55

Grafsökning
djupet‐först‐sökning (DFS)

A

B

C

D

E

F
G

Afound:

C

stack

25 / 55

Grafsökning
djupet‐först‐sökning (DFS)

A

B

C

D

E

F
G

A Efound:

C

stack

25 / 55

Grafsökning
djupet‐först‐sökning (DFS)

A

B

C

D

E

F
G

A Efound:

C

stack

25 / 55

Grafsökning
djupet‐först‐sökning (DFS)

A

B

C

D

E

F
G

A Efound:

C

G

stack

25 / 55

Grafsökning
djupet‐först‐sökning (DFS)

A

B

C

D

E

F
G

A Efound:

C

G

stack

25 / 55

Grafsökning
djupet‐först‐sökning (DFS)

A

B

C

D

E

F
G

A Efound:

C

stack

25 / 55

Grafsökning
djupet‐först‐sökning (DFS)

A

B

C

D

E

F
G

A E Gfound:

C

stack

25 / 55

Grafsökning
djupet‐först‐sökning (DFS)

A

B

C

D

E

F
G

A E Gfound:

C

stack

25 / 55

Grafsökning
djupet‐först‐sökning (DFS)

A

B

C

D

E

F
G

A E Gfound:

C

D

stack

25 / 55

Grafsökning
djupet‐först‐sökning (DFS)

A

B

C

D

E

F
G

A E Gfound:

C

D

stack

25 / 55

Grafsökning
djupet‐först‐sökning (DFS)

A

B

C

D

E

F
G

A E Gfound:

C

stack

25 / 55

Grafsökning
djupet‐först‐sökning (DFS)

A

B

C

D

E

F
G

A E G Dfound:

C

stack

25 / 55

Grafsökning
djupet‐först‐sökning (DFS)

A

B

C

D

E

F
G

A E G Dfound:

C

stack

25 / 55

Grafsökning
djupet‐först‐sökning (DFS)

A

B

C

D

E

F
G

A E G Dfound:

C

B

stack

25 / 55

Grafsökning
djupet‐först‐sökning (DFS)

A

B

C

D

E

F
G

A E G Dfound:

C

B

stack

25 / 55

Grafsökning
djupet‐först‐sökning (DFS)

A

B

C

D

E

F
G

A E G Dfound:

C

B

C

stack

25 / 55

Grafsökning
djupet‐först‐sökning (DFS)

A

B

C

D

E

F
G

A E G Dfound:

C

B

C

stack

25 / 55

Grafsökning
djupet‐först‐sökning (DFS)

A

B

C

D

E

F
G

A E G Dfound:

C

B

stack

25 / 55

Grafsökning
djupet‐först‐sökning (DFS)

A

B

C

D

E

F
G

A E G D Cfound:

C

B

stack

25 / 55

Grafsökning
djupet‐först‐sökning (DFS)

A

B

C

D

E

F
G

A E G D Cfound:

C

B

stack

25 / 55

Grafsökning
djupet‐först‐sökning (DFS)

A

B

C

D

E

F
G

A E G D Cfound:

C

B

F

stack

25 / 55

Grafsökning
djupet‐först‐sökning (DFS)

A

B

C

D

E

F
G

A E G D Cfound:

C

B

F

stack

25 / 55

Grafsökning
djupet‐först‐sökning (DFS)

A

B

C

D

E

F
G

A E G D C Ffound:

C

B

stack

25 / 55

Grafsökning
djupet‐först‐sökning (DFS)

A

B

C

D

E

F
G

A E G D C Ffound:

C

B

stack

25 / 55

Grafsökning
djupet‐först‐sökning (DFS)

A

B

C

D

E

F
G

A E G D C Ffound:

C

B

D

stack

25 / 55

Grafsökning
djupet‐först‐sökning (DFS)

A

B

C

D

E

F
G

A E G D C Ffound:

C

B

D

stack

25 / 55

Grafsökning
djupet‐först‐sökning (DFS)

A

B

C

D

E

F
G

A E G D C Ffound:

C

B

D

E

stack

25 / 55

Grafsökning
djupet‐först‐sökning (DFS)

A

B

C

D

E

F
G

A E G D C Ffound:

C

B

D

E

stack

25 / 55

Grafsökning
djupet‐först‐sökning (DFS)

A

B

C

D

E

F
G

A E G D C Ffound:

C

B

D

E

G

stack

25 / 55

Grafsökning
djupet‐först‐sökning (DFS)

A

B

C

D

E

F
G

A E G D C Ffound:

C

B

D

E

G

stack

25 / 55

Grafsökning
djupet‐först‐sökning (DFS)

A

B

C

D

E

F
G

A E G D C Ffound:

C

B

D

E

stack

25 / 55

Grafsökning
djupet‐först‐sökning (DFS)

A

B

C

D

E

F
G

A E G D C Ffound:

C

B

D

E

stack

25 / 55

Grafsökning
djupet‐först‐sökning (DFS)

A

B

C

D

E

F
G

A E G D C Ffound:

C

B

D

E

stack

25 / 55

Grafsökning
djupet‐först‐sökning (DFS)

A

B

C

D

E

F
G

A E G D C Ffound:

C

B

D

stack

25 / 55

Grafsökning
djupet‐först‐sökning (DFS)

A

B

C

D

E

F
G

A E G D C Ffound:

C

B

D

stack

25 / 55

Grafsökning
djupet‐först‐sökning (DFS)

A

B

C

D

E

F
G

A E G D C Ffound:

C

B

D

stack

25 / 55

Grafsökning
djupet‐först‐sökning (DFS)

A

B

C

D

E

F
G

A E G D C Ffound:

C

B

stack

25 / 55

Grafsökning
djupet‐först‐sökning (DFS)

A

B

C

D

E

F
G

A E G D C Ffound:

C

B

stack

25 / 55

Grafsökning
djupet‐först‐sökning (DFS)

A

B

C

D

E

F
G

A E G D C Ffound:

C

B

stack

25 / 55

Grafsökning
djupet‐först‐sökning (DFS)

A

B

C

D

E

F
G

A E G D C Ffound:

C

stack

25 / 55

Grafsökning
djupet‐först‐sökning (DFS)

A

B

C

D

E

F
G

A E G D C F Bfound:

C

stack

25 / 55

Grafsökning
djupet‐först‐sökning (DFS)

A

B

C

D

E

F
G

A E G D C F Bfound:

C

stack

25 / 55

Grafsökning
djupet‐först‐sökning (DFS)

A

B

C

D

E

F
G

A E G D C F Bfound:

C

A

stack

25 / 55

Grafsökning
djupet‐först‐sökning (DFS)

A

B

C

D

E

F
G

A E G D C F Bfound:

C

A

stack

25 / 55

Grafsökning
djupet‐först‐sökning (DFS)

A

B

C

D

E

F
G

A E G D C F Bfound:

C

stack

25 / 55

Grafsökning
djupet‐först‐sökning (DFS)

A

B

C

D

E

F
G

A E G D C F Bfound:

C

stack

25 / 55

Grafsökning
djupet‐först‐sökning (DFS)

A

B

C

D

E

F
G

A E G D C F Bfound:

C

stack

25 / 55

Grafsökning
djupet‐först‐sökning (DFS)

A

B

C

D

E

F
G

A E G D C F Bfound:

stack

25 / 55

Grafsökning
djupet‐först‐sökning (DFS)

A

B

C

D

E

F
G

A E G D C F Bfound:

stack

25 / 55

Grafsökning
djupet‐först‐sökning (DFS)

A

B

C

D

E

F
G

A E G D C F Bfound:

stack

26 / 55

Grafsökning

Kan vi göra i någon annan ordning?

27 / 55

Grafsökning
Byt ut stacken mot en kö!

1 set<Node*> DFS(Node* start)
2 {
3 set<Node*> found;
4 queue<Node*> queue;
5 queue.push(start);
6 while (!queue.empty())
7 {
8 Node* node { queue.front() };
9 queue.pop();

10 if (node == nullptr) continue;
11 if (found.count(node) > 0) continue;
12 found.insert(node);
13 for (Node* next : neighbours)
14 queue.push(next);
15 }
16 return found;
17 }

28 / 55

Grafsökning
bredden‐först‐sökning (BFS)

A

B

C

D

E

F
G

found:

A

queue

28 / 55

Grafsökning
bredden‐först‐sökning (BFS)

A

B

C

D

E

F
G

found:

queue

28 / 55

Grafsökning
bredden‐först‐sökning (BFS)

A

B

C

D

E

F
G

Afound:

queue

28 / 55

Grafsökning
bredden‐först‐sökning (BFS)

A

B

C

D

E

F
G

Afound:

queue

28 / 55

Grafsökning
bredden‐först‐sökning (BFS)

A

B

C

D

E

F
G

Afound:

C

queue

28 / 55

Grafsökning
bredden‐först‐sökning (BFS)

A

B

C

D

E

F
G

Afound:

C

queue

28 / 55

Grafsökning
bredden‐först‐sökning (BFS)

A

B

C

D

E

F
G

Afound:

C

E

queue

28 / 55

Grafsökning
bredden‐först‐sökning (BFS)

A

B

C

D

E

F
G

Afound:

C

E

queue

28 / 55

Grafsökning
bredden‐först‐sökning (BFS)

A

B

C

D

E

F
G

Afound:

E

queue

28 / 55

Grafsökning
bredden‐först‐sökning (BFS)

A

B

C

D

E

F
G

A Cfound:

E

queue

28 / 55

Grafsökning
bredden‐först‐sökning (BFS)

A

B

C

D

E

F
G

A Cfound:

E

queue

28 / 55

Grafsökning
bredden‐först‐sökning (BFS)

A

B

C

D

E

F
G

A Cfound:

E

F

queue

28 / 55

Grafsökning
bredden‐först‐sökning (BFS)

A

B

C

D

E

F
G

A Cfound:

E

F

queue

28 / 55

Grafsökning
bredden‐först‐sökning (BFS)

A

B

C

D

E

F
G

A Cfound:

F

queue

28 / 55

Grafsökning
bredden‐först‐sökning (BFS)

A

B

C

D

E

F
G

A C Efound:

F

queue

28 / 55

Grafsökning
bredden‐först‐sökning (BFS)

A

B

C

D

E

F
G

A C Efound:

F

queue

28 / 55

Grafsökning
bredden‐först‐sökning (BFS)

A

B

C

D

E

F
G

A C Efound:

F

G

queue

28 / 55

Grafsökning
bredden‐först‐sökning (BFS)

A

B

C

D

E

F
G

A C Efound:

F

G

queue

28 / 55

Grafsökning
bredden‐först‐sökning (BFS)

A

B

C

D

E

F
G

A C Efound:

G

queue

28 / 55

Grafsökning
bredden‐först‐sökning (BFS)

A

B

C

D

E

F
G

A C E Ffound:

G

queue

28 / 55

Grafsökning
bredden‐först‐sökning (BFS)

A

B

C

D

E

F
G

A C E Ffound:

G

queue

28 / 55

Grafsökning
bredden‐först‐sökning (BFS)

A

B

C

D

E

F
G

A C E Ffound:

G

D

queue

28 / 55

Grafsökning
bredden‐först‐sökning (BFS)

A

B

C

D

E

F
G

A C E Ffound:

G

D

queue

28 / 55

Grafsökning
bredden‐först‐sökning (BFS)

A

B

C

D

E

F
G

A C E Ffound:

G

D

E

queue

28 / 55

Grafsökning
bredden‐först‐sökning (BFS)

A

B

C

D

E

F
G

A C E Ffound:

G

D

E

queue

28 / 55

Grafsökning
bredden‐först‐sökning (BFS)

A

B

C

D

E

F
G

A C E Ffound:

G

D

E

G

queue

28 / 55

Grafsökning
bredden‐först‐sökning (BFS)

A

B

C

D

E

F
G

A C E Ffound:

G

D

E

G

queue

28 / 55

Grafsökning
bredden‐först‐sökning (BFS)

A

B

C

D

E

F
G

A C E Ffound:

D

E

G

queue

28 / 55

Grafsökning
bredden‐först‐sökning (BFS)

A

B

C

D

E

F
G

A C E F Gfound:

D

E

G

queue

28 / 55

Grafsökning
bredden‐först‐sökning (BFS)

A

B

C

D

E

F
G

A C E F Gfound:

D

E

G

queue

28 / 55

Grafsökning
bredden‐först‐sökning (BFS)

A

B

C

D

E

F
G

A C E F Gfound:

D

E

G

D

queue

28 / 55

Grafsökning
bredden‐först‐sökning (BFS)

A

B

C

D

E

F
G

A C E F Gfound:

D

E

G

D

queue

28 / 55

Grafsökning
bredden‐först‐sökning (BFS)

A

B

C

D

E

F
G

A C E F Gfound:

E

G

D

queue

28 / 55

Grafsökning
bredden‐först‐sökning (BFS)

A

B

C

D

E

F
G

A C E F G Dfound:

E

G

D

queue

28 / 55

Grafsökning
bredden‐först‐sökning (BFS)

A

B

C

D

E

F
G

A C E F G Dfound:

E

G

D

queue

28 / 55

Grafsökning
bredden‐först‐sökning (BFS)

A

B

C

D

E

F
G

A C E F G Dfound:

E

G

D

B

queue

28 / 55

Grafsökning
bredden‐först‐sökning (BFS)

A

B

C

D

E

F
G

A C E F G Dfound:

E

G

D

B

queue

28 / 55

Grafsökning
bredden‐först‐sökning (BFS)

A

B

C

D

E

F
G

A C E F G Dfound:

E

G

D

B

C

queue

28 / 55

Grafsökning
bredden‐först‐sökning (BFS)

A

B

C

D

E

F
G

A C E F G Dfound:

E

G

D

B

C

queue

28 / 55

Grafsökning
bredden‐först‐sökning (BFS)

A

B

C

D

E

F
G

A C E F G Dfound:

G

D

B

C

queue

28 / 55

Grafsökning
bredden‐först‐sökning (BFS)

A

B

C

D

E

F
G

A C E F G Dfound:

G

D

B

C

queue

28 / 55

Grafsökning
bredden‐först‐sökning (BFS)

A

B

C

D

E

F
G

A C E F G Dfound:

G

D

B

C

queue

28 / 55

Grafsökning
bredden‐först‐sökning (BFS)

A

B

C

D

E

F
G

A C E F G Dfound:

D

B

C

queue

28 / 55

Grafsökning
bredden‐först‐sökning (BFS)

A

B

C

D

E

F
G

A C E F G Dfound:

D

B

C

queue

28 / 55

Grafsökning
bredden‐först‐sökning (BFS)

A

B

C

D

E

F
G

A C E F G Dfound:

D

B

C

queue

28 / 55

Grafsökning
bredden‐först‐sökning (BFS)

A

B

C

D

E

F
G

A C E F G Dfound:

B

C

queue

28 / 55

Grafsökning
bredden‐först‐sökning (BFS)

A

B

C

D

E

F
G

A C E F G Dfound:

B

C

queue

28 / 55

Grafsökning
bredden‐först‐sökning (BFS)

A

B

C

D

E

F
G

A C E F G Dfound:

B

C

queue

28 / 55

Grafsökning
bredden‐först‐sökning (BFS)

A

B

C

D

E

F
G

A C E F G Dfound:

C

queue

28 / 55

Grafsökning
bredden‐först‐sökning (BFS)

A

B

C

D

E

F
G

A C E F G D Bfound:

C

queue

28 / 55

Grafsökning
bredden‐först‐sökning (BFS)

A

B

C

D

E

F
G

A C E F G D Bfound:

C

queue

28 / 55

Grafsökning
bredden‐först‐sökning (BFS)

A

B

C

D

E

F
G

A C E F G D Bfound:

C

A

queue

28 / 55

Grafsökning
bredden‐först‐sökning (BFS)

A

B

C

D

E

F
G

A C E F G D Bfound:

C

A

queue

28 / 55

Grafsökning
bredden‐först‐sökning (BFS)

A

B

C

D

E

F
G

A C E F G D Bfound:

A

queue

28 / 55

Grafsökning
bredden‐först‐sökning (BFS)

A

B

C

D

E

F
G

A C E F G D Bfound:

A

queue

28 / 55

Grafsökning
bredden‐först‐sökning (BFS)

A

B

C

D

E

F
G

A C E F G D Bfound:

A

queue

28 / 55

Grafsökning
bredden‐först‐sökning (BFS)

A

B

C

D

E

F
G

A C E F G D Bfound:

queue

28 / 55

Grafsökning
bredden‐först‐sökning (BFS)

A

B

C

D

E

F
G

A C E F G D Bfound:

queue

28 / 55

Grafsökning
bredden‐först‐sökning (BFS)

A

B

C

D

E

F
G

A C E F G D Bfound:

queue

29 / 55

Grafsökning
Jämförelse DFS och BFS

A

B

C

D

E

F
G

A E G D C F B

DFS ordning

A

B

C

D

E

F
G

A C E F G D B

BFS ordning

29 / 55

Grafsökning
Jämförelse DFS och BFS

A

B

C

D

E

F
G

A E G D C F B

DFS ordning

A

B

C

D

E

F
G

A C E F G D B

BFS ordning

29 / 55

Grafsökning
Jämförelse DFS och BFS

A

B

C

D

E

F
G

A E G D C F B

DFS ordning

A

B

C

D

E

F
G

A C E F G D B

BFS ordning

29 / 55

Grafsökning
Jämförelse DFS och BFS

A

B

C

D

E

F
G

A E G D C F B

DFS ordning

A

B

C

D

E

F
G

A C E F G D B

BFS ordning

29 / 55

Grafsökning
Jämförelse DFS och BFS

A

B

C

D

E

F
G

A E G D C F B

DFS ordning

A

B

C

D

E

F
G

A C E F G D B

BFS ordning

29 / 55

Grafsökning
Jämförelse DFS och BFS

A

B

C

D

E

F
G

A E G D C F B

DFS ordning

A

B

C

D

E

F
G

A C E F G D B

BFS ordning

29 / 55

Grafsökning
Jämförelse DFS och BFS

A

B

C

D

E

F
G

A E G D C F B

DFS ordning

A

B

C

D

E

F
G

A C E F G D B

BFS ordning

29 / 55

Grafsökning
Jämförelse DFS och BFS

A

B

C

D

E

F
G

A E G D C F B

DFS ordning

A

B

C

D

E

F
G

A C E F G D B

BFS ordning

29 / 55

Grafsökning
Jämförelse DFS och BFS

A

B

C

D

E

F
G

A E G D C F B

DFS ordning

A

B

C

D

E

F
G

A C E F G D B

BFS ordning

29 / 55

Grafsökning
Jämförelse DFS och BFS

A

B

C

D

E

F
G

A E G D C F B

DFS ordning

A

B

C

D

E

F
G

A C E F G D B

BFS ordning

29 / 55

Grafsökning
Jämförelse DFS och BFS

A

B

C

D

E

F
G

A E G D C F B

DFS ordning

A

B

C

D

E

F
G

A C E F G D B

BFS ordning

29 / 55

Grafsökning
Jämförelse DFS och BFS

A

B

C

D

E

F
G

A E G D C F B

DFS ordning

A

B

C

D

E

F
G

A C E F G D B

BFS ordning

29 / 55

Grafsökning
Jämförelse DFS och BFS

A

B

C

D

E

F
G

A E G D C F B

DFS ordning

A

B

C

D

E

F
G

A C E F G D B

BFS ordning

29 / 55

Grafsökning
Jämförelse DFS och BFS

A

B

C

D

E

F
G

A E G D C F B

DFS ordning

A

B

C

D

E

F
G

A C E F G D B

BFS ordning

30 / 55

Grafsökning
Hitta en kortaste väg mellanA och F

A

B

C

D

E

F
G

found:

from:

A,−

queue

30 / 55

Grafsökning
Hitta en kortaste väg mellanA och F

A

B

C

D

E

F
G

found:

from:

queue

30 / 55

Grafsökning
Hitta en kortaste väg mellanA och F

A

B

C

D

E

F
G

Afound:

−from:

queue

30 / 55

Grafsökning
Hitta en kortaste väg mellanA och F

A

B

C

D

E

F
G

Afound:

−from:

queue

30 / 55

Grafsökning
Hitta en kortaste väg mellanA och F

A

B

C

D

E

F
G

Afound:

−from:

C,A

queue

30 / 55

Grafsökning
Hitta en kortaste väg mellanA och F

A

B

C

D

E

F
G

Afound:

−from:

C,A

queue

30 / 55

Grafsökning
Hitta en kortaste väg mellanA och F

A

B

C

D

E

F
G

Afound:

−from:

C,A

E,A

queue

30 / 55

Grafsökning
Hitta en kortaste väg mellanA och F

A

B

C

D

E

F
G

Afound:

−from:

C,A

E,A

queue

30 / 55

Grafsökning
Hitta en kortaste väg mellanA och F

A

B

C

D

E

F
G

Afound:

−from:

E,A

queue

30 / 55

Grafsökning
Hitta en kortaste väg mellanA och F

A

B

C

D

E

F
G

A Cfound:

− Afrom:

E,A

queue

30 / 55

Grafsökning
Hitta en kortaste väg mellanA och F

A

B

C

D

E

F
G

A Cfound:

− Afrom:

E,A

queue

30 / 55

Grafsökning
Hitta en kortaste väg mellanA och F

A

B

C

D

E

F
G

A Cfound:

− Afrom:

E,A

F,C

queue

30 / 55

Grafsökning
Hitta en kortaste väg mellanA och F

A

B

C

D

E

F
G

A Cfound:

− Afrom:

E,A

F,C

queue

30 / 55

Grafsökning
Hitta en kortaste väg mellanA och F

A

B

C

D

E

F
G

A Cfound:

− Afrom:

F,C

queue

30 / 55

Grafsökning
Hitta en kortaste väg mellanA och F

A

B

C

D

E

F
G

A C Efound:

− A Afrom:

F,C

queue

30 / 55

Grafsökning
Hitta en kortaste väg mellanA och F

A

B

C

D

E

F
G

A C Efound:

− A Afrom:

F,C

queue

30 / 55

Grafsökning
Hitta en kortaste väg mellanA och F

A

B

C

D

E

F
G

A C Efound:

− A Afrom:

F,C

G,E

queue

30 / 55

Grafsökning
Hitta en kortaste väg mellanA och F

A

B

C

D

E

F
G

A C Efound:

− A Afrom:

F,C

G,E

queue

30 / 55

Grafsökning
Hitta en kortaste väg mellanA och F

A

B

C

D

E

F
G

A C Efound:

− A Afrom:

G,E

queue

30 / 55

Grafsökning
Hitta en kortaste väg mellanA och F

A

B

C

D

E

F
G

A C E Ffound:

− A A Cfrom:

G,E

queue

30 / 55

Grafsökning
Hitta en kortaste väg mellanA och F

A

B

C

D

E

F
G

A C E Ffound:

− A A Cfrom:

G,E

queue

30 / 55

Grafsökning
Hitta en kortaste väg mellanA och F

A

B

C

D

E

F
G

A C E Ffound:

− A A Cfrom:

G,E

queue

30 / 55

Grafsökning
Hitta en kortaste väg mellanA och F

A

B

C

D

E

F
G

A C E Ffound:

− A A Cfrom:

G,E

queue

30 / 55

Grafsökning
Hitta en kortaste väg mellanA och F

A

B

C

D

E

F
G

A C E Ffound:

− A A Cfrom:

G,E

queue

30 / 55

Grafsökning
Hitta en kortaste väg mellanA och F

A

B

C

D

E

F
G

A C E Ffound:

− A A Cfrom:

G,E

queue

30 / 55

Grafsökning
Hitta en kortaste väg mellanA och F

A

B

C

D

E

F
G

A C E Ffound:

− A A Cfrom:

G,E

queue

31 / 55

Grafsökning
Hitta kortaste väg mellan två noder

1 vector<Node*> shortest_path(Node* start, int end_id)
2 {
3 unordered_map<Node*, Node*> from;
4 queue<pair<Node*, Node*>> queue;
5 queue.push({ start, nullptr });
6 while (!queue.empty())
7 {
8 auto [curr, prev] = queue.front();
9 queue.pop();
10 if (from.count(curr) > 0) continue;
11 if (curr->id == end_id)
12 return produce_path(from, curr);
13
14 parents[curr] = prev;
15 for (Node* next : curr->edges)
16 queue.push({ next, curr });
17 }
18 return { }; // ingen väg hittade
19 }

31 / 55

Grafsökning
Hitta kortaste väg mellan två noder

1 vector<Node*> produce_path(unordered_map<Node*, Node*> const& from,
2 Node* end)
3 {
4 vector<Node*> path;
5 Node* curr { end };
6 while (curr != nullptr)
7 {
8 path.push_back(curr);
9 curr = from.at(curr);
10 }
11
12 reverse(path.begin(), path.end());
13 return path;
14 }

32 / 55

Grafsökning
Billigaste väg

Definition: Billigaste väg

I en viktad grafGw = (V,E) ges kostnaden för en väg
P = ⟨v1, v2, . . . , vn⟩ av

c(P) =

n−1∑
i=1

w(vi, vi+1)

En billigaste väg är en väg P sådan att c(P) ≤ c(Q) för alla
vägarQ. Dessa vägar hittas m.h.a. Dijkstras algoritm.

1 Representation av grafer
2 Grafsökning
3 Heap

34 / 55

Heap
Mål med prioritetskö

• Slå upp högst prioritet:O (1)

• Ta bort högst prioritet: Helst bättre änO (n)

• Insättningen: Helst bättre änO (n)

• Antag att högsta prioritet är detminsta värdet

34 / 55

Heap
Mål med prioritetskö

• Slå upp högst prioritet:O (1)

• Ta bort högst prioritet: Helst bättre änO (n)

• Insättningen: Helst bättre änO (n)

• Antag att högsta prioritet är detminsta värdet

35 / 55

Heap
Idé

Idé #1

Använd ett balanserat binärt sökträd, då är alltO (log n)!

36 / 55

Heap
Observation #1

Observation #1

Att hitta rotnoden i ett träd görs iO (1).

37 / 55

Heap
Idé #2

Idé #2

Behåll det balanserade binära trädet men skippa
sökstrukturen. Lagra istället det minsta värdet i roten.

38 / 55

Heap
Observation #2

Observation #2

Om vi strukturerar trädet s.a. det näst‐minsta värdet också
kan hittas i konstant tid så blir borttagningen mycket enklare.

39 / 55

Heap
Idé #3

Idé #3

Se till att det näst‐minsta värdet alltid ligger som ett barn till
roten.

40 / 55

Heap
Vad vi har hittills

3

4 18

7 32 5 8

minst!

ta bort

inte minst

minst!

minst!

näst‐minst

strukturen bruten...

40 / 55

Heap
Vad vi har hittills

3

4 18

7 32 5 8

minst!

ta bort

inte minst

minst!

minst!

näst‐minst

strukturen bruten...

40 / 55

Heap
Vad vi har hittills

3

4 18

7 32 5 8

ta bort

ta bort

inte minst

minst!

minst!

näst‐minst

strukturen bruten...

40 / 55

Heap
Vad vi har hittills

3

4 18

7 32 5 8

ta bort

ta bort

inte minst

minst!

minst!

näst‐minst

strukturen bruten...

40 / 55

Heap
Vad vi har hittills

3

4 18

7 32 5 8

ta bort

ta bort

inte minst

minst!

minst!

näst‐minst

strukturen bruten...

40 / 55

Heap
Vad vi har hittills

8

4 18

7 32 5 3

ta bort

ta bort

inte minst

minst!

minst!

näst‐minst

strukturen bruten...

40 / 55

Heap
Vad vi har hittills

8

4 18

7 32 5

ta bort

ta bort

inte minst

minst!

minst!

näst‐minst

strukturen bruten...

40 / 55

Heap
Vad vi har hittills

8

4 18

7 32 5

ta bort

ta bort

inte minst

minst!

minst!

näst‐minst

strukturen bruten...

40 / 55

Heap
Vad vi har hittills

8

4 18

7 32 5

ta bort

ta bort

inte minst

minst!

minst!

näst‐minst

strukturen bruten...

40 / 55

Heap
Vad vi har hittills

4

8 18

7 32 5

ta bort

ta bort

inte minst

minst!

minst!

näst‐minst

strukturen bruten...

40 / 55

Heap
Vad vi har hittills

4

8 18

7 32 5

ta bort

ta bort

inte minst

minst!

minst!

näst‐minst

strukturen bruten...

40 / 55

Heap
Vad vi har hittills

4

8 18

7 32 5

ta bort

ta bort

inte minst

minst!

minst!

näst‐minst

strukturen bruten...

41 / 55

Heap
Idé #4

Idé #4

Vad händer om vi säger att alla barn ska vara större än sina
föräldrar?

42 / 55

Heap
Mer struktur

3

4 7

5 8 32

minst!

Hitta någon lövnod:O (log n)Byt plats

ta bort

minst

större än sitt barn
Struktur bibehålls!Men balans är inte garanterat...

42 / 55

Heap
Mer struktur

3

4 7

5 8 32

minst!

Hitta någon lövnod:O (log n)Byt plats

ta bort

minst

större än sitt barn
Struktur bibehålls!Men balans är inte garanterat...

42 / 55

Heap
Mer struktur

3

4 7

5 8 32

ta bort

Hitta någon lövnod:O (log n)Byt plats

ta bort

minst

större än sitt barn
Struktur bibehålls!Men balans är inte garanterat...

42 / 55

Heap
Mer struktur

3

4 7

5 8 32

ta bort

Hitta någon lövnod:O (log n)

Byt plats

ta bort

minst

större än sitt barn
Struktur bibehålls!Men balans är inte garanterat...

42 / 55

Heap
Mer struktur

3

4 7

5 8 32

ta bort

Hitta någon lövnod:O (log n)

Byt plats

ta bort

minst

större än sitt barn
Struktur bibehålls!Men balans är inte garanterat...

42 / 55

Heap
Mer struktur

3

4 7

5 8 32

ta bort

Hitta någon lövnod:O (log n)

Byt plats

ta bort

minst

större än sitt barn
Struktur bibehålls!Men balans är inte garanterat...

42 / 55

Heap
Mer struktur

8

4 7

5 3 32

ta bort

Hitta någon lövnod:O (log n)Byt plats

ta bort

minst

större än sitt barn
Struktur bibehålls!Men balans är inte garanterat...

42 / 55

Heap
Mer struktur

8

4 7

5

3

32

ta bort

Hitta någon lövnod:O (log n)Byt plats

ta bort

minst

större än sitt barn
Struktur bibehålls!Men balans är inte garanterat...

42 / 55

Heap
Mer struktur

4

8 7

5

3

32

ta bort

Hitta någon lövnod:O (log n)Byt plats

ta bort

minst

större än sitt barn
Struktur bibehålls!Men balans är inte garanterat...

42 / 55

Heap
Mer struktur

4

8 7

5

3

32

ta bort

Hitta någon lövnod:O (log n)Byt plats

ta bort

minst

större än sitt barn

Struktur bibehålls!Men balans är inte garanterat...

42 / 55

Heap
Mer struktur

4

8 7

5

3

32

ta bort

Hitta någon lövnod:O (log n)Byt plats

ta bort

minst

större än sitt barn

Struktur bibehålls!Men balans är inte garanterat...

42 / 55

Heap
Mer struktur

4

5 7

8

3

32

ta bort

Hitta någon lövnod:O (log n)Byt plats

ta bort

minst

större än sitt barn
Struktur bibehålls!Men balans är inte garanterat...

42 / 55

Heap
Mer struktur

4

5 7

8

3

32

ta bort

Hitta någon lövnod:O (log n)Byt plats

ta bort

minst

större än sitt barn

Struktur bibehålls!

Men balans är inte garanterat...

42 / 55

Heap
Mer struktur

4

5 7

8

3

32

ta bort

Hitta någon lövnod:O (log n)Byt plats

ta bort

minst

större än sitt barn
Struktur bibehålls!

Men balans är inte garanterat...

43 / 55

Heap
Nästan komplett träd

Definition: Komplett– och nästan komplett träd

• Ett träd T är komplett om det har exakt 2k − 1 noder
fördelade i exakt k nivåer.

• Ett träd T är nästan komplett om alla nivår förutom sista
är fulla, och den sista nivån är fylld från vänster till höger.

• Följd: Ett nästan komplett träd är balanserat

43 / 55

Heap
Nästan komplett träd

Definition: Komplett– och nästan komplett träd

• Ett träd T är komplett om det har exakt 2k − 1 noder
fördelade i exakt k nivåer.

• Ett träd T är nästan komplett om alla nivår förutom sista
är fulla, och den sista nivån är fylld från vänster till höger.

• Följd: Ett nästan komplett träd är balanserat

43 / 55

Heap
Nästan komplett träd

Definition: Komplett– och nästan komplett träd

• Ett träd T är komplett om det har exakt 2k − 1 noder
fördelade i exakt k nivåer.

• Ett träd T är nästan komplett om alla nivår förutom sista
är fulla, och den sista nivån är fylld från vänster till höger.

• Följd: Ett nästan komplett träd är balanserat

44 / 55

Heap
Idé #5

Idé #5

• Lagra vår prioritetskö i ett nästan komplett träd, d.v.s. fyll
varje nivå från vänster till höger vid insättning.

• Vid borttagning, välj alltid den lövnod som är mest till
höger på sista nivån

45 / 55

Heap
Nästan komplett träd

32

4 6

7 5 11 18

9 8 32

3

32

ta bort

Hitta den specifika lövnoden:O (n)

ta bort

Fel!

minstFel!

minst

45 / 55

Heap
Nästan komplett träd

32

4 6

7 5 11 18

9 8 32

3

32

ta bort

Hitta den specifika lövnoden:O (n)

ta bort

Fel!

minstFel!

minst

45 / 55

Heap
Nästan komplett träd

32

4 6

7 5 11 18

9 8 32

3

32

ta bort

Hitta den specifika lövnoden:O (n)

ta bort

Fel!

minstFel!

minst

45 / 55

Heap
Nästan komplett träd

32

4 6

7 5 11 18

9 8 32

3

32

ta bort

Hitta den specifika lövnoden:O (n)

ta bort

Fel!

minstFel!

minst

45 / 55

Heap
Nästan komplett träd

32

4 6

7 5 11 18

9 8 32

32

3

ta bort

Hitta den specifika lövnoden:O (n)

ta bort

Fel!

minstFel!

minst

45 / 55

Heap
Nästan komplett träd

32

4 6

7 5 11 18

9 8 32

32

3

ta bort

Hitta den specifika lövnoden:O (n)

ta bort

Fel!

minstFel!

minst

45 / 55

Heap
Nästan komplett träd

32

4 6

7 5 11 18

9 8 32

32

3

ta bort

Hitta den specifika lövnoden:O (n)

ta bort

Fel!

minst

Fel!

minst

45 / 55

Heap
Nästan komplett träd

32

4 6

7 5 11 18

9 8 32

32

3

ta bort

Hitta den specifika lövnoden:O (n)

ta bort

Fel!

minst

Fel!

minst

45 / 55

Heap
Nästan komplett träd

32

32 6

7 5 11 18

9 8 32

4

3

ta bort

Hitta den specifika lövnoden:O (n)

ta bort

Fel!

minst

Fel!

minst

45 / 55

Heap
Nästan komplett träd

32

32 6

7 5 11 18

9 8 32

4

3

ta bort

Hitta den specifika lövnoden:O (n)

ta bort

Fel!

minst

Fel!

minst

45 / 55

Heap
Nästan komplett träd

32

32 6

7 5 11 18

9 8 32

4

3

ta bort

Hitta den specifika lövnoden:O (n)

ta bort

Fel!

minst

Fel!

minst

45 / 55

Heap
Nästan komplett träd

32

5 6

7 32 11 18

9 8 32

4

3

ta bort

Hitta den specifika lövnoden:O (n)

ta bort

Fel!

minstFel!

minst

46 / 55

Heap
Lagra ett nästan komplett träd i en dynamisk array

0

1 2

3 4 5 6

7 8 9 10 11 12

0 1 2 3 4 5 6 7 8 9 10 11 12

46 / 55

Heap
Lagra ett nästan komplett träd i en dynamisk array

0

1 2

3 4 5 6

7 8 9 10 11 12

0 1 2 3 4 5 6 7 8 9 10 11 12

46 / 55

Heap
Lagra ett nästan komplett träd i en dynamisk array

0

1 2

3 4 5 6

7 8 9 10 11 12

0 1 2 3 4 5 6 7 8 9 10 11 12

46 / 55

Heap
Lagra ett nästan komplett träd i en dynamisk array

0

1 2

3 4 5 6

7 8 9 10 11 12

0 1 2 3 4 5 6 7 8 9 10 11 12

46 / 55

Heap
Lagra ett nästan komplett träd i en dynamisk array

0

1 2

3 4 5 6

7 8 9 10 11 12

0 1 2 3 4 5 6 7 8 9 10 11 12

47 / 55

Heap
Lagra ett nästan komplett träd i en dynamisk array

Avbildning från träd till array

Vi avbildar ett nästan komplett träd till en array såhär:

• Rotnoden lagras på index 0
• Nod på index i lagrar sitt vänstra barn på index 2i+ 1

• Nod på index i lagrar sitt högra barn på index 2i+ 2

• Nod på index i har nod på index
⌊
i− 1

2

⌋
som förälder

47 / 55

Heap
Lagra ett nästan komplett träd i en dynamisk array

Avbildning från träd till array

Vi avbildar ett nästan komplett träd till en array såhär:
• Rotnoden lagras på index 0

• Nod på index i lagrar sitt vänstra barn på index 2i+ 1

• Nod på index i lagrar sitt högra barn på index 2i+ 2

• Nod på index i har nod på index
⌊
i− 1

2

⌋
som förälder

47 / 55

Heap
Lagra ett nästan komplett träd i en dynamisk array

Avbildning från träd till array

Vi avbildar ett nästan komplett träd till en array såhär:
• Rotnoden lagras på index 0
• Nod på index i lagrar sitt vänstra barn på index 2i+ 1

• Nod på index i lagrar sitt högra barn på index 2i+ 2

• Nod på index i har nod på index
⌊
i− 1

2

⌋
som förälder

47 / 55

Heap
Lagra ett nästan komplett träd i en dynamisk array

Avbildning från träd till array

Vi avbildar ett nästan komplett träd till en array såhär:
• Rotnoden lagras på index 0
• Nod på index i lagrar sitt vänstra barn på index 2i+ 1

• Nod på index i lagrar sitt högra barn på index 2i+ 2

• Nod på index i har nod på index
⌊
i− 1

2

⌋
som förälder

47 / 55

Heap
Lagra ett nästan komplett träd i en dynamisk array

Avbildning från träd till array

Vi avbildar ett nästan komplett träd till en array såhär:
• Rotnoden lagras på index 0
• Nod på index i lagrar sitt vänstra barn på index 2i+ 1

• Nod på index i lagrar sitt högra barn på index 2i+ 2

• Nod på index i har nod på index
⌊
i− 1

2

⌋
som förälder

48 / 55

Heap
Heaps

Definition: Heap

• Enmin‐heap är ett binärt trädH där:
(i) H är ett nästan komplett träd
(ii) Varje nod iH ärmindre än båda sina barn

• Enmax‐heap är ett binärt trädH där:
(i) H är ett nästan komplett träd
(ii) Varje nod iH är större än båda sina barn

48 / 55

Heap
Heaps

Definition: Heap

• Enmin‐heap är ett binärt trädH där:
(i) H är ett nästan komplett träd
(ii) Varje nod iH ärmindre än båda sina barn

• Enmax‐heap är ett binärt trädH där:
(i) H är ett nästan komplett träd
(ii) Varje nod iH är större än båda sina barn

49 / 55

Heap
Heaps, egenskaper

• Hitta minsta/största:O (1)

• Insättning:O (log n)

• Borttagning:O (log n)

49 / 55

Heap
Heaps, egenskaper

• Hitta minsta/största:O (1)

• Insättning:O (log n)

• Borttagning:O (log n)

49 / 55

Heap
Heaps, egenskaper

• Hitta minsta/största:O (1)

• Insättning:O (log n)

• Borttagning:O (log n)

50 / 55

Heap
Implementation

1 class Min_Heap
2 {
3 public:
4
5 Min_Heap() = default;
6
7 void push(int value);
8
9 int pop_min();
10 int peek_min() const;
11
12 private:
13
14 void sift_down(unsigned index);
15 void sift_up(unsigned index);
16
17 vector<int> values;
18 };

51 / 55

Heap
Implementation: Hjälpfunktioner

1 unsigned left(unsigned index)
2 {
3 return 2*index + 1;
4 }
5
6 unsigned right(unsigned index)
7 {
8 return 2*index + 2;
9 }
10
11 unsigned parent(unsigned index)
12 {
13 return (index - 1) / 2;
14 }

52 / 55

Heap
Implementation: sift‐down

1 void Min_Heap::sift_down(unsigned index)
2 {
3 if (index >= values.size()) return;
4 unsigned l { left (index) }; // hitta vänsterbarn
5 unsigned r { right(index) }; // hitta högerbarn
6
7 // om vänster inte finns så finns inga barn
8 if (l >= values.size()) return;
9
10 unsigned next { l }; // hitta det minsta barnet
11 if (r < values.size() && values[r] < values[l])
12 next = r;
13
14 // om vi redan är mindre än vårt minsta barn är vi klara
15 if (values[index] < values[next]) return;
16
17 // annars byter vi plats med minsta barnet och rekurserar
18 swap(values[index], values[next]);
19 sift_down(next);
20 }

53 / 55

Heap
Implementation: sift‐up

1 void Min_Heap::sift_up(unsigned index)
2 {
3 if (index == 0 || index >= values.size()) return;
4
5 // hitta föräldern
6 unsigned p { parent(index) };
7
8 // om heap egenskapen redan är uppfylld är vi klara
9 if (values[p] < values[index]) return;
10
11 // annars byter vi värdena och rekurserar
12 swap(values[p], values[index]);
13 sift_up(p);
14 }

54 / 55

Heap
Implementation: Insättning, borttagning och hitta

1 void Min_Heap::push(int value)
2 {
3 values.push_back(value); // lägg till som sista lövnod
4 sift_up(values.size() - 1); // flytta uppåt tills det är en heap igen
5 }
6
7 int Min_Heap::pop_min()
8 {
9 int min { values.front() }; // spara det minsta värdet
10 swap(values.front(), values.back()); // byt plats med sista lövnod
11 values.pop_back(); // ta bort sista lövnoden
12 sift_down(0); // flytta nedåt tills det är en heap igen
13
14 }
15
16 int Min_Heap::peek_min()
17 {
18 return values.front();
19 }

55 / 55

Heap
Avslut

• Kan man göra bättre?

• Ja, det finns t.ex. något som heter en Fibonacci heap där insättning blir
O (1) amorterat.

• En Fibonacci heap är dock mer komplicerad att implementera och analysera.
• Fibonacci heaps bygger på den något simplare Binomial heap
• https://www.cs.usfca.edu/~galles/visualization/

FibonacciHeap.html

https://www.cs.usfca.edu/~galles/visualization/FibonacciHeap.html
https://www.cs.usfca.edu/~galles/visualization/FibonacciHeap.html

55 / 55

Heap
Avslut

• Kan man göra bättre?
• Ja, det finns t.ex. något som heter en Fibonacci heap där insättning blir

O (1) amorterat.

• En Fibonacci heap är dock mer komplicerad att implementera och analysera.
• Fibonacci heaps bygger på den något simplare Binomial heap
• https://www.cs.usfca.edu/~galles/visualization/

FibonacciHeap.html

https://www.cs.usfca.edu/~galles/visualization/FibonacciHeap.html
https://www.cs.usfca.edu/~galles/visualization/FibonacciHeap.html

55 / 55

Heap
Avslut

• Kan man göra bättre?
• Ja, det finns t.ex. något som heter en Fibonacci heap där insättning blir

O (1) amorterat.
• En Fibonacci heap är dock mer komplicerad att implementera och analysera.

• Fibonacci heaps bygger på den något simplare Binomial heap
• https://www.cs.usfca.edu/~galles/visualization/

FibonacciHeap.html

https://www.cs.usfca.edu/~galles/visualization/FibonacciHeap.html
https://www.cs.usfca.edu/~galles/visualization/FibonacciHeap.html

55 / 55

Heap
Avslut

• Kan man göra bättre?
• Ja, det finns t.ex. något som heter en Fibonacci heap där insättning blir

O (1) amorterat.
• En Fibonacci heap är dock mer komplicerad att implementera och analysera.
• Fibonacci heaps bygger på den något simplare Binomial heap

• https://www.cs.usfca.edu/~galles/visualization/
FibonacciHeap.html

https://www.cs.usfca.edu/~galles/visualization/FibonacciHeap.html
https://www.cs.usfca.edu/~galles/visualization/FibonacciHeap.html

55 / 55

Heap
Avslut

• Kan man göra bättre?
• Ja, det finns t.ex. något som heter en Fibonacci heap där insättning blir

O (1) amorterat.
• En Fibonacci heap är dock mer komplicerad att implementera och analysera.
• Fibonacci heaps bygger på den något simplare Binomial heap
• https://www.cs.usfca.edu/~galles/visualization/

FibonacciHeap.html

https://www.cs.usfca.edu/~galles/visualization/FibonacciHeap.html
https://www.cs.usfca.edu/~galles/visualization/FibonacciHeap.html

www.liu.se

www.liu.se

	Representation av grafer
	Grafsökning
	Heap

