TDDE73 — Inlamning #4

Ansvarig larare: Christoffer Holm (christoffer.holm@liu.se)

Senast andrad: 2025-12-05

Regler

e Lamna in dina lésningar till christoffer.holm@liu.se senast 2025-12-22 kil 23:59.
o Skicka mejlet med titeln TDDE73: Inl&mning 4.
o Losningar pa programmeringsuppgifter ska bifogas som .cc och/eller .h filer.

e Svar pa teoretiska uppgifter ska bifogas som PDF eller .txt filer. Datorskrivna
l6sningar ar att foredra, men inskannade anteckningar &r ocksa OK.

o Skriv i mejlet vilka uppgifter du har lamnat in och i vilka filer de kan hittas.

Godkind inldmning

En inldmning ar godkénd om:
e Minst en uppgift per del bedéms som godkénd.
o Fyra uppgifter, eller fler, bedéms som godkénda.

En inldmning kan endast kompletteras om minst fyra uppgifter limnades in och ett férsck
till en 16sning gjordes pa vardera uppgift. Du kommer att bli inkallad till att redovisa en
uppgift minst en gang under kursen.

Slutbetyg

Slutbetyg pa momentet sitts enligt foljande krav:

Godkinda uppgifter Godkinda *-uppgifter Samlade bonuspoiang
Betyg 3 4 per inldmning
Betyg 4 4 per inldmning 5 stycken totalt
Betyg 4 4 per inldmning 20p
Betyg 5 4 per inldmning 5 stycken totalt 20p

Dessa uppgifter ar nya, sa de kan variera i svarighetsgrad och innehalla fel. Kontakta
christoffer.holm@liu.se om du har fragor, funderingar eller synpunkter.

TDDE73 — Programmering, datastrukturer och algoritmer Inldmning #4

Uppgifter

Del 1 — Heap

4.1. Bevisa foljande tva pastaenden:
(a) ett nastan komplett bindrt soktrad ar inte en heap
(b) en array sorterad i stigande ordning dr en minimum heap

4.2. Implementera foljande funktioner i C++, samt ange deras tidskomplexitet:

(a) funktionen bool is_heap(std::vector<int> const& v) som kontrollerar huruvi-
da v &r en heap.

(b) funktionen trace(std::vector<int> const& v, unsigned i) dér v antas vara en
minimum heap. trace() skriver ut vilka virden som bestks om man traverserar fran
rotnoden till noden som lagras pa index i.

Exempel: Givet minimum heapen v = {1, 3, 2, 4, 6, 7, 5} sid ska
trace(v, 5) skrivaut1 2 7.

4.3.* Lat H vara en minimum heap av storlek n som lagras i en array. Lat rank(i) vara
hojden av deltradet till H vars rot &r nod i. Notera att l6vnoder har rang 0.
Givet k € N, 1at Ry = {i | rank(i) > k}. Visa att

n

Ledning: Givet att noderna definieras i termer av sina index i arrayen ger avbildningen
L(j) = 2j+1 det vénstra barnet till nod j. Givet ¢ s.a. rank(i) > k, identifiera vilka noder
som maste finnas i deltrddet som har 7 som rot.

Del 2 — Grafsokning

OBS: I denna del antas alla grafer vara sammanhangande och &dndliga.

4.4. Bestam tidskomplexiteten for djupet-forst-sokning av en graf G = (V, E). Tidskom-
plexiteten ska uttryckas i termer av |V| och |E|.

4.5. Konstruera en algoritm som detekterar huruvida en graf G = (V, E) innehaller en
cykel genom att anvinda grafsdkning.

Forklara hur du vet att din algoritm kommer att upptécka cykler i G. Redogor dven vilken
algoritm du anvinder som bas: djupet-forst- eller bredden-férst-sokning, samt varfor du
anvander just den grafsékningsalgoritmen.

4.6. Konstruera en algoritm som detekterar huruvida en given graf G = (V, E) ar bipartit.
Forklara hur du vet att din algoritm kan avgoéra om G &r bipartit. Redogor &ven vilken
algoritm du anvinder som bas: djupet-forst- eller bredden-forst-sdkning, samt varfor du
anvander just den grafsékningsalgoritmen.

Forklaring: I en bipartit graf kan V partitioneras till tvd méngder A och B dar ANB = ()
och AU B =V sadant att for alla (u,v) € E géller det att u € A och v € B.

D.v.s. en bipartit graf dr en graf dar noderna kan delas upp i tva distinkta méngder dér
varje bage har en &ndpunkt i vardera mangd.

4.7.* Givet att det finns en vag mellan u € V och v € V i den oviktade grafen G = (V, E),
visa att bredden-forst-sokning garanterat hittar den kortaste vigen fran u till v.

TDDE73 — Programmering, datastrukturer och algoritmer Inldmning #4

Del 3 — Grafalgoritmer

4.8. En Eulerkrets &r en krets som besoker varje bage i en graf. En riktad graf G = (V, E)
har en Eulerkrets om och endast om varje nod v € V har lika manga inkommande som
utgaende bagar. D.v.s. att

H{(u,v) € ElueV} =|{(v,u) € E|uecV}.

I givna_filer/euler.cc implementeras funktionen has_euler_circuit () som kontrol-
ler villkoret ovan for en graf. Dessutom implementeras find_euler_circuit () som hittar
en Eulerkrets givet att en sadan finns. Bada dessa funktioner nyttjar den inkompletta
graf-representationen Graph.

Din uppgift ar att implementera Graph klassen genom att vélja en lamplig underliggande
representation (grannlista eller grannmatris) och implementera alla funktioner. Huvud-
programmet, has_euler_circuit() och find_euler_circuit () ska ej modifieras.
Notera att grafen &r riktad sa nod (u,v) och (v,u) &r olika bagar for u,v € V. Detta
maste fangas i Graph. Notera specifikt att out_degree (v) och in_degree (v) representerar
antalet utgaende och inkommande bagar, respektive, fér noden v.

Det finns tre givna grafer du kan testa programmet mot. Dessa kan ses nedan:

P wfle

graphl.txt graph2.txt graph3d.txt

4.9. I filen givna_filer/cluster.cc finns borjan pa ett program som léser in ett dndligt
rutnét av bool virden. Rutnétet innehéller kluster av celler som ar true. Ett kluster
definieras som en sammanhéngande uppséttning av celler som alla &r true. Tva celler &r
grannar om de ar ortogonalt eller diagonalt jimte varandra.

Programmet léaser in ett rutnit fran en fil. Det finns tre filer givna, dess innehall kan ses

i diagrammet nedan:
(0,0)

(0,0)

N W
gridl.txt grid3.txt
grid2.txt

Notera att i diagrammet dr varje sammanhéngande kluster fargade i samma farg for att
tydligare visa vart klustret &r. Ofiirgade rutor motsvarar celler som ar false. Rad 0
motsvarar 6versta raden, och kolumn 0 motsvarar forsta kolumnen fran vanster.

Din uppgift &r att implementera funktionen find_region_size() sa att den, givet ett rut-
nit grid och en position start, hittar antalet true-celler som start dr sammanhangande
med (inklusive sig sjélv). Om start = { 0, 0 } i gridl.txt ska find_region_size()
returnera 5 ty det &r exakt antalet celler i den réda regionen (som (0,0) rakar ligga i).
Funktionen returnerar 0 for alla celler som &r false.

Till din hjilp finns funktionerna get_neighbours() som returnerar alla potentiella gran-
nar till en cell, och in_bounds () som kontrollerar huruvida en cell faktiskt ligger i rutnétet.

TDDE73 — Programmering, datastrukturer och algoritmer Inldmning #4

4.10.* T denna uppgift ska du skriva ett program som hittar den kortaste ordkedjan fran
en string till en annan. Borjan av en implementation finns i givna_filer/chain.cc.
En ordkedja i denna uppgifter definieras som en sekvens av giltiga ord wy,ws, ..., w, dir
w; och w;41 skiljer sig som mest pa en position. T.ex. skiljer sig orden “word“ och “ward*
endast pa den andra position i orden, 6vriga position innehéllar samma bokstéver.
Ett ord rédknas som giltigt om det férekommer i filen givna_filer/words.txt.
Ett exempel pa en giltig ordkedja ar:

code — mode — made — mate — math
dér vi ser att vardera ord endast skiljer sig pa en position jamfort med foregaende ord.
Detta ar ocksa ett exempel pa en kortaste ordkedja mellan code och math, d.v.s. att det
finns ingen annan ordkedja mellan dessa ord som é&r kortare.
Din uppgift &r att fardigstéilla funktionen wordchain() genom att géra en lamplig grafsok-
ning fran ordet start till ordet target. For att avgdra om ett ord ar giltigt tar funktionen
emot ett lexikon med alla giltiga ord.
For att gora grafsokningen har vi en implicit bage fran ett giltigt ord w till alla andra
giltiga ord som skiljer sig pa exakt en position jamfort med w. En implicit bage syftar till
att vi inte behdver representera grafstrukturen i minnet utan vi kan istéllet berdkna alla
potentiella grannar till ett ord nar de behdvs med hjélp av funktionen get_candidates().
Vi maste dock sjéalva dubbelkolla vilka ord som funktionen producerade som var giltiga.
For att halla koll pa den kortaste véigen fran start till ett annat ord word anviander vi
strukturen parents som lagrar word som nyckel och ordet vi kom ifran som vérde. T.ex.
skulle vi lagra foljande virden (och potentiellt fler) for ordkedjan ovan som:

parents["code"] = ""

parents["made"] = "mode"
parents["mate"] = "made"
parents["math"] = "mate"
parents["mode"] = "code"

TDDE73 — Programmering, datastrukturer och algoritmer Inldmning #4

Formelsamling

Antag att a > 0,b>0o0och f,g,h: N — Ry s.a. f, g, h ar obegrdnsade uppat.

Definitioner:

(i) g(n) € O(f(n)) om och endast om Je,ng > 0 sddana att g(n) < cf(n) ¥n > ng.
(ii) g(n) € Q(f(n)) om och endast om Je,ng > 0 sddana att g(n) > cf(n) ¥n > ng.
(i) g(n) € © (£(n)) om och endast om g(n) € O (£(n) och g(n) € A (F(n)).

)

O (g(n)) C O(f(n)) om och endast om:

* I(n) € O(f(n)) for alla hi(n) € O(g(n))

o Det finns ha(n) € O(f(n)) sadan att ha(n) ¢ O (g(n))
Om andra kravet inte ar uppfyllt géller O (g(n)) C O (f(n)).

(iv

Relationer:

(v) g(n) € Q(f(n)) <= f(n) € O(g(n))

(vi) g(n) € © (f(n)) == g(n) € O(f(n)) och f(n) € O(g(n))
Rikneregler:

(vii) a-g(n)+be O(f(n)) < g(n) € O(f(n))
(vil) a-g(n) +h(n) € O(f(n)) <= g(n), h(n) € O(f(n))
(ix) g(n)h(n) € O(f(n)) = g(n) € O(f(n)) och h(n) € O(f(n))
(x) Ofa- f(n) +b) =0 (f(n))
(xi) O(a- f(n) +g(n)) = O (f(n)) <= O(g(n)) € O (f(n))
(xii) O (h(n)f(n)) € O(g(n)f(n)) <= O(h(n)) € O(g(n))
Komplexitetsklasser:
(xiii) O(1) C O(logn) C O(y/n) C O(n) C O(nlogn) C O(2")
(xiv) O(log,n) = 0O (loggn) = O (logn) for alla a, f € Ry.

(xv) O(n*) C O(n’) for alla 0 < a < f3
(xvi) O(a™) Cc O(B") for alla 0 < a < 8.

) O(nlogn) C O (n'*e) for alla e > 0

O(
O(a-

(xvii
(xviil) For nagot k > 0 och ¢ € Ry sa géller g(n) < cVn >k <= g(n) € O(1)
Anviandbara samband:
(xix) log,z <z dd z >3 (z >¢€) och a > 2 (a > e'/®)

(xx) n<nf*din>1lochk>1

TDDE73 — Programmering, datastrukturer och algoritmer Inldmning #4

Tidskomplexitet

Lat 77 representera en vektor med alla variabler som péaverkar tidskomplexiteten.
[I] Foljande operationer antas ha tidskomplexitet O (1):
o Aritmetiska och logiska operationer
e Initiering och tilldelning av inbyggda datatyper
o Avreferering av pekare och atkomst av variabler
o Allokering och avallokering av minne

[II] Givet tva satser som evalueras i f6ljd, med tidskomplexitet O (fi(n)) och O (f2(n))
respektive, sa ar totala tidskomplexiteten O (f1(n) + fa(n)).

[ITI] Villkorssatser, t.ex. if- eller switch-satser, har tidskomplexitet O (¢(77) + f(77)) dér
f(7) ar tidskomplexiteten av den dyraste (billigaste om bésta fall) grenen i villkors-
satsen och g(77) &r tidskomplexiteten av villkoret.

[IV] Upprepningssatser, t.ex. for-, while- och do-while-loopar, har tidskomplexitet givet
av O (g(it) - f(7i)) dér g(7) & maximala (minimala om bésta fall) antalet iterationer
som kan ske och f(77) &r tidskomplexiteten av den dyraste (billigaste om bésta fall)
iterationen.

Rekursiva komplexitetsklasser

Givet en rekursiv algoritm dar:
e det sker a > 1 rekursiva anrop
o indatan delas upp i b > 1 lika stora bitar
o det tar f(n) € O (nd) ,d > 0 tid att dela upp och kombinera problemet

Sa ges tidskomplexiteten av differensekvationen

T(n) = aT () + ()
och den slutgiltiga tidskomplexiteten bestams av foljande:
[V] Om d < logya = T(n) € © (n'°%®)
[VI] Om d =logya = T(n) € © (n?logn)
[VII] Om d > log,a = T(n) € © (n%)
Specialfall av [VI]:
[VIII] Oma=10ochd=0= T(n) € © (logn)

[XXIII
[XXIV

[

[XXVI
[XXVII

TDDE73 — Programmering, datastrukturer och algoritmer Inldmning #4

Amorterad tidskomplexitet

[IX] Antag att algoritmen kérs M ganger och den totala tidskomplexiteten for alla M
kérningar &r O (T'(7, M)). Da ges den amorterade tidskomplexiteten av

O(T(#,M)) . (T(ii, M)
— ¢ (M) '
Heaps

Givet en heap ‘H med jamforelseoperator <3 som ar byggd ovanpa en dynamisk array, for
index 1 =0,1,...,n — diar H; motsvarar det lagrade viardet — sa géller:

p— 1
(xix) P(i) = V2J ger fordldern till noden pé plats ¢
(xx) L(i) = 2i + 1 ger vénsterbarnet till noden pa plats ¢
(xxi) R(i) = 2i + 2 ger hogerbarnet till noden pa plats i
(xxii) H; <w Hr) om L(i) < n och H; <3y Hp) om R(i) < n.
Grafer

En graf G = (V, E) ar en méngd noder V och en mingd bagar E dir E CV x V.
G = (V,E) éar dandlig om bade E och V ar édndliga méngder.

G = (V, E) ér riktad om paren i E ar ordnade, d.v.s. att alla bagar har en riktning.

]
]
XXV] G = (V, E) ar oriktad om paren i E ar oordnade, d.v.s. att alla bagar saknar riktning.
]
]

En viktad graf G,, = (V, E) &r en graf dar det existerar en avbildning w : £ — R,
d.v.s. i en viktad graf har varje bage ett associerat viarde som kallas dess wvikt.

[XXVIII] En vandring i en graf G = (V, E) &r en sekvens av noder dér det finns en bage fran

foregaende nod till ndsta nod i sekvensen.
En vdg dr en vandring som inte aterupprepar bagar.

En stig 4r en vandring som inte aterupprepar noder.

En cykel ar en stig som borjar och slutar i samma nod.

]
]
[XXXI] En krets ar en viag som borjar och slutar i samma nod.
]
]

Anvandbara samband:
For en graf G = (V, E) géller:

-1
(xix) Om G é&r oriktad och sammanhéngande: V|41 < |E| < |V|(‘V2’)

(xx) Om G ar riktad och sammanhéngande: |[V|+ 1 < |E| < |[V|(|V]| 1)
(xxi) Om G é&r riktad: deg™ (v) + deg™ (v) = deg(v) for alla v € V

