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Operating System Structures

⚫ How to manage OS complexity?

⚫ Divide-and-conquer!

⚫ Decompose into smaller components 

with well-defined interfaces and dependences

− Layered Approach

− Microkernels

− Modules

− Virtual Machines



Layered Approach

⚫ The operating system is divided 

into a number of layers (levels, 

rings), each built on top of lower 

layers.

⚫ Functions in layer i call only 

functions/services in layers < i

(strict layering: only in i or i-1)



Problems of the layered approach

⚫ Cyclic dependences between different OS 

components

⚫ Less efficient

− Long call chains (e.g. I/O) down to system calls, 

possibly with parameter copying/modification at 

several levels

⚫ Compromise solution:  Have few layers



Microkernels 

Source: wikipedia



Microkernel Pros and Cons

⚫ Benefits:

− Easier to extend a microkernel

− Easier to port the operating system to new architectures

− More reliable (less code is running in kernel mode)

− More secure

⚫ Detriments:

− Performance overhead of user space to kernel space 
communication

− More complicated synchronization



Modules

⚫ Most modern operating systems implement 
kernel modules

⚫ Component-based approach:

− Each core component is separate

− Each talks to the others over known interfaces

− Each is loadable as needed within the kernel

⚫ Overall, similar to layers 
but more flexible



Example:  MacOS - ”Darwin”

⚫ Hybrid structure:  Layering + Microkernel + 

Modules

Mach Microkernel:

Memory mgmt, thread scheduling, IPC, RPC

BSD Unix kernel:

Command-line interface, networking,

file system support, POSIX implem.

Application environments,

common services, GUI services

Kernel 

extensions:

device drivers,

dynamically

loadable modules



Virtual Machines



”It is possible to invent a single 
machine which can be used to 

compute any computable sequence. If 
this machine U is supplied with a tape 
on the beginning of which is written 

the standard description of some 
computing machine M, then U will 

compute the same sequence as M.”

Alan Turing 1936



Why?





Functional 
vs.

Non-functional



NF properties to consider

⚫ Resource efficiency

⚫ Security and fault tolerance 

− (through protection)

⚫ Flexibility

⚫ Responsiveness for an individual unit



Implementation of virtualization

⚫ Emulation

− HW-independent

⚫ Hypervisor-based virtualization

− Often HW-assisted

⚫ Paravirtualization

− Requires modification of guest OS

⚫ Programming environment virtualization

⚫ Application containment
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Emulation

⚫ Emulation allows guest to run on different CPU

⚫ Necessary to translate all guest instructions 
from guest CPU to native CPU

− Performance challenge 

⚫ Examples when useful:

− Company replacing outdated servers

− Gaming (e.g., playing old Nintendo games)



Hypervisor-based virtualization

⚫ Type 0 hypervisor

− Hypervisor implemented in firmware – full 
separation between guest OSs

⚫ Type 1 hypervisor

− Basic OS that just provides OS switching 
capabilities

⚫ Type 2 hypervisor

− Virtualization at software level (runs as a process)
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Example - VMware/Virtualbox

⚫ Provides Virtual Machine Manager (VMM) for guests

⚫ Runs as application on other native, installed host operating 
system -> Type 2

⚫ Lots of guests possible, including Windows, Linux, etc. all 
runnable concurrently (as resources allow)

⚫ Virtualization layer abstracts underlying HW, providing guest 
with is own virtual CPUs, memory, disk drives, network 
interfaces, etc.

⚫ Physical disks can be provided to guests, or virtual physical 
disks (just files within host file system)



Virtualization building blocks

⚫ Trap and emulate

⚫ Binary translation

⚫ Nested page tables

⚫ More HW assistance



Trap and emulate

⚫ Guest OS will need to 
execute privileged 
instructions

⚫ Not safe to let Guest OS 
run in kernel mode

⚫ Solution: trap privileged 
instructions and emulate 
them



Problems with trap & emulate

⚫ CPU architectures often not so clean

⚫ Example: x86 popf instruction

− Loads CPU flags register from contents of the stack

− If CPU in privileged mode -> all flags replaced

− If CPU in user mode -> some flags replaced

− No trap is generated!

⚫ Also other such special instructions



Binary translation

⚫ If guest VCPU is in user 
mode

− run instructions natively

⚫ If guest VCPU in kernel 
mode 

− VMM examines instructions in 
advance

− Non-special-instructions run 
natively

− Special instructions translated 
into equivalent instructions



Recall

Memory

0

1

2

3

4

5

6

7

8

page 0

page 1

page 2

page 3

Page Frame 

0 2

1 5

2 3

3 7

Page table

CU

MMU

Logical
address

p d f d

Physical
address

Problem:

Who controls the page tables? 
The host or the guest? 



Nested Page Tables (NPT)

⚫ Each guest maintains its own (per-process) page 
tables

⚫ VMM maintains per guest NPTs to represent guest’s 
page-table state

− Just as VCPU stores guest CPU state

⚫ Shadow page tables can be kept in software (very 
slow)

⚫ Hardware support with one more level of nesting 



More HW assistance

⚫ More support -> more feature rich, stable, better 
performance of guests

⚫ Intel added new VT-x instructions in 2005 and AMD 
the AMD-V instructions in 2006

− Removes the need for binary translation

− Generally define more CPU modes – Guest/host, VCPU 
states

− In guest mode, guest OS thinks it is running natively

⚫ New examples and variants appear over time



Paravirtualization

⚫ Does not fit the definition of virtualization – VMM not 
presenting an exact duplication of underlying hardware

⚫ VMM provides services that guest must be modified to 
use

⚫ Leads to increased performance (compared to 
emulation)

⚫ Less needed as hardware support for VMs grows



Paravirtualization Example:  Xen
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Programming environment 
virtualization

⚫ Programming language is designed to run within custom-built 
virtualized environment

⚫ For example Oracle Java has many features that depend on 
running in Java Virtual Machine (JVM)

− Virtualization through API

⚫ Programs written in Java run in the JVM no matter the 
underlying system

⚫ Similar to interpreted languages



Application Containment

▪ Virtualization still costly!

▪ Oracle containers / zones for example create virtual layer between OS and apps

• Only one kernel running – host OS

• Virtual environment through different zones

• Applications run in a zone

▪ Popular today: Docker
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Synchronization II
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Remaining topics

⚫ Monitors

⚫ Reader-writer synchronization

⚫ Lock-free synchronization



Example:Dining-Philosophers 

Problem

A philosopher can be either:

Thinking (happy)

Hungry (cannot think, wants to eat)

Eating (also happy)

Eating requires 2 chopsticks

A chopstick can only be used by 
one philosopher at a time



Potential solution

Process philosopher {

while (True) {

think();

if hungry() {

pickup_left();

pickup_right();

eat();

}

}

}

What if this fails?



Three bad options

⚫ Program crashes when trying to pickup a 
chopstick which is already taken 

⚫ Pickup operation waits until the chopstick is free

− Risk of deadlock 

⚫ Pickup operation fails if chopstick is taken

− Eat operation will also fail (need two chopsticks)

− Risk of starvation (will only get to eat if lucky)



Good design

⚫ Synchronization mechanisms with queues

− Avoids starvation

⚫ Prevent deadlocks

− Enforce global order of locking resources

− Either take both chopsticks or neither
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Monitors



41

What is a monitor?

⚫ A programming abstraction consisting of: 

− A data structure on which programmer can define operations 
– which can only be run one at a time

− Condition variables for synchronisation

⚫ Encapsulates shared data that several processes can 
operate upon

⚫ All access is with mutual exclusion 

⚫ Pre object-orientation!

[Hoare 74]
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Monitor overview



Monitor Solution to Dining Philosophers

monitor DP { 

  enum {THINKING, HUNGRY, EATING} state 
[5];

  condition self [5];

  void pickup ( int i ) { 

    state[i] = HUNGRY;

    test ( i );

    if (state[i] != EATING)

    self [i].wait();

  }

  void putdown ( int i ) { 

    state[i] = THINKING;

    test((i+4)%5);  // left neighbor

    test((i+1)%5);  // right neighbor

  }

...

...

  void test ( int i ) { 

    if ((state[(i+4)%5] != EATING)
      && (state[i] == HUNGRY) 
      && (state[(i+1)%5] != EATING)) { 

      state[i] = EATING ;

      self[i].signal () ;

    }

  }

  initialization_code() { 

    for (int i = 0; i < 5; i++) {

    state[i] = THINKING;

    }

  }

}
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Observations

⚫ Programmer uses wait and signal inside the code that 
applies the operations on the shared data structure

Note:

⚫ The condition variable has no values assigned to it

⚫ The queue associated with each variable is the main 
synchronisation mechanism

⚫ Different semantics from semaphore operations for 
wait and signal
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Process queues
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Who wakes on signal?



47

Options for waking up

⚫ Original Hoare monitor: let the woken up
process (P1) continue

− What if there are several processes waiting on X?

⚫ Pragmatic solution (Java): let the signalling
process continue, and wake up P1 once P4 is 
suspended/exits

− P1 has to check for condition X when woken  up!
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Readers-writer problem
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Who gets access?
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Reader-writer solution

Writer process

while (true) {

  wait(rw_mutex); 

  /* WRITE */ 

  signal(rw_mutex); 

}

Reader process

while (true){

  wait(mutex);

  read_count++;

  if (read_count == 1) /* first reader */

    wait(rw_mutex); 

  signal(mutex);

  /* READ */

  wait(mutex);
  read_count--;

  if (read_count == 0) /* last reader */

    signal(rw_mutex); 

  signal(mutex); 

}

       

Shared data

⚫ Data 

⚫ Semaphore rw_mutex initialized to 1

⚫ Semaphore mutex initialized to 1

⚫ Integer read_count initialized to 0



Readers-Writers Problem Variations

⚫ First reader-writer problem

− Once a reader has access, readers will be prioritized over writers

− Writers starve

⚫ Second reader-writer problem

− Once a writer is ready to write, no “newly arrived reader” is allowed  to read.

− Readers starve

⚫ Third reader-writer problem

− Implement a service queue

− Complex

⚫ Problem is solved on some systems by kernel providing reader-writer 
locks
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Lock-free concurrent programming
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Lock-based solutions

Process P1

while true {

acquire(lock)

critical_section

release(lock)

}

Process P2

while true {

  acquire(lock)

  critical_section

  release(lock)

}

What happens if a process that 
holds a semaphore/monitor is 

killed?
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Lock-free algorithms!



Basic definitions

⚫ A lock-free algorithm guarantees that at least 
one process can make progress within a finite 
time

− Also called non-blocking

⚫ A lock-free algorithm is wait-free if every 
process makes progress within some finite time



⚫ Compare and Swap (CAS), two flavors:

Primitive

// old value version

// (and simpler(?) logic)

int CAS(int *p, int cmp, int v)

{

  int old = *p;

 if (old == cmp)

  {

   *p = v;

  }

  return old;

}

// bool version

bool CAS(int *p, int old, int new)

{

  if (*p != old)

  {

    return false;

  }

  else

  {

    *p = new;

    return true;

  }

}



Simple lock-free stack algorithm

⚫ Due to Treiber 1986

⚫ This presentation based on Michael and Scott 
1998 (JPDC)



Data structures

struct pointer_t {

node_t* ptr;

uint count;

}

struct node_t {

int value;

pointer_t next;

}

struct stack_t {

pointer_t top;

}

// Why not:

struct node_t {

    int value;

    node_t* next;

}

struct stack_t {

    node_t top;

}



Flawed Push (Why?)

push(stack_t* S, int value) {

node_t* node = malloc(sizeof(node_t)); 

node->value = value;

node->next = NULL;

repeat

pointer_t top = S->top;

node->next = top;

until CAS(&S->top, top, node);

}



ABA problem

I: malloc node X

I: top = S->top

A: malloc node Y

B: pop node and free top

A: push node Y

A: malloc and push node Z

! malloc may reuse space of last free which

! will yield same adress as previous top

I: push node X

! Stack have changed since read of top but

! adress of new top Z will be same as old top

! Compare and swap will not detect the change!

! Nodes Y and Z are lost!



Push (Corrected!)

push(stack_t* S, int value) {

node_t* node = malloc(sizeof(node_t)); 

node->value = value;

node->next.ptr = NULL;

repeat

pointer_t top = S->top;

node->next.ptr = top.ptr;

until CAS(&S->top, top, [node, top.count+1]);

} // Solves ABA-problem
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Pop

pop(stack_t* S, int *pvalue) {

repeat

top = S->top;

if top.ptr == NULL 

return False;

until CAS(&S->top, top, [top.ptr->next.ptr, top.count+1]);

*pvalue = top.ptr->value;

free(top.ptr);

return True;

}



CAS-based spinlock

// tempting to assume HW-solutions are faster and use it

void aquire(bool* lock) {

while !CAS(lock, false, true)

; /* busy wait, spinlock */

}

void release(bool* lock) {

CAS (lock, true, false);

}

// use example

bool mutex = false;

aquire(&mutex);

critical_section();

release(&mutex);

Threads holding the lock but not 
executing (on ready queue due to 
lack of available CPU:s) will cause 
threads executing and waiting for the 
lock to waste their entire time slice!

On the other hand, if critical section
is small and fast, and threads are
guaranteed it’s own CPU, the wait
time will be really small.

Regular wait-queue based locks let
other threads run during wait, but
have higher overhead in locking, 
queue management and context
switching



In general

⚫ Some lock-free algorithms provide reasonable 
performance

⚫ Wait-free algorithms have low performance

⚫ Complex to create

⚫ More library support is coming
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