
TDDB68/TDDE47 Concurrent Programming
and Operating Systems

Lecture 9:
Virtualization + Synchronization II

Klas Arvidsson, Mikael Asplund, Adrian Pop
Department of Computer and Information Science

OS structures

Linux kernel source code size

https://github.com/udoprog/kernelstats

20M

15M

10M

20M

5M

Operating System Structures

⚫ How to manage OS complexity?

⚫ Divide-and-conquer!

⚫ Decompose into smaller components

with well-defined interfaces and dependences

− Layered Approach

− Microkernels

− Modules

− Virtual Machines

Layered Approach

⚫ The operating system is divided

into a number of layers (levels,

rings), each built on top of lower

layers.

⚫ Functions in layer i call only

functions/services in layers < i

(strict layering: only in i or i-1)

Problems of the layered approach

⚫ Cyclic dependences between different OS

components

⚫ Less efficient

− Long call chains (e.g. I/O) down to system calls,

possibly with parameter copying/modification at

several levels

⚫ Compromise solution: Have few layers

Microkernels

Source: wikipedia

Microkernel Pros and Cons

⚫ Benefits:

− Easier to extend a microkernel

− Easier to port the operating system to new architectures

− More reliable (less code is running in kernel mode)

− More secure

⚫ Detriments:

− Performance overhead of user space to kernel space
communication

− More complicated synchronization

Modules

⚫ Most modern operating systems implement
kernel modules

⚫ Component-based approach:

− Each core component is separate

− Each talks to the others over known interfaces

− Each is loadable as needed within the kernel

⚫ Overall, similar to layers
but more flexible

Example: MacOS - ”Darwin”

⚫ Hybrid structure: Layering + Microkernel +

Modules

Mach Microkernel:

Memory mgmt, thread scheduling, IPC, RPC

BSD Unix kernel:

Command-line interface, networking,

file system support, POSIX implem.

Application environments,

common services, GUI services

Kernel

extensions:

device drivers,

dynamically

loadable modules

Virtual Machines

”It is possible to invent a single
machine which can be used to

compute any computable sequence. If
this machine U is supplied with a tape
on the beginning of which is written

the standard description of some
computing machine M, then U will

compute the same sequence as M.”

Alan Turing 1936

Why?

Functional
vs.

Non-functional

NF properties to consider

⚫ Resource efficiency

⚫ Security and fault tolerance

− (through protection)

⚫ Flexibility

⚫ Responsiveness for an individual unit

Implementation of virtualization

⚫ Emulation

− HW-independent

⚫ Hypervisor-based virtualization

− Often HW-assisted

⚫ Paravirtualization

− Requires modification of guest OS

⚫ Programming environment virtualization

⚫ Application containment

Implementation of virtualization

⚫ Emulation

− HW-independent

⚫ Hypervisor-based virtualization

− Often HW-assisted

⚫ Paravirtualization

− Requires modification of guest OS

⚫ Programming environment virtualization

⚫ Application containment

1 slide

10 slides

2 slides

1 slide

1 slide

Emulation

⚫ Emulation allows guest to run on different CPU

⚫ Necessary to translate all guest instructions
from guest CPU to native CPU

− Performance challenge

⚫ Examples when useful:

− Company replacing outdated servers

− Gaming (e.g., playing old Nintendo games)

Hypervisor-based virtualization

⚫ Type 0 hypervisor

− Hypervisor implemented in firmware – full
separation between guest OSs

⚫ Type 1 hypervisor

− Basic OS that just provides OS switching
capabilities

⚫ Type 2 hypervisor

− Virtualization at software level (runs as a process)

Hypervisors

OS1

HW (w. hypervisor)

OS1

HW

Hypervisor

HW

OS1

App Hypervisor

OS3OS2

OS1OS1 OS3OS2

OS2

App App

Type 0 Type 1 Type 2

Apps

Apps

Example - VMware/Virtualbox

⚫ Provides Virtual Machine Manager (VMM) for guests

⚫ Runs as application on other native, installed host operating
system -> Type 2

⚫ Lots of guests possible, including Windows, Linux, etc. all
runnable concurrently (as resources allow)

⚫ Virtualization layer abstracts underlying HW, providing guest
with is own virtual CPUs, memory, disk drives, network
interfaces, etc.

⚫ Physical disks can be provided to guests, or virtual physical
disks (just files within host file system)

Virtualization building blocks

⚫ Trap and emulate

⚫ Binary translation

⚫ Nested page tables

⚫ More HW assistance

Trap and emulate

⚫ Guest OS will need to
execute privileged
instructions

⚫ Not safe to let Guest OS
run in kernel mode

⚫ Solution: trap privileged
instructions and emulate
them

Problems with trap & emulate

⚫ CPU architectures often not so clean

⚫ Example: x86 popf instruction

− Loads CPU flags register from contents of the stack

− If CPU in privileged mode -> all flags replaced

− If CPU in user mode -> some flags replaced

− No trap is generated!

⚫ Also other such special instructions

Binary translation

⚫ If guest VCPU is in user
mode

− run instructions natively

⚫ If guest VCPU in kernel
mode

− VMM examines instructions in
advance

− Non-special-instructions run
natively

− Special instructions translated
into equivalent instructions

Recall

Memory

0

1

2

3

4

5

6

7

8

page 0

page 1

page 2

page 3

Page Frame

0 2

1 5

2 3

3 7

Page table

CU

MMU

Logical
address

p d f d

Physical
address

Problem:

Who controls the page tables?
The host or the guest?

Nested Page Tables (NPT)

⚫ Each guest maintains its own (per-process) page
tables

⚫ VMM maintains per guest NPTs to represent guest’s
page-table state

− Just as VCPU stores guest CPU state

⚫ Shadow page tables can be kept in software (very
slow)

⚫ Hardware support with one more level of nesting

More HW assistance

⚫ More support -> more feature rich, stable, better
performance of guests

⚫ Intel added new VT-x instructions in 2005 and AMD
the AMD-V instructions in 2006

− Removes the need for binary translation

− Generally define more CPU modes – Guest/host, VCPU
states

− In guest mode, guest OS thinks it is running natively

⚫ New examples and variants appear over time

Paravirtualization

⚫ Does not fit the definition of virtualization – VMM not
presenting an exact duplication of underlying hardware

⚫ VMM provides services that guest must be modified to
use

⚫ Leads to increased performance (compared to
emulation)

⚫ Less needed as hardware support for VMs grows

Paravirtualization Example: Xen

User

software
User

software

User

software

Control

Plane

Software

Guest OS

(XenoLinux)

Guest OS

(XenoLinux)

Guest OS

(XenoBSD)

Guest OS

(XenoXP)
Xeno-Aware

Device Drivers
Xeno-Aware

Device Drivers

Xeno-Aware

Device Drivers
Xeno-Aware

Device Drivers

Domain0

control

interface

Virtual

network

Virtual

physical

memory

Virtual

x86

CPU

Virtual

blockdevices

XEN

hyper

visor

Hardware (SMP x86, MMU, physical memory, network access, SCSI/IDE)

Virtual

MMU

Adapted from: P. Barham et al.: Xen and the Art of

Virtualization. Proc. SOSP 2003

Programming environment
virtualization

⚫ Programming language is designed to run within custom-built
virtualized environment

⚫ For example Oracle Java has many features that depend on
running in Java Virtual Machine (JVM)

− Virtualization through API

⚫ Programs written in Java run in the JVM no matter the
underlying system

⚫ Similar to interpreted languages

Application Containment

▪ Virtualization still costly!

▪ Oracle containers / zones for example create virtual layer between OS and apps

• Only one kernel running – host OS

• Virtual environment through different zones

• Applications run in a zone

▪ Popular today: Docker

34

Synchronization II

35

Remaining topics

⚫ Monitors

⚫ Reader-writer synchronization

⚫ Lock-free synchronization

Example:Dining-Philosophers

Problem

A philosopher can be either:

Thinking (happy)

Hungry (cannot think, wants to eat)

Eating (also happy)

Eating requires 2 chopsticks

A chopstick can only be used by
one philosopher at a time

Potential solution

Process philosopher {

while (True) {

think();

if hungry() {

pickup_left();

pickup_right();

eat();

}

}

}

What if this fails?

Three bad options

⚫ Program crashes when trying to pickup a
chopstick which is already taken

⚫ Pickup operation waits until the chopstick is free

− Risk of deadlock

⚫ Pickup operation fails if chopstick is taken

− Eat operation will also fail (need two chopsticks)

− Risk of starvation (will only get to eat if lucky)

Good design

⚫ Synchronization mechanisms with queues

− Avoids starvation

⚫ Prevent deadlocks

− Enforce global order of locking resources

− Either take both chopsticks or neither

40

Monitors

41

What is a monitor?

⚫ A programming abstraction consisting of:

− A data structure on which programmer can define operations
– which can only be run one at a time

− Condition variables for synchronisation

⚫ Encapsulates shared data that several processes can
operate upon

⚫ All access is with mutual exclusion

⚫ Pre object-orientation!

[Hoare 74]

42

Monitor overview

Monitor Solution to Dining Philosophers

monitor DP {

 enum {THINKING, HUNGRY, EATING} state
[5];

 condition self [5];

 void pickup (int i) {

 state[i] = HUNGRY;

 test (i);

 if (state[i] != EATING)

 self [i].wait();

 }

 void putdown (int i) {

 state[i] = THINKING;

 test((i+4)%5); // left neighbor

 test((i+1)%5); // right neighbor

 }

...

...

 void test (int i) {

 if ((state[(i+4)%5] != EATING)
 && (state[i] == HUNGRY)
 && (state[(i+1)%5] != EATING)) {

 state[i] = EATING ;

 self[i].signal () ;

 }

 }

 initialization_code() {

 for (int i = 0; i < 5; i++) {

 state[i] = THINKING;

 }

 }

}

44

Observations

⚫ Programmer uses wait and signal inside the code that
applies the operations on the shared data structure

Note:

⚫ The condition variable has no values assigned to it

⚫ The queue associated with each variable is the main
synchronisation mechanism

⚫ Different semantics from semaphore operations for
wait and signal

45

Process queues

46

Who wakes on signal?

47

Options for waking up

⚫ Original Hoare monitor: let the woken up
process (P1) continue

− What if there are several processes waiting on X?

⚫ Pragmatic solution (Java): let the signalling
process continue, and wake up P1 once P4 is
suspended/exits

− P1 has to check for condition X when woken up!

48

Readers-writer problem

49

Who gets access?

Data

R

R R

R

W
W

W

Reader-writer solution

Writer process

while (true) {

 wait(rw_mutex);

 /* WRITE */

 signal(rw_mutex);

}

Reader process

while (true){

 wait(mutex);

 read_count++;

 if (read_count == 1) /* first reader */

 wait(rw_mutex);

 signal(mutex);

 /* READ */

 wait(mutex);
 read_count--;

 if (read_count == 0) /* last reader */

 signal(rw_mutex);

 signal(mutex);

}

Shared data

⚫ Data

⚫ Semaphore rw_mutex initialized to 1

⚫ Semaphore mutex initialized to 1

⚫ Integer read_count initialized to 0

Readers-Writers Problem Variations

⚫ First reader-writer problem

− Once a reader has access, readers will be prioritized over writers

− Writers starve

⚫ Second reader-writer problem

− Once a writer is ready to write, no “newly arrived reader” is allowed to read.

− Readers starve

⚫ Third reader-writer problem

− Implement a service queue

− Complex

⚫ Problem is solved on some systems by kernel providing reader-writer
locks

52

Lock-free concurrent programming

53

Lock-based solutions

Process P1

while true {

acquire(lock)

critical_section

release(lock)

}

Process P2

while true {

 acquire(lock)

 critical_section

 release(lock)

}

What happens if a process that
holds a semaphore/monitor is

killed?

54

Lock-free algorithms!

Basic definitions

⚫ A lock-free algorithm guarantees that at least
one process can make progress within a finite
time

− Also called non-blocking

⚫ A lock-free algorithm is wait-free if every
process makes progress within some finite time

⚫ Compare and Swap (CAS), two flavors:

Primitive

// old value version

// (and simpler(?) logic)

int CAS(int *p, int cmp, int v)

{

 int old = *p;

 if (old == cmp)

 {

 *p = v;

 }

 return old;

}

// bool version

bool CAS(int *p, int old, int new)

{

 if (*p != old)

 {

 return false;

 }

 else

 {

 *p = new;

 return true;

 }

}

Simple lock-free stack algorithm

⚫ Due to Treiber 1986

⚫ This presentation based on Michael and Scott
1998 (JPDC)

Data structures

struct pointer_t {

node_t* ptr;

uint count;

}

struct node_t {

int value;

pointer_t next;

}

struct stack_t {

pointer_t top;

}

// Why not:

struct node_t {

 int value;

 node_t* next;

}

struct stack_t {

 node_t top;

}

Flawed Push (Why?)

push(stack_t* S, int value) {

node_t* node = malloc(sizeof(node_t));

node->value = value;

node->next = NULL;

repeat

pointer_t top = S->top;

node->next = top;

until CAS(&S->top, top, node);

}

ABA problem

I: malloc node X

I: top = S->top

A: malloc node Y

B: pop node and free top

A: push node Y

A: malloc and push node Z

! malloc may reuse space of last free which

! will yield same adress as previous top

I: push node X

! Stack have changed since read of top but

! adress of new top Z will be same as old top

! Compare and swap will not detect the change!

! Nodes Y and Z are lost!

Push (Corrected!)

push(stack_t* S, int value) {

node_t* node = malloc(sizeof(node_t));

node->value = value;

node->next.ptr = NULL;

repeat

pointer_t top = S->top;

node->next.ptr = top.ptr;

until CAS(&S->top, top, [node, top.count+1]);

} // Solves ABA-problem

Push

3

6

2

8
S->top

node

6

top

55

S->top 6
Compare & Swap

Pop

pop(stack_t* S, int *pvalue) {

repeat

top = S->top;

if top.ptr == NULL

return False;

until CAS(&S->top, top, [top.ptr->next.ptr, top.count+1]);

*pvalue = top.ptr->value;

free(top.ptr);

return True;

}

CAS-based spinlock

// tempting to assume HW-solutions are faster and use it

void aquire(bool* lock) {

while !CAS(lock, false, true)

; /* busy wait, spinlock */

}

void release(bool* lock) {

CAS (lock, true, false);

}

// use example

bool mutex = false;

aquire(&mutex);

critical_section();

release(&mutex);

Threads holding the lock but not
executing (on ready queue due to
lack of available CPU:s) will cause
threads executing and waiting for the
lock to waste their entire time slice!

On the other hand, if critical section
is small and fast, and threads are
guaranteed it’s own CPU, the wait
time will be really small.

Regular wait-queue based locks let
other threads run during wait, but
have higher overhead in locking,
queue management and context
switching

In general

⚫ Some lock-free algorithms provide reasonable
performance

⚫ Wait-free algorithms have low performance

⚫ Complex to create

⚫ More library support is coming

	Bild 1
	Bild 2
	Bild 3: Linux kernel source code size
	Bild 4: Operating System Structures
	Bild 5: Layered Approach
	Bild 6: Problems of the layered approach
	Bild 7: Microkernels
	Bild 8: Microkernel Pros and Cons
	Bild 9: Modules
	Bild 10: Example: MacOS - ”Darwin”
	Bild 11
	Bild 12
	Bild 13
	Bild 14
	Bild 15
	Bild 16: NF properties to consider
	Bild 17: Implementation of virtualization
	Bild 18: Implementation of virtualization
	Bild 19: Emulation
	Bild 20: Hypervisor-based virtualization
	Bild 21: Hypervisors
	Bild 22: Example - VMware/Virtualbox
	Bild 23: Virtualization building blocks
	Bild 24: Trap and emulate
	Bild 25: Problems with trap & emulate
	Bild 26: Binary translation
	Bild 27: Recall
	Bild 28: Nested Page Tables (NPT)
	Bild 29: More HW assistance
	Bild 30: Paravirtualization
	Bild 31: Paravirtualization Example: Xen
	Bild 32: Programming environment virtualization
	Bild 33: Application Containment
	Bild 34
	Bild 35: Remaining topics
	Bild 36
	Bild 37: Potential solution
	Bild 38: Three bad options
	Bild 39: Good design
	Bild 40
	Bild 41: What is a monitor?
	Bild 42: Monitor overview
	Bild 43
	Bild 44: Observations
	Bild 45: Process queues
	Bild 46: Who wakes on signal?
	Bild 47: Options for waking up
	Bild 48
	Bild 49: Who gets access?
	Bild 50: Reader-writer solution
	Bild 51: Readers-Writers Problem Variations
	Bild 52
	Bild 53: Lock-based solutions
	Bild 54
	Bild 55: Basic definitions
	Bild 56: Primitive
	Bild 57: Simple lock-free stack algorithm
	Bild 58: Data structures
	Bild 59: Flawed Push (Why?)
	Bild 60: ABA problem
	Bild 61: Push (Corrected!)
	Bild 62: Push
	Bild 63: Pop
	Bild 64: CAS-based spinlock
	Bild 65: In general

