
1

TDDB68/TDDE47
Concurrent Programming and Operating

Systems

Lecture 7:
Memory management I

Adrian Pop and Mikael Asplund

Thanks to Christoph Kessler for some of the material behind these slides.

2

Reading guidelines

● Sliberschatz et al.
– 9th edition: Ch. 8, 9.1-9.3
– 10th edition: Ch. 9, 10.1-10.3

3

Why do we need memory
management?

4

CPU

Simple microprocessor

CU

...

CU = Control Unit

Memory

5

Problems

● Process memory separation

● Dynamic creation of processes

● Dynamic memory allocation

6

CPU

High-end CPU

CU

...

MMU

CU = Control Unit, MMU = Memory Management Unit

Memory

7

CPU

Logical address != physical address

CU

...

MMU

CU = Control Unit, MMU = Memory Management Unit

Memory

8

CPU

Can put data elsewhere

CU

...

MMU

CU = Control Unit, MMU = Memory Management Unit

Memory

9

CPU

Does not even have to be real
memory

CU

...

MMU

CU = Control Unit, MMU = Memory Management Unit

10

Due to the separation between logical address
and physical address the MMU can provide the

process with virtual memory

Memory-Management Unit (MMU)
● Hardware device that maps virtual to physical

address

● The user program deals with logical addresses;
it never sees the real physical addresses

● The MMU provides translation between logical
and physical addresses

12

Basic MMU

Memory

CU +

MMU

Relocation
register

42000

392

Logical
address

42392

Physical
address

13

Granularity

● The ”chunks” of memory that can be given
different locations by the MMU can be
– Process level
– Segmentation
– Paging

Process-level Memory
Management

Memory
0

Memsize

Memory

Kernel

0

Memsize

Memory

Kernel

0

Memsize

Process 1

Memory

Kernel

0

Memsize

Process 1

Process 2

Memory

Kernel

0

Memsize

Process 1

Process 2

Process 3

Memory

Kernel

0

Memsize

Process 1

Process 2

Process 3

Multi-partition allocation

● Each process gets one
partition

● Protects processes from
each other

21

Memory protection

Memory

CU

MMU

Address
>= <=

Y Y

NN

Trap to OS – invalid
memory access

Base Base + limit

22

Protection + translation

Memory

CU

MMU

Logical
address

<
Y

Physical
address

N

Trap to OS – invalid
memory access

+

Limit Relocation
register

Memory

Kernel

0

Memsize

Process 1

Process 2

Process 3

Memory

Kernel

0

Memsize

Process 1

Process 2

Process 3

Memory

Kernel

0

Memsize

Process 1

Process 2

Process 3

External fragmentation!

Memory

Kernel

0

Memsize

Process 1

Process 2

Process 3

Memory

Kernel

0

Memsize

Process 1

Process 2

Process 3

Unused memory

Internal fragmentation!

When allocating memory to a process, how big
should the partition be?

Allocation schemes

Fixed partition size

● One size fits all

● Simple

● Internal fragmentation

Variable partition size

● Size of program decides partition
size

● More scalable in number of
processes

● External fragmentation

Dynamic storage-allocation problem:

How to satisfy a request of size n from a list of free holes?

Allocation schemes

● First-fit: Allocate the first hole that is big enough
● Best-fit: Allocate the smallest hole that is big

enough;
– must search entire list, unless ordered by size.
– Produces the smallest leftover hole.

● Worst-fit: Allocate the largest hole;
– must also search entire list.
– Produces the largest leftover hole.

Compaction
● Reduce external fragmentation

● Compaction is possible only if relocation is
dynamic, and is done at execution time

● I/O problem

Example of Compacting

p1

p3

p4

p2 pnew

Example of Compacting: Solution 1

p1

p3

p4

p2

p1

p3

p4

p2

pnew

Move all occupied areas to one side until there is a hole large enough for pnew

Example of Compacting: Solution 2

p1

p3

p4

p2

p1

p3

p4

p2

pnew

Search and select one (or a few) processes to move to free a hole large enough…

Still not enough space for process?

Still not enough space for process?

Try swapping!

Swapping

Swapping

Costly!

Segmentation

Segmentation
● Memory-management scheme

that supports a user view of memory

● A program is a collection of segments.
● A segment is a logical unit such as:

– main program, procedure,
function, method,

– object, local variables, global variables,
– common block, stack,
– symbol table, arrays

● Idea: allocate memory according to such segments

Logical View of Segmentation

1: stack

3:
main

2: subroutine

4:
symbol table

1

4

2

3

user space physical memory space

Pros and cons of segmentation

● More fine grained than process-level memory
management

● Minimal internal fragmentation

● External fragmentation

● Allocation potentially difficult

Paging

Physical memory

Physical memory

0

1

2

3

4

5

6

7

8

Frame number

Physical memory

0

1

2

3

4

5

6

7

8

Frame number

Logical memory

Logical memory Physical memory

0

1

2

3

4

5

6

7

8

Frame number

page 0

page 1

page 2

page 3

Logical memory Physical memory

0

1

2

3

4

5

6

7

8

Frame number

page 0

page 1

page 2

page 3

page 0

page 1

page 2

page 3

Logical memory Physical memory

0

1

2

3

4

5

6

7

8

Frame number

page 0

page 1

page 2

page 3

page 0

page 1

page 2

page 3

Page nr Frame nr

0 2

1 5

2 3

3 7

Page table

Paging
 Physical address space of a process can be
noncontiguous

 Process is allocated physical memory
whenever the latter is available – no external
fragmentation

 Internal fragmentation

Address Translation Scheme
● Address generated by CU is divided into:

– Page number (p) – index into a page table that
contains the base address of each page in
physical memory

– Page offset (d) – combined with base address to
define the physical memory address that is sent to
the memory unit

Memory

0

1

2

3

4

5

6

7

8

Frame number

page 0

page 1

page 2

page 3

Page Frame

0 2

1 5

2 3

3 7

Page table

CU

MMU

Logical
address

p d f d

Physical
address

Page address translation

Translation

● Size of logical address space is 2m

● Size of page 2n

Paging Example

1 character = 1 byte

Frame/page size = 4 bytes = 22 bytes

Number of pages = 4 = 22

Logical address space size = 16 = 22+2

Physical address
space size = 32 bytesn=2, m=4

Poll question

Assume
– 32bit architecture, single level paging
– 4GB of main memory (2^32 Bytes)
– Page size of 4KB (2^12 Bytes)
– 200 running processes

What is the required size for all the page tables?
A) 200MB

B) 400MB

C) 800MB

D) 1600MB

URL: www.menti.com
Code: 7677 8900

2022

2023

Page Table Structure
● The “large page table problem”

● Page table structures:
– Hierarchical Paging: “page the page table”
– Hashed Page Tables
– Inverted Page Tables

Hierarchical Page Tables

Address-Translation Scheme

Can we address a 64-bit memory space?

Hashed Page Table

Inverted Page Table Architecture

Implementation of the Page Table
● Page table is kept in main memory
● Page-table base register (PTBR)

points to the page table
● Page-table length register (PRLR)

indicates size of the page table
● Every data/instruction access requires n+1 memory accesses (for n-

level paging).
– One for the page table and one for the data/instruction.

● Solve the (n+1)-memory-access problem
– by using a special fast-lookup cache (in hardware):

translation look-aside buffer (TLB)
● Implements an associative memory

Paging Hardware With TLB

TLB: fast, small, and expensive

Typically 64…1024 TLB entries
in main memory

Effective Access Time
● Memory cycle time: t
● Time for associative lookup: 
● TLB hit ratio 

– percentage of times that a page number is found in TLB

● Effective Access Time (EAT):

 EAT = (t + )  + (2t + )(1 – )

 = 2t +  –  t

Example: For t =100 ns,  = 20 ns,  = 0.8: EAT = 140 ns

Memory Protection
● Implemented by associating protection bit with each

frame

● valid-invalid bit attached to each entry in the page
table:
– “valid”: the associated page is in the process’ logical

address space, and is thus a legal page
– “invalid”: the page is not in the process’ logical address

space

● Allows dynamically sized page tables

Logical memory Physical memory

0

1

2

3

4

5

6

7

8

Frame number
page 0

page 1

page 2

page 3

page 0

page 1

page 2

page 3

Memory Protection

Page table
0 2 v

1 5 v

2 3 v

3 7 v

4 X i

5 X i

6 X i

valid/invalidpage frame

Shared memory

 – Easy with paged memory!

Combining Segmentation and Paging

● Each segment is organized as a set of pages.

● Segment table entries refer to a page table for
each segment.

● TLB used to speed up effective access time.

Combining Segmentation and
Paging

s dp

segment number page number displacement

virtual
address:

segment
table
origin
register

s

s’
p

f df

physical address

segment
table for this
process

page table for
this segment

if TLB hit for (s,p), get f,
otherwise:

Demand Paging

Virtual Memory That is Larger Than Physical Memory



Demand Paging
● Bring a page into memory only when it is needed

– Less I/O needed
– Less memory needed
– Faster response
– More users

● Page is needed if referenced (load/store,
data/instructions)
– invalid reference  abort
– not-in-memory  bring to memory

[Kilburn et al. 1961]

Rather than swapping entire processes (cf. swapping),
we page their pages from/to disk only when first referenced.

What happens if there is no free frame?

Page replacement
● Find some page in memory, but not really in use,

swap it out
– Write-back only necessary if victim page was modified
– Same page may be brought into memory several times

● More details next lecture...

Steps in Handling a Page Fault
(Case: a free frame exists)

Free frame

Free frame

OccupiedPage table

Main memory

1 X i
page 1Occupied

Occupied

Occupied

Occupied

1.

1. Memory reference
2. Page fault! →Interrupt
3. OS moves page into memory
4. Update page table
5. Restart memory access instruction

2.

page 1
3.4.

…
…
Load from
memory
…
...

Program
Disk

5. 1 3 v

Poll question

Which of the following memory management
tasks can be performed by the MMU:

A) Memory protection

B) Page table lookup

C) Page replacement

D) TLB lookup

URL:www.menti.com
Code:2258 8511

http://www.menti.com/

2022

2023

Performance of Demand Paging
● Page Fault Rate p 0  p  1.0

– if p = 0, no page faults
– if p = 1, every reference is a fault

● Write-back rate w 0 <= w <= 1
● Memory access time t

● Effective Access Time (EAT)

 EAT = (1 – p) t + p (page fault overhead

 + w (time to swap page out)

 + time to swap new page in

 + restart overhead

 + t)

Next time – Lecture 8

● Memory management II and File systems

● Reading
– Page replacement: 10.4,
– Thrashing: 10.6
– Memory compression:10.7
– File system interface: 13.1 (the rest superficially)
– File system implementation: 14.1-14.7

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Memory-Management Unit (MMU)
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Example of Compacting
	Example of Compacting: Solution 1
	Example of Compacting: Solution 2
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Segmentation
	Logical View of Segmentation
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Paging
	Slide 54
	Slide 55
	Slide 56
	Paging Example
	Slide 58
	Slide 59
	Slide 60
	Page Table Structure
	Hierarchical Page Tables
	Address-Translation Scheme
	Slide 64
	Hashed Page Table
	Inverted Page Table Architecture
	Implementation of the Page Table
	Paging Hardware With TLB
	Slide 69
	Memory Protection
	Slide 71
	Shared Pages – Easy with paged memory!
	Slide 73
	Combining Segmentation and Paging
	Slide 75
	Virtual Memory That is Larger Than Physical Memory
	Demand Paging
	Slide 78
	Slide 79
	What happens if there is no free frame?
	Steps in Handling a Page Fault (Case: a free frame exists)
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86

