
TDDE73 – Inlämning #4

Ansvarig lärare: Christoffer Holm (christoffer.holm@liu.se)

Senast ändrad: 2025-12-05

Regler
• Lämna in dina lösningar till christoffer.holm@liu.se senast 2025–12–22 kl 23:59.

• Skicka mejlet med titeln TDDE73: Inlämning 4.

• Lösningar på programmeringsuppgifter ska bifogas som .cc och/eller .h filer.

• Svar på teoretiska uppgifter ska bifogas som PDF eller .txt filer. Datorskrivna
lösningar är att föredra, men inskannade anteckningar är också OK.

• Skriv i mejlet vilka uppgifter du har lämnat in och i vilka filer de kan hittas.

Godkänd inlämning
En inlämning är godkänd om:

• Minst en uppgift per del bedöms som godkänd.

• Fyra uppgifter, eller fler, bedöms som godkända.

En inlämning kan endast kompletteras om minst fyra uppgifter lämnades in och ett försök
till en lösning gjordes på vardera uppgift. Du kommer att bli inkallad till att redovisa en
uppgift minst en gång under kursen.

Slutbetyg
Slutbetyg på momentet sätts enligt följande krav:

Godkända uppgifter Godkända *-uppgifter Samlade bonuspoäng
Betyg 3 4 per inlämning
Betyg 4 4 per inlämning 5 stycken totalt
Betyg 4 4 per inlämning 20p
Betyg 5 4 per inlämning 5 stycken totalt 20p

Dessa uppgifter är nya, så de kan variera i svårighetsgrad och innehålla fel. Kontakta
christoffer.holm@liu.se om du har frågor, funderingar eller synpunkter.

1

TDDE73 – Programmering, datastrukturer och algoritmer Inlämning #4

Uppgifter

Del 1 – Heap
4.1. Bevisa följande två påståenden:

(a) ett nästan komplett binärt sökträd är inte en heap
(b) en array sorterad i stigande ordning är en minimum heap

4.2. Implementera följande funktioner i C++, samt ange deras tidskomplexitet:
(a) funktionen bool is_heap(std::vector<int> const& v) som kontrollerar huruvi-

da v är en heap.
(b) funktionen trace(std::vector<int> const& v, unsigned i) där v antas vara en

minimum heap. trace() skriver ut vilka värden som besöks om man traverserar från
rotnoden till noden som lagras på index i.
Exempel: Givet minimum heapen v = { 1, 3, 2, 4, 6, 7, 5 } så ska
trace(v, 5) skriva ut 1 2 7.

4.3.* Låt H vara en minimum heap av storlek n som lagras i en array. Låt rank(i) vara
höjden av delträdet till H vars rot är nod i. Notera att lövnoder har rang 0.
Givet k ∈ N, låt Rk = {i | rank(i) ≥ k}. Visa att

|Rk| ≤
n

2k
.

Ledning: Givet att noderna definieras i termer av sina index i arrayen ger avbildningen
L(j) = 2j+1 det vänstra barnet till nod j. Givet i s.a. rank(i) ≥ k, identifiera vilka noder
som måste finnas i delträdet som har i som rot.

Del 2 – Grafsökning

OBS: I denna del antas alla grafer vara sammanhängande och ändliga.
4.4. Bestäm tidskomplexiteten för djupet-först-sökning av en graf G = (V,E). Tidskom-
plexiteten ska uttryckas i termer av |V | och |E|.

4.5. Konstruera en algoritm som detekterar huruvida en graf G = (V,E) innehåller en
cykel genom att använda grafsökning.
Förklara hur du vet att din algoritm kommer att upptäcka cykler i G. Redogör även vilken
algoritm du använder som bas: djupet-först- eller bredden-först-sökning, samt varför du
använder just den grafsökningsalgoritmen.

4.6. Konstruera en algoritm som detekterar huruvida en given graf G = (V,E) är bipartit.
Förklara hur du vet att din algoritm kan avgöra om G är bipartit. Redogör även vilken
algoritm du använder som bas: djupet-först- eller bredden-först-sökning, samt varför du
använder just den grafsökningsalgoritmen.
Förklaring: I en bipartit graf kan V partitioneras till två mängder A och B där A∩B = ∅
och A ∪B = V sådant att för alla (u, v) ∈ E gäller det att u ∈ A och v ∈ B.
D.v.s. en bipartit graf är en graf där noderna kan delas upp i två distinkta mängder där
varje båge har en ändpunkt i vardera mängd.

4.7.* Givet att det finns en väg mellan u ∈ V och v ∈ V i den oviktade grafen G = (V,E),
visa att bredden-först-sökning garanterat hittar den kortaste vägen från u till v.

2

TDDE73 – Programmering, datastrukturer och algoritmer Inlämning #4

Del 3 – Grafalgoritmer
4.8. En Eulerkrets är en krets som besöker varje båge i en graf. En riktad graf G = (V,E)
har en Eulerkrets om och endast om varje nod v ∈ V har lika många inkommande som
utgående bågar. D.v.s. att

|{(u, v) ∈ E | u ∈ V }| = |{(v, u) ∈ E | u ∈ V }|.

I givna_filer/euler.cc implementeras funktionen has_euler_circuit() som kontrol-
ler villkoret ovan för en graf. Dessutom implementeras find_euler_circuit() som hittar
en Eulerkrets givet att en sådan finns. Båda dessa funktioner nyttjar den inkompletta
graf-representationen Graph.
Din uppgift är att implementera Graph klassen genom att välja en lämplig underliggande
representation (grannlista eller grannmatris) och implementera alla funktioner. Huvud-
programmet, has_euler_circuit() och find_euler_circuit() ska ej modifieras.
Notera att grafen är riktad så nod (u, v) och (v, u) är olika bågar för u, v ∈ V . Detta
måste fångas i Graph. Notera specifikt att out_degree(v) och in_degree(v) representerar
antalet utgående och inkommande bågar, respektive, för noden v.
Det finns tre givna grafer du kan testa programmet mot. Dessa kan ses nedan:

0

12

graph1.txt

01

2

3

4

graph2.txt

0 1

2

34

5

graph3.txt

4.9. I filen givna_filer/cluster.cc finns början på ett program som läser in ett ändligt
rutnät av bool värden. Rutnätet innehåller kluster av celler som är true. Ett kluster
definieras som en sammanhängande uppsättning av celler som alla är true. Två celler är
grannar om de är ortogonalt eller diagonalt jämte varandra.
Programmet läser in ett rutnät från en fil. Det finns tre filer givna, dess innehåll kan ses
i diagrammet nedan:

(0, 0)

grid1.txt

(0, 0)

grid2.txt
grid3.txt

Notera att i diagrammet är varje sammanhängande kluster färgade i samma färg för att
tydligare visa vart klustret är. Ofärgade rutor motsvarar celler som är false. Rad 0
motsvarar översta raden, och kolumn 0 motsvarar första kolumnen från vänster.
Din uppgift är att implementera funktionen find_region_size() så att den, givet ett rut-
nät grid och en position start, hittar antalet true-celler som start är sammanhängande
med (inklusive sig själv). Om start = { 0, 0 } i grid1.txt ska find_region_size()
returnera 5 ty det är exakt antalet celler i den röda regionen (som (0, 0) råkar ligga i).
Funktionen returnerar 0 för alla celler som är false.
Till din hjälp finns funktionerna get_neighbours() som returnerar alla potentiella gran-
nar till en cell, och in_bounds() som kontrollerar huruvida en cell faktiskt ligger i rutnätet.

3

TDDE73 – Programmering, datastrukturer och algoritmer Inlämning #4

4.10.* I denna uppgift ska du skriva ett program som hittar den kortaste ordkedjan från
en sträng till en annan. Början av en implementation finns i givna_filer/chain.cc.
En ordkedja i denna uppgifter definieras som en sekvens av giltiga ord w1, w2, . . . , wn där
wi och wi+1 skiljer sig som mest på en position. T.ex. skiljer sig orden “word“ och “ward“
endast på den andra position i orden, övriga position innehållar samma bokstäver.
Ett ord räknas som giltigt om det förekommer i filen givna_filer/words.txt.
Ett exempel på en giltig ordkedja är:

code → mode → made → mate → math
där vi ser att vardera ord endast skiljer sig på en position jämfört med föregående ord.
Detta är också ett exempel på en kortaste ordkedja mellan code och math, d.v.s. att det
finns ingen annan ordkedja mellan dessa ord som är kortare.
Din uppgift är att färdigställa funktionen wordchain() genom att göra en lämplig grafsök-
ning från ordet start till ordet target. För att avgöra om ett ord är giltigt tar funktionen
emot ett lexikon med alla giltiga ord.
För att göra grafsökningen har vi en implicit båge från ett giltigt ord w till alla andra
giltiga ord som skiljer sig på exakt en position jämfört med w. En implicit båge syftar till
att vi inte behöver representera grafstrukturen i minnet utan vi kan istället beräkna alla
potentiella grannar till ett ord när de behövs med hjälp av funktionen get_candidates().
Vi måste dock själva dubbelkolla vilka ord som funktionen producerade som var giltiga.
För att hålla koll på den kortaste vägen från start till ett annat ord word använder vi
strukturen parents som lagrar word som nyckel och ordet vi kom ifrån som värde. T.ex.
skulle vi lagra följande värden (och potentiellt fler) för ordkedjan ovan som:

parents["code"] = ""
parents["made"] = "mode"
parents["mate"] = "made"
parents["math"] = "mate"
parents["mode"] = "code"

4

TDDE73 – Programmering, datastrukturer och algoritmer Inlämning #4

Formelsamling
Antag att a > 0, b > 0 och f, g, h : N → R+ s.a. f, g, h är obegränsade uppåt.

Definitioner:

(i) g(n) ∈ O (f(n)) om och endast om ∃c, n0 > 0 sådana att g(n) ≤ cf(n) ∀n ≥ n0.

(ii) g(n) ∈ Ω(f(n)) om och endast om ∃c, n0 > 0 sådana att g(n) ≥ cf(n) ∀n ≥ n0.

(iii) g(n) ∈ Θ(f(n)) om och endast om g(n) ∈ O (f(n)) och g(n) ∈ Ω(f(n)).

(iv) O (g(n)) ⊂ O (f(n)) om och endast om:

• h1(n) ∈ O (f(n)) för alla h1(n) ∈ O (g(n))

• Det finns h2(n) ∈ O (f(n)) sådan att h2(n) /∈ O (g(n))

Om andra kravet inte är uppfyllt gäller O (g(n)) ⊆ O (f(n)).

Relationer:

(v) g(n) ∈ Ω(f(n)) ⇐⇒ f(n) ∈ O (g(n))

(vi) g(n) ∈ Θ(f(n)) ⇐⇒ g(n) ∈ O (f(n)) och f(n) ∈ O (g(n))

Räkneregler:

(vii) a · g(n) + b ∈ O (f(n)) ⇐⇒ g(n) ∈ O (f(n))

(viii) a · g(n) + h(n) ∈ O (f(n)) ⇐⇒ g(n), h(n) ∈ O (f(n))

(ix) g(n)h(n) ∈ O (f(n)) =⇒ g(n) ∈ O (f(n)) och h(n) ∈ O (f(n))

(x) O (a · f(n) + b) = O (f(n))

(xi) O (a · f(n) + g(n)) = O (f(n)) ⇐⇒ O (g(n)) ⊆ O (f(n))

(xii) O (h(n)f(n)) ⊆ O (g(n)f(n)) ⇐⇒ O (h(n)) ⊆ O (g(n))

Komplexitetsklasser:

(xiii) O (1) ⊂ O (log n) ⊂ O (
√
n) ⊂ O (n) ⊂ O (n log n) ⊂ O (2n)

(xiv) O (logα n) = O
(
logβ n

)
= O (log n) för alla α, β ∈ R+.

(xv) O (nα) ⊂ O
(
nβ

)
för alla 0 < α < β

(xvi) O (αn) ⊂ O (βn) för alla 0 < α < β.

(xvii) O (n log n) ⊂ O
(
n1+ε

)
för alla ε > 0

(xviii) För något k > 0 och c ∈ R+ så gäller g(n) ≤ c ∀n ≥ k ⇐⇒ g(n) ∈ O (1)

Användbara samband:

(xix) loga x ≤ x då x ≥ 3 (x ≥ e) och a ≥ 2 (a ≥ e1/e)

(xx) n ≤ nk då n ≥ 1 och k ≥ 1

5

TDDE73 – Programmering, datastrukturer och algoritmer Inlämning #4

Tidskomplexitet
Låt n⃗ representera en vektor med alla variabler som påverkar tidskomplexiteten.

[I] Följande operationer antas ha tidskomplexitet O (1):

• Aritmetiska och logiska operationer

• Initiering och tilldelning av inbyggda datatyper

• Avreferering av pekare och åtkomst av variabler

• Allokering och avallokering av minne

[II] Givet två satser som evalueras i följd, med tidskomplexitet O (f1(n)) och O (f2(n))
respektive, så är totala tidskomplexiteten O (f1(n) + f2(n)).

[III] Villkorssatser, t.ex. if- eller switch-satser, har tidskomplexitet O (g(n⃗) + f(n⃗)) där
f(n⃗) är tidskomplexiteten av den dyraste (billigaste om bästa fall) grenen i villkors-
satsen och g(n⃗) är tidskomplexiteten av villkoret.

[IV] Upprepningssatser, t.ex. for-, while- och do-while-loopar, har tidskomplexitet givet
av O (g(n⃗) · f(n⃗)) där g(n⃗) är maximala (minimala om bästa fall) antalet iterationer
som kan ske och f(n⃗) är tidskomplexiteten av den dyraste (billigaste om bästa fall)
iterationen.

Rekursiva komplexitetsklasser
Givet en rekursiv algoritm där:

• det sker a ≥ 1 rekursiva anrop

• indatan delas upp i b > 1 lika stora bitar

• det tar f(n) ∈ O
(
nd

)
, d ≥ 0 tid att dela upp och kombinera problemet

Så ges tidskomplexiteten av differensekvationen

T (n) = aT
(n
b

)
+ f(n)

och den slutgiltiga tidskomplexiteten bestäms av följande:

[V] Om d < logb a =⇒ T (n) ∈ Θ
(
nlogb a

)
[VI] Om d = logb a =⇒ T (n) ∈ Θ

(
nd log n

)
[VII] Om d > logb a =⇒ T (n) ∈ Θ

(
nd

)
Specialfall av [VI]:

[VIII] Om a = 1 och d = 0 =⇒ T (n) ∈ Θ(log n)

6

TDDE73 – Programmering, datastrukturer och algoritmer Inlämning #4

Amorterad tidskomplexitet
[IX] Antag att algoritmen körs M gånger och den totala tidskomplexiteten för alla M

körningar är O (T (n⃗,M)). Då ges den amorterade tidskomplexiteten av

O (T (n⃗,M))

M
= O

(
T (n⃗,M)

M

)
.

Heaps
Givet en heap H med jämförelseoperator ≤H som är byggd ovanpå en dynamisk array, för
index i = 0, 1, . . . , n – där Hi motsvarar det lagrade värdet – så gäller:

(xix) P (i) =

⌊
i− 1

2

⌋
ger föräldern till noden på plats i

(xx) L(i) = 2i+ 1 ger vänsterbarnet till noden på plats i

(xxi) R(i) = 2i+ 2 ger högerbarnet till noden på plats i

(xxii) Hi ≤H HL(i) om L(i) ≤ n och Hi ≤H HR(i) om R(i) ≤ n.

Grafer
[XXIII] En graf G = (V,E) är en mängd noder V och en mängd bågar E där E ⊆ V × V .

[XXIV] G = (V,E) är ändlig om både E och V är ändliga mängder.

[XXV] G = (V,E) är oriktad om paren i E är oordnade, d.v.s. att alla bågar saknar riktning.

[XXVI] G = (V,E) är riktad om paren i E är ordnade, d.v.s. att alla bågar har en riktning.

[XXVII] En viktad graf Gw = (V,E) är en graf där det existerar en avbildning w : E → R,
d.v.s. i en viktad graf har varje båge ett associerat värde som kallas dess vikt.

[XXVIII] En vandring i en graf G = (V,E) är en sekvens av noder där det finns en båge från
föregående nod till nästa nod i sekvensen.

[XXIX] En väg är en vandring som inte återupprepar bågar.

[XXX] En stig är en vandring som inte återupprepar noder.

[XXXI] En krets är en väg som börjar och slutar i samma nod.

[XXXII] En cykel är en stig som börjar och slutar i samma nod.

[XXXIII] G = (V,E) är sammanhängande om det finns en väg mellan varje par av noder.

Användbara samband:

För en graf G = (V,E) gäller:

(xix) Om G är oriktad och sammanhängande: |V |+ 1 ≤ |E| ≤ |V |(|V | − 1)

2

(xx) Om G är riktad och sammanhängande: |V |+ 1 ≤ |E| ≤ |V |(|V | − 1)

(xxi) Om G är riktad: deg+(v) + deg−(v) = deg(v) för alla v ∈ V

7

