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TDDB68/TDDE47
Concurrent Programming and Operating 

Systems

Lecture 7:
Memory management I

Adrian Pop and Mikael Asplund

Thanks to  Christoph Kessler for some of the material behind these slides.
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Reading guidelines

● Sliberschatz et al. 
– 9th edition: Ch. 8, 9.1-9.3 
– 10th edition: Ch. 9, 10.1-10.3 
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Why do we need memory 
management?



4

CPU 

Simple microprocessor

CU

...

CU = Control Unit

Memory
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Problems

● Process memory separation

● Dynamic creation of processes

● Dynamic memory allocation
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CPU 

High-end CPU

CU

...

MMU

CU = Control Unit, MMU = Memory Management Unit

Memory
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CPU 

Logical address != physical address

CU

...

MMU

CU = Control Unit, MMU = Memory Management Unit

Memory
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CPU 

Can put data elsewhere

CU

...

MMU

CU = Control Unit, MMU = Memory Management Unit

Memory
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CPU 

Does not even have to be real 
memory

CU

...

MMU

CU = Control Unit, MMU = Memory Management Unit
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Due to the separation between logical address 
and physical address the MMU can provide the 

process with virtual memory



Memory-Management Unit (MMU)
● Hardware device that maps virtual to physical 

address

● The user program deals with logical addresses; 
it never sees the real physical addresses

● The MMU provides translation between logical 
and physical addresses
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Basic MMU
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Relocation
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address

42392

Physical 
address
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Granularity

● The ”chunks” of memory that can be given 
different locations by the MMU can be
– Process level
– Segmentation
– Paging

 



Process-level Memory 
Management
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Memsize
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Multi-partition allocation

● Each process gets one 
partition

● Protects processes from 
each other
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Memory protection

Memory

CU

MMU

Address
>= <=

Y Y

NN

Trap to OS – invalid 
memory access

Base Base + limit
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Protection + translation
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External fragmentation!
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Internal fragmentation!



When allocating memory to a process, how big 
should the partition be?



Allocation schemes

Fixed partition size

● One size fits all

● Simple

● Internal fragmentation

Variable partition size

● Size of program decides partition 
size

● More scalable in number of 
processes

● External fragmentation



Dynamic storage-allocation problem:

How to satisfy a request of size n from a list of free holes?



Allocation schemes

● First-fit:  Allocate the first hole that is big enough
● Best-fit:  Allocate the smallest hole that is big 

enough; 
– must search entire list, unless ordered by size.  
– Produces the smallest leftover hole.

● Worst-fit:  Allocate the largest hole; 
– must also search entire list.  
– Produces the largest leftover hole.



Compaction
● Reduce external fragmentation 

● Compaction is possible only if relocation is 
dynamic, and is done at execution time

● I/O problem



Example of Compacting

p1

p3

p4

p2 pnew



Example of Compacting: Solution 1

p1

p3

p4

p2

p1

p3

p4

p2

pnew

Move all occupied areas to one side until there is a hole large enough for pnew



Example of Compacting: Solution 2

p1

p3

p4

p2

p1

p3

p4

p2

pnew

Search and select one (or a few) processes to move to free a hole large enough…



Still not enough space for process?



Still not enough space for process?

Try swapping!



Swapping



Swapping

Costly!



Segmentation



Segmentation
● Memory-management scheme 

that supports a user view of memory

● A program is a collection of segments.  
● A segment is a logical unit such as:

– main program, procedure, 
function, method,

– object, local variables, global variables,
– common block, stack,
– symbol table, arrays

● Idea: allocate memory according to such segments



Logical View of Segmentation

1: stack

3:
main

2: subroutine

4:
symbol table

1

4

2

3

user space physical memory space



Pros and cons of segmentation

● More fine grained than process-level memory 
management

● Minimal internal fragmentation

● External fragmentation

● Allocation potentially difficult



Paging



Physical memory
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Logical memory Physical memory
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Logical memory Physical memory
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Paging
 Physical address space of a process can be 
noncontiguous

 Process is allocated physical memory 
whenever the latter is available – no external 
fragmentation

 Internal fragmentation



Address Translation Scheme
● Address generated by CU is divided into:

– Page number (p) – index into a page table that 
contains the base address of each page in 
physical memory

– Page offset (d) – combined with base address to 
define the physical memory address that is sent to 
the memory unit
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Translation

● Size of logical address space is 2m

● Size of page 2n



Paging Example

1 character = 1 byte

Frame/page size = 4 bytes = 22 bytes

Number of pages = 4 = 22

Logical address space size = 16 = 22+2

Physical address 
space size = 32 bytesn=2, m=4



Poll question 

Assume
– 32bit architecture, single level paging
– 4GB of main memory (2^32 Bytes)
– Page size of 4KB (2^12 Bytes)
– 200 running processes

What is the required size for all the page tables?
A) 200MB

B) 400MB

C) 800MB

D) 1600MB

URL: www.menti.com
Code: 7677 8900
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Page Table Structure
● The “large page table problem”

● Page table structures:
– Hierarchical Paging:  “page the page table”
– Hashed Page Tables
– Inverted Page Tables



Hierarchical Page Tables



Address-Translation Scheme



Can we address a 64-bit memory space?



Hashed Page Table



Inverted Page Table Architecture



Implementation of the Page Table
● Page table is kept in main memory
● Page-table base register (PTBR) 

points to the page table
● Page-table length register (PRLR) 

indicates size of the page table
● Every data/instruction access requires n+1 memory accesses (for n-

level paging).  
– One for the page table and one for the data/instruction.

● Solve the (n+1)-memory-access problem 
– by using a special fast-lookup cache (in hardware): 

translation look-aside buffer (TLB)
● Implements an associative memory



Paging Hardware With TLB

TLB:  fast, small, and expensive

Typically 64…1024 TLB entries
in main memory



Effective Access Time
● Memory cycle time:  t    
● Time for associative lookup:    
● TLB hit ratio 

– percentage of times that a page number is found in TLB

● Effective Access Time (EAT):

                  EAT  =  (t + )  + (2t + )(1 – )   

                           =  2t +  –  t  

Example:  For  t =100 ns,   = 20 ns,   = 0.8:    EAT = 140 ns

 



Memory Protection
● Implemented by associating protection bit with each 

frame

● valid-invalid bit attached to each entry in the page 
table:
– “valid”: the associated page is in the process’ logical 

address space, and is thus a legal page
– “invalid”: the page is not in the process’ logical address 

space

● Allows dynamically sized page tables
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Shared memory

 – Easy with paged memory!



Combining Segmentation and Paging

● Each segment is organized as a set of pages.

● Segment table entries refer to a page table for 
each segment.

● TLB used to speed up effective access time.



Combining Segmentation and 
Paging

s dp

segment number page number displacement

virtual 
address:

segment 
table 
origin 
register

s

s’
p

f df

physical address

segment 
table for this 
process

page table for 
this segment

if TLB hit for (s,p), get f,
otherwise:



Demand Paging



Virtual Memory That is Larger Than Physical Memory





Demand Paging
● Bring a page into memory only when it is needed

– Less I/O needed
– Less memory needed 
– Faster response
– More users

● Page is needed if referenced (load/store, 
data/instructions)
– invalid reference  abort
– not-in-memory  bring to memory

[Kilburn et al. 1961]



Rather than swapping entire processes (cf. swapping), 
we page their pages from/to disk only when first referenced.



What happens if there is no free frame?



Page replacement
● Find some page in memory, but not really in use, 

swap it out
– Write-back only necessary if victim page was modified
– Same page may be brought into memory several times

● More details next lecture...



Steps in Handling a Page Fault 
(Case: a free frame exists)

Free frame

Free frame

OccupiedPage table

Main memory

1 X i
page 1Occupied

Occupied

Occupied

Occupied

1.

1. Memory reference
2. Page fault! →Interrupt
3. OS moves page into memory
4. Update page table
5. Restart memory access instruction

2.

page 1
3.4.

…
…
Load from 
memory
…
...

Program
Disk

5. 1 3 v



Poll question 

Which of the following memory management 
tasks can be performed by the MMU:

A) Memory protection

B) Page table lookup

C) Page replacement

D) TLB lookup

URL:www.menti.com
Code:2258 8511

http://www.menti.com/
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Performance of Demand Paging
● Page Fault Rate  p            0  p  1.0

– if p = 0, no page faults 
– if p = 1, every reference is a fault

● Write-back rate  w          0 <= w <= 1
● Memory access time t

● Effective Access Time (EAT)

          EAT  =  (1 – p) t  +  p  (   page fault overhead

                                                     + w ( time to swap page out )

                                                     + time to swap new page in

                                                     + restart overhead

                                                     + t   )



Next time – Lecture 8

● Memory management II and File systems

● Reading
– Page replacement: 10.4, 
– Thrashing: 10.6
– Memory compression:10.7 
– File system interface: 13.1 (the rest superficially) 
– File system implementation: 14.1-14.7 
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