
1

TDDB68 Concurrent Programming and
Operating Systems

Lecture 8:
Memory management II + File systems II

Klas Arvidsson
with slides inherited from

Adrian Pop and Mikael Asplund
PELAB / RTSLAB

Department of Computer and Information Science

Copyright Notice:

Thanks to Christoph Kessler for much of the material behind these slides.

The lecture notes are partly based on Silberschatz’s, Galvin’s and Gagne’s book (“Operating System Concepts”, 7th ed., Wiley, 2005). No part of

the lecture notes may be reproduced in any form, due to the copyrights reserved by Wiley. These lecture notes should only be used for internal

teaching purposes at the Linköping University.

Reading

⚫ 9e:

− Page replacement: 9.4

− Thrashing: 9.6

− File system interface: 11.1 (the rest superficially)

− File system implementation: 12.1-12.7

⚫ 10e:

− Page replacement: 10.4,

− Thrashing: 10.6

− Memory compression:10.7

− File system interface: 13.1 (the rest superficially)

− File system implementation: 14.1-14.7

Demand Paging

⚫ Bring a page into memory only when it is needed

− Less I/O needed

− Less memory needed

− Faster response

− More users

⚫ Page is needed if referenced

(load/store, data/instructions)

− invalid reference abort

− not-in-memory bring to memory

[Kilburn et al. 1961]

What happens if there is no free frame?

Page Replacement

Steps in Handling a Page Fault
(Case: a free frame exists)

Free frame

Free frame

OccupiedPage table

Main memory

1 X i
page 1Occupied

Occupied

Occupied

Occupied

1.

1. Memory reference to page 1
2. Page fault! →Interrupt
3. OS moves page into memory
4. Update page table
5. Restart memory access instruction

2.

page 1
3.

4.

…
…
Load from
memory
…
...

Program
Disk

5.
1: 3 Vi

Page Replacement

⚫ When no free frames, move one page out.

⚫ Use modify (dirty) bit to reduce overhead of

page transfers

− only modified pages are written to disk!

Basic Page Replacement

How to compare algorithms

for page replacement?

⚫ Goal: find algorithm with lowest page-fault rate.

⚫ Method: Simulation.

− Assume initially empty page table

− Run algorithm on a particular string of memory references
(reference string – page numbers only)

− Count number of page faults on that string.

⚫ In all our examples, the reference string is

1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5.

First-In-First-Out (FIFO) Algorithm

⚫ Use a time stamp or a queue

⚫ Victim is the ”oldest page”

⚫ Assume table size = 3 frames / process

(3 pages can be in memory at a time per process)

and reference string:

1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

1 1 1 4 4 4 5 5 5 5 5 5

2 2 2 1 1 1 1 1 3 3 3

3 3 3 2 2 2 2 2 4 4

After page 3 is loaded,

page 1 is the oldest of

them all

The fact that we re-use an existing

page does not alter who has been

in there the longest...

A total

of 9 page

faults

Expected Page Faults Versus

Number of Frames

Generally, more frames => Less page faults ?

FIFO illustrating Belady’s Anomaly

more frames but more page faults

An Optimal Algorithm [Belady 1966]

⚫ ”optimal”:

− has the lowest possible page-fault rate (NB: still ignoring dirty-ness)

− does not suffer from Belady’s anomaly

⚫ Belady’s Algorithm: Farthest-First, MIN, OPT

− Replace page that will not be used for the longest period of time....

− How do you know this?

⚫ Example: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

1 1 1 1 1 1 1 1 1 1 4 4

2 2 2 2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3 3 3

4 4 4 5 5 5 5 5 5

A total

of 6 page

faults

We will need frames 1, 2 and 3

before we need frame 4 again,

thus throw it out!

Remark: Belady’s algorithm

is only optimal if there are no

dirty write-backs. Otherwise

it is just a heuristic algorithm.

Least Recently Used (LRU)

Algorithm

⚫ Optimal algorithm not feasible?

....try using recent history as approximation of the future!

⚫ Algorithm:

− Replace the page that has not been used for the longest period of time

⚫ Example: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

1 1 1 1 1 1 1 1 1 1 1 5

2 2 2 2 2 2 2 2 2 2 2

3 3 3 3 5 5 5 5 4 4

4 4 4 4 4 4 3 3 3

Out of pages 1,2,3 and 4,
page 3 is the one not used for
the longest time...

A total

of 8 page

faults

Thrashing

Thrashing

▪ If a process does not have “enough” pages, the page-fault rate

is very high

• Page fault to get page

• Replace existing frame

• But quickly need replaced frame back

▪ This leads to:

• Low CPU utilization

• Operating system thinking that it needs to increase the

degree of multiprogramming

• Another process added to the system

Effect of thrashing

Demand Paging and Thrashing

▪ Why does demand paging work?

Locality model

• Process migrates from one locality to another

• Localities may overlap

▪ Why does thrashing occur?

 size of locality > total memory size

▪ Limit effects by using local or priority page replacement

(instead of global)

Locality In A Memory-Reference Pattern

Working-Set Model

▪ working-set window a fixed number of page references

Example: 10,000 instructions

▪ WSSi (working set of Process Pi) = total number of pages referenced in the most

recent (varies in time)

• if too small will not encompass entire locality

• if too large will encompass several localities

• if = will encompass entire program

▪ D = WSSi total demand frames

• Approximation of locality

▪ if D > m Thrashing

▪ Policy: if D > m, then suspend or swap out one of the processes

Working-Set - Example

▪ WS at two different time points t1 and t2

Keeping Track of the Working Set

▪ Approximate with interval timer + a reference bit

▪ Example: = 10,000

• Timer interrupts after every 5000 time units

• Keep in memory 2 ws bits for each page

• Whenever a timer interrupts shift down ws bits, copy ref bit

to high ws bit, set ref bit to 0

• Set ref bit to 1 when page accessed

• If one of the bits in memory = 1 page in working set

▪ Why is this not completely accurate?

▪ Improvement = 10 bits and interrupt every 1000 time units

Page-Fault Frequency

▪ More direct approach than WSS (work-set size)

▪ Establish “acceptable” page-fault frequency (PFF) rate and use local replacement

policy

• If actual rate too low, process loses frames

• If actual rate too high, process gains frames

Working Sets and Page Fault Rates

▪ Direct relationship between working set of a

process and its page-fault rate

▪ Working set changes over time

▪ Peaks and valleys over time

Memory compression

Motivation

⚫ Disk access is very slow

⚫ Memory is fast, and CPU is even faster

⚫ Sometimes there is no more disk

⚫ Flash memory degrades from frequent erasures

Memory compression

⚫ Compress memory in RAM

⚫ Possible to do in HW, but mostly done by OS

⚫ Examples:

− Linux: zram, zswap

− Windows 10

− Mac OS X

− Android & iOS

File systems (II)

Refresh

⚫ File systems

− Interface + Implementation

⚫ Disk – linear sequence of numbered blocks

− Write block b

− Read block b

⚫ File abstraction allows to structure data

− Contiguous logical address space (vs Physical address space)

− Directory structures

− Attributes

− API (create, open, close)

− FCB for each file (metadata about the file)

30

File descriptors and open file tables

FCB

stdin (pos, …)

stdout (pos, …)

stderr (pos,…)

newfile(pos,…)

Console input

Console output

newfile (loc.,…)

 FCB contents

System-wide

open file table

Process-local

open file table

Process-local

open file table

KERNEL MEMORY SPACE

stdin (pos, …)

stdout (pos, …)

stderr (pos,…)

0

d

1

2

0

1

2

Process 1
Logical

Address

Space

Process 2
Logical

Address

Space

Disk

File

data

FILE data

structure

stdin, stdout,

stderr are

opened upon

process start

returned by

fopen() C

library call

31

Specialized file systems

32

Hadoop Distributed File System
(HDFS)

https://cwiki.apache.org/confluence/display/hadoop2/PoweredBy
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html

https://cwiki.apache.org/confluence/display/hadoop2/PoweredBy
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html

33

File system implementation

34

File-System Layers

File API:
filenames, directories,

attributes, access...

Logical block addresses (1D

array of blocks)

Physical block addresses on

disk (cylinder, sector,...)

Application programs

Logical file system

Basic file system

I/O control

Storage device

Disk operations

35

Virtual File System (VFS)

36

File control block (FCB)

⚫ Resides at the logical FS layer

⚫ Storage structure consisting of

information about a file

37

Allocation Methods

⚫ An allocation method refers to

how disk blocks are allocated for files

− Contiguous allocation

− Linked allocation

− Indexed allocation

38

Contiguous Allocation

39

Contiguous Allocation

⚫ Pros:

− Simple

− Allows random access

⚫ Cons:

− Wasteful

− Files cannot grow easily

⚫ Works well on read-only media

40

Linked Allocation

next-pointerblock =

41

Linked Allocation

⚫ Pros:

− Simple – need only starting address

− Free-space management

− No external fragmentation

⚫ Cons:

− No random access

− Overhead (space and time)

− Reliability

42

File-Allocation Table (FAT)

File-allocation table (FAT) – disk-space allocation used by older Windows

Variant of linked allocation:

FAT resides in reserved section

at beginning of each disk volume

One entry for each disk block,

indexed by block number, points to successor.

Entry for last block in a chain has table value -1

Unused blocks have table value 0

→ Finding free blocks is easy

Does not scale well to large disks

or small block sizes

in FAT

43

Indexed Allocation

⚫ Brings all pointers together into an index block

44

Indexed Allocation (Cont.)

⚫ Direct access once index block is loaded

− without external fragmentation,

− but overhead of index block.

⚫ All block pointers of a file must fit into the index

block

− How large should an index block be?

⚫ Small – Limits file size

⚫ Large – Wastes space for small files

− Solution: Multi-level indexed allocation →

45

Multilevel-indexed allocation

Directory

outer-index

index table file

46

Combined Scheme: UNIX inode

Block size 4 KB

-> With 12 direct block pointers kept in the inode, 48 KB can be addressed directly.

☺ Small overhead

 for small files

☺ Still allows

 large files

47

B-trees

⚫ Self-balancing tree

⚫ Efficient operations O(log n)

⚫ Popular in newer (less old) filesystems

− NTFS

− Ext4

− HFS+

48

Free-Space Management

⚫ Where is there free space on the disk?

− A free-space list

⚫ Two basic approaches

− Free-space map (bit vector)

− Linked list

49

Bit vector

…

0 1 2 n-1

bit[i] =
1 block[i] free

0 block[i] occupied

⚫ Each block represented by one bit

First free block: (number of bits per word) *
(number of 0-value words) + offset of first 1 bit

50

Bit vector

⚫ Easy to get contiguous files

⚫ Bit map requires extra space

⚫ Example: block size = 1 KB = 210 bytes

disk size = 68 GB ~ 236 bytes

n = 236 / 210 = 226 bits (or 67 MB)

⚫ Inefficient unless entire bit vector is kept in main
memory

51

Linked list

52

Linked list

⚫ Only need to store the pointer to the first free
block

⚫ Finding k free blocks means reading in k blocks
from disk

⚫ No waste of space

53

Fact #1
File systems contain multiple data structures

54

Fact #2
These data structures have inter-depencencies

55

Conclusion:
Modification of the file system should be atomic

56

What happens if the computer
is suddenly turned off?

57

File system repair

⚫ For each block

− Find which files use the block

− Check if the block is marked as free

⚫ The block is used by 1 file xor is free – OK

⚫ Two files use the same block – BAD: duplicate the
block and give one to each file

⚫ The block is both used and is marked free – BAD:
remove from free list

⚫ The block is neither free nor used – Wasted block: mark
as free

58

Modern alternatives

⚫ Journalling

⚫ Snapshot-based

⚫ Log-structured

59

Journalling file systems

⚫ Each modification is made as a transaction

⚫ Keep a journal (log) of all pending transactions

⚫ Interrupted transaction can be rolled-back

⚫ Every update requires two writes

⚫ Examples: NTFS, ext4

60

Snapshot-based

⚫ Copy-on-write

⚫ Often combined with checksums

⚫ Atomicity an result in cascading updates

⚫ Examples: ZFS, Btrfs, APFS

61

Log-structured

⚫ Idea from ’88 - exploit sequential nature of disks

⚫ Skip the structure just write where free

⚫ Now revived!

− Per inode logs in NOVA filesystem for non-volatile
main memory (NVMM)

Tail Head

62

Memory-Mapped Files

⚫ Mapping a disk block to a page in memory

⚫ A page-sized portion of the file is read from the file

system into a physical page. Subsequent

reads/writes to/from the file are treated as ordinary

memory accesses.

⚫ Simplifies file access by treating file I/O through

memory

rather than read() / write() system calls

⚫ Also allows several processes to map the same file

allowing the pages in memory to be shared

63

Memory-Mapped Files

64

Next on

⚫ Virtualization + Synchronization II

⚫ Reading 10ed: Ch. 2.8, Ch. 18

	Bild 1
	Bild 2: Reading
	Bild 3: Demand Paging
	Bild 4
	Bild 5
	Bild 6: Steps in Handling a Page Fault (Case: a free frame exists)
	Bild 7: Page Replacement
	Bild 8: Basic Page Replacement
	Bild 9: How to compare algorithms for page replacement?
	Bild 10: First-In-First-Out (FIFO) Algorithm
	Bild 11: Expected Page Faults Versus Number of Frames
	Bild 12: FIFO illustrating Belady’s Anomaly
	Bild 13: An Optimal Algorithm [Belady 1966]
	Bild 14: Least Recently Used (LRU) Algorithm
	Bild 15
	Bild 16: Thrashing
	Bild 17: Effect of thrashing
	Bild 18: Demand Paging and Thrashing
	Bild 19: Locality In A Memory-Reference Pattern
	Bild 20: Working-Set Model
	Bild 21: Working-Set - Example
	Bild 22: Keeping Track of the Working Set
	Bild 23: Page-Fault Frequency
	Bild 24: Working Sets and Page Fault Rates
	Bild 25
	Bild 26: Motivation
	Bild 27: Memory compression
	Bild 28
	Bild 29: Refresh
	Bild 30
	Bild 31
	Bild 32: Hadoop Distributed File System (HDFS)
	Bild 33
	Bild 34
	Bild 35: Virtual File System (VFS)
	Bild 36: File control block (FCB)
	Bild 37: Allocation Methods
	Bild 38: Contiguous Allocation
	Bild 39: Contiguous Allocation
	Bild 40
	Bild 41: Linked Allocation
	Bild 42
	Bild 43
	Bild 44: Indexed Allocation (Cont.)
	Bild 45: Multilevel-indexed allocation
	Bild 46
	Bild 47: B-trees
	Bild 48: Free-Space Management
	Bild 49: Bit vector
	Bild 50: Bit vector
	Bild 51
	Bild 52: Linked list
	Bild 53
	Bild 54
	Bild 55
	Bild 56
	Bild 57: File system repair
	Bild 58: Modern alternatives
	Bild 59: Journalling file systems
	Bild 60: Snapshot-based
	Bild 61: Log-structured
	Bild 62: Memory-Mapped Files
	Bild 63
	Bild 64: Next on

